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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

BASE PRESSURES MEASURED ON SEVERAL PARABOLIC~C BODIES 

OF REVOLUTION IN FREE FLIGHT AT MACH NUMBERS FROM 

0.8 TO 1.4 AND AT LARGE REYNOLDS NUMBERS 

By Ellis Katz and William E. Stoney, Jr. 

SUMMARY 

Base pressures were measured on several fin-stabilized bodies of 
parabolic-arc profile in free flight at Mach numbers from 0. 8 to 1.4 
and at Reynolds numbers from 20 to 130 million. The bodies varied in 
length from 6 to 25 diameters and had afterbodies which converged to 
base areas equal to 19.1 percent of the frontal Areas. Pressures were 
also measured on the side of the bodies immediately ahead of the bases. 

The f ollowing observations were noted: The base pres sure coeffi­
cients varied from -0.05 to 0.02 at high-subsonic speeds, from -0.10 to 
0.09 at transonic speeds, and from -0.10 to 0 at supersonic speeds, the 
value depending on the convergence of the afterbody. For the present 
parabolic afterbodies of greater length than 3 diameters, increasing the 
convergence had the effect of increasing the base pressure and, 
correspondingly, reducing the base drag. For the most convergent after­
bodies, a flow compression existed at the corner of the base. The 
coefficients of base drag for the test bodies were low, generally less 
than 0.010. 

INTRODUCTION 

The pressure which develops over the base of a flat-ended body is 
of particular interest in the design of jet-powered aircraft. This 
pressure, which is termed base pressure, has been measured on bodies 
having small degrees of afterbody convergence (see reference 1, for 
example) and is of such magnitude as to affect seriously the performance, 
for certain flight conditions, of aircraft having bodies with little or 
no boattal1. Fewer base pressure data are available, however, for bodies 
which have moderate-to-large degrees of afterbody convergence, particu­
larly through the transonic speed range and at large Reynolds numbers. 
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In order to present such data, this paper reports experimental 
results obtained on rocket-propelled bodies at the Pilotless Aircraft 
Research Station at Wallops Island, Va. The parabolic-arc bodies had 
base areas equal to 19.1 percent of the frontal areas and were tested 
at Mach numbers from 0.8 to 1.4 at Reynolds numbers from 20 to 130 
million. The results include pressure measurements on the bases and 
sides of the bodies immediately ahead of the bases as well as total body 
drag. The bodies varied in length from approximately 6 to 25 diameters 
and had stabilizing fins located forward of the bases. 
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SYMBOLS 

coefficient of base pressure related to free-stream 

conditions (~ ~ Po) 

coefficient of base pressure related to local-stream 

( Pb :sP s) conditions immediately ahead of the base ~ 

coefficient of side pressure related to free-stream 

( Ps :_po) conditions ""{) 

coefficient of drag (D~~) 

coefficient of base drag (-c~~) 

measured pressure 

dynamic pressure (0. 7M2p) 

Mach number 

body radius 

body station, measured from the nose 

total body length 

maximum body diameter 
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Subscripts: 

o 

s 

b 

max1mum body area ( rrJ)2/4 ) 

body station location of maximum diameter (referenced to 
nose) 

forebody length, diameters 

afterbody length, diameters 

Reynolds number based on body length 

conditions in free stream 

conditions at side of body immediately ahead of the base 

conditions on base 

MODELS AND TESTS 

The general arrangement of the test configurations is shown in 
figure 1, and photographs of the test models are shown in figure 2. 
The profiles of the bodies describe parabolic arcs with vertexes 

3 

located at the body maximum radius. The equations defining the profiles 
are given below: 

~ = 1 _ :2(K _ ~)2 

2r 
D 

2 
1 - 0.5627 (~ - K) 

(1 _ K)2 L 
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The following table lists the values of the geometric parameters 
defining the bodies of the present test models (the models are numbered 
according to increasing length (in diameters) of the afterbodies - for 
reasons which will be apparent subsequently) : 

Afterbody Forebody 
Total length, length) 

Model K 1- LID length L - 1- 7, = -L (diam. ) D D 
(diam. ) (diam. ) 

1 0.40 6.04 3.62 2.42 

2 .40 8.91 5 . 35 3.56 

3 .to 17.78 7 .11 10.67 

4 .40 12.50 7 . 50 5.00 

5 .60 24.50 9 .2D 14 . 70 

For all models the frontal area (~~4) was 0.307 square foot) and the 
base area was 0.0586 square foot. The bodies were constructed of wood 
and finished with cl ear lacquer to form a smooth and fair surface . 

The test vehicles were stabilized by three duralumin fins, which 
were swept back 450 and had a tota l exposed area of 1. 69 square feet. 
In the streamwise direction the fins had hexagonal sections of 
0.0278 thickness ratio. The trailing edge of the fins intersected the 
bodies at the 9O . 53-percent station. 

A two-stage propulsion system was employed utiliz ing a 3.25-inch 
rocket motor MK-7 as the sustainer unit and a 5-inch HVAR motor as the 
booster unit. The booster unit was stabilized by four fins and was 
attached to the sustainer motor by means of a nozzle -plug adapter. A 
photograph of a typical model-booster arrangement on the launching stand 
is shown in figure 3 . 

Drag data were obtained by tracking the models with the C~ Doppler 
radar velocimeter unit and the NACA modified SCR-584 radar tracking unit 
as described in reference 2. Drag coefficients have been based on body 
frontal area (0 . 307 sq ft) and represent the total drag of the configu­
rations including fin and interference drag. 

Each model was equipped with a standard NACA two-channel telemeter 
fo r recording pressures. Pres sure s were measured at the base and on the 

CONFIDENTIAL 
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s ide of the model immediately ahead of the base for all models except 
model 4. The side orifice was located midway between two stabilizing 
fins. The base orifice was located near the rim of the rocket-motor 
nozzle for models 1, 2, and 4 and was located within the rocket blast 
tube for models 3 and 5. Schematic diagrams of the two types of pressure 
installations are shown in figure 4. 

The errors in the Mach number, pressure-, and drag-coefficient data 
are probably within the values listed below. (It should be noted that 
the pressure data are continuously recorded with time and that the 
response of the system to sudden disturbances is extremely rapid; thus, 
abrupt variations of pressure with Mach number are accurately 
represented. ) 

Errors of measurement 

M 
M CD Cp Cp 

I C 
b b Ps 

1.4 ±0.005 ±o .005 ±o.ooS ±0.005 ±0.010 

1.1 ±.005 ±.007 ±.015 ±.010 ± .020 

.S ±.005 ±.Ol ± .030 ±.020 ± .040 

The range of the te st s, in terms of Mach number and Reynolds number, 
is given in figure 5. 

RESULTS AND DISCUSSION 

For the present tests, the afterbody configuration is treated as 
the prime independent geometric variable by which the results may be 
systematized. Although other factors are present in these tests, 
consideration of their effects on base pressure leads to the conclusion 
that these variables may be regarded as incidental. A discussion of 
the limitations of this treatment is given in the appendix. 

Figure 6 gives the Mach number variations of (a) base pressure 
coefficient Cp related to free - stream conditions, (b) base pressure 

b 
coefficient related to local conditions immediately ahead of the 

base , and (c) side pressure coefficient Cps related to free-stream 
conditions. 

CONFIDENTIAL 
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Base Pressure Coefficient, Cpt 

The base pressure coefficients related to free-stream conditions 
are shown as functions of Mach number in figure 6(a) for the five test 
models. The base pressure coefficients vary from -0.05 to 0.02 at high­
subsonic speeds) from -0.10 to 0.09 at transonic speeds, and from -0.10 
to 0 at supersonic speeds . 

The results indicate a consistent and systematic pattern when 
compared on the basis of afterbody configuration. Although afterbody 
length has been used as the parameter in the present paper, the data 
will correlate equally well with the boattail angle at the base since, 
for the test models) this parameter is inversely proportional to the 
afterbody length. Over almost the entire test range, as the afterbody 
becomes less convergent (that is, as the length of the afterbody 
increases), the absolute pressure on the base decreases (fig. 6(a)). 
This trend is further indicated by the results from reference 3 for a 
cylindrical body which may be represented as having a parabolic after­
body of zero convergence (that is, infinite length) at the approximate 
Reynolds numbers of the present tests. In the limit this trend is 
perhaps better thought of as a function of the convergence angle rather 
than the afterbody length since, in reality, the boundary layer on an 
infinite afterbody would make the base pressure equal to the free-stream 
pressure. The present results qualitatively agree with the tests 
at M = 1. 5 reported in reference 4 for parabolic bodies at low Reynolds 
numbers and artifically induced turbulent-boundary layers. 

The positive peaks in the variations of C
Pb 

near the speed of 

sound appear to be characteristic of the test models and are most marked 
for the models with extreme afterbody convergence. 

Base Pressure CoeffiCient, 

The base pressures, related to local-stream conditions immediately 
forward of the base) are shown in figure 6(b) as functions of free­
stream Mach number for four of the test models. Expressed in this form, 
the pressure coefficient quantitatively defines the flow over the corner 
of the base: positive (+) for compression and negative (-) for 
expansion. The results show that the flow actually compressed in passing 
off the rear of the body for models 1 and 2 while an expansion occurred 
at the base for the configurations with less afterbody convergence 
(models 3 and 5). The compression at the corner of the base may have 
been accompanied) at supersonic speeds) by a standing shock near that 
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point as has been evidenced for similar bodies reported in reference 4. 
In this connection) it is interesting to note the abrupt increase in 
compression near M = 1.0 for models 1 and 2. 

Side Pressure Coefficient} Cp s 

The pressure on the side of the body immediately ahead of the base) 
related to free-stream conditions) is shown in figure 6(c) as a function 
of Mach number for four of the test models. Also shown in figure 6(c) 
is the variation of Cps for a parabolic body (of the same family as 

the present models) which has been reported in reference 5. The 
reference configuration had an extremely convergent afterbody of 
1.8 diameters and a nose of 7 . 1 diameters . 

With the exception of the reference configuration) the pressures 
at the side of the bodies were less than free stream throughout the 
supersonic speed range. The variation of side pressure with Mach number 
is very similar to the base pressure variations shown in figure 6(a)) 
particularly in the range of transonic speeds . Accordingly) it appears 
that the reduction in base pressure on traversing from subsonic to 
supersonic speeds is due primarily to a corresponding reduction in the 
local pressure immediately ahead of the base. The positive peaks in 
the coefficients of side pressure Cps and base pressure Cpt near 

the speed of sound are probably caused by a shock moving downstream and 
over the side orifice as supersonic speeds are attained. A similar 
phenomenon was noted for the test of a body reported in reference 6. 

Effect of Afterbody Length 

Part of the results shown in figure 6 have been cross-plotted 
against afterbody length in figure 7. It should be noted here that 
these results are applicable only for the ratio of base to maximum 

diameter used in the present test (~ = 0.437) . Variations are shown 

for the side pressure coefficient Cps and base pressure coefficient 

Cpt related to free-stream conditions) at M = 0.9 and M = 1.2. 

Also shown on figure 7 are base pressure coefficients for a 
same as that reported in reference 5) which have been taken 
as yet unpublished. The values of Cpt for afterbodies of 

body the 
from data 
zero and 

infinite length have been obtained from the results shown in figure 6(a) 
for the pointed cylindrical body (the value at M = 1.2 is extrapolated 
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from those results). The results shown on figure 7 suggest a physical 

picture regarding the nature of the flow at the bases of the present 

test bodies. 

The fluid which flows past the base of a slightly convergent 

afterbody turns in toward the axis at the corner of the base and is 

expanded to a lower pressure . A short distance downstream the fluid is 

turned almost parallel to the axis and is thus recompressed to a higher 

pressure. The schlieren photographs of reference 4 have indicated that, 

at supersonic speeds, the recompression may be located on the body 

surface or downstream, depending on the afterbody convergence. It would 

appear from inspection of figure 7 that the base and side pressures are 

affected as though by a recompression which gradually moves upstream as 

the afterbody convergence is i ncreased. 

Drag 

Total and base drag coefficients are shown as a function of Mach 

number in figure 8 for the configurations of the present tests. Also 

included in figure 8 are results from flights of models identical to 

several of the present tests and reported in references 7 and 8. The 

base drag has been reduced from the base pressure data by using the 

relation 

( 

2 
Cn. == -C ~) 
-0 Pb <\nax 

(1) 

and by assuming that the measured pressures are representative of the 

average acting on the base. 

The base drag represents a small part of the total drag for the 

test configurations, 10 percent being the maximum indicated, throughout 

the range of the tests. For other base to maximum diameter ratios the 

base drag may be a considerable portion of the total drag since both 

terms in the right-hand side of equation (1) increase with increasing 

base diameter . For a body of given maximum diameter and afterbody 

length, the increase in total drag coefficient caused by increasing the 

base diameter is somewhat opposed by a decrease in the pressure drag 

over the boattail. These trends suggest that, for afterbodies of given 

length and maximum diameter over which no flow separation occurs, there 

exists an optimum value of base diameter for minimum total drag. 

CONFIDENTIAL 
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CONCLUSIONS 

Free-flight tests have been conducted on bodies of parabolic profile 
which varied in length from 6 t o 25 diameters and had base areas equal 
to 19.1 percent of the body frontal areas. Within the limits of the 
tests , the following conclus i ons appear warranted: 

1. The base pre ssure coefficients varied from -0.05 to 0.02 at 
high-subsonic speeds , from -0.10 to 0.09 at transonic speeds, and from 
-0. 10 to 0 at supersonic speeds , the value depending on the convergence 
of the afterbody. 

2. For the present parabolic e~terbodies of greater than 3 diameters, 
increaSing the convergence had the el '.f'ect of increasing the ba se 
pressure and, correspond:l.nglY7 reducing the base drag. 

3. The flow around the corner of the base was observed to be a 
compression for the most convergent afterbodies . 

4. The abrupt reduction in absolute pressure at the base near the 
speed of sound is indicated to be due to a similar reduction in the side 
pressure immediately ahead of the base. 

5 . The coefficients of base drag were low) generally less than 
0 .01 for the test bodies. 

Langl ey Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field) Va . 
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APPENDIX 

DISCUSSION OF ADDITIONAL FACTORS 

In t he preceding di scussi on , afterbody configuration was referred 
to a s the prime variabl e of the present tests . However, additional 
factors were present whi ch would tend to limit the results and conclusions 
drawn in the se tests . A brief di scussion of these factors is presented 
bel ow . 

Ba se -Maximum Area Rat i o 

The r a t i o of ba se to max imum f r ontal area for the test bodies was 
0 .191. For bodi es of di fferent rat i o, the results may differ from the 
present re sults. 

Forebody Configuration 

The present base pressure results have been correlated with 
systemat ic change s in afterbody configuration . However, the geometry 
of the bodi es of the present tests was such that the forebodies varied 
without relation to the afterbodies . Calculated results by the linear 
theory of reference 9 have indicated that, for the present bodies, the 
invi scid f l ow condi tions near the ba se are largely affected by afterbody 
changes but are little affected by changes in forebody configuration. 
Since the f l ow around the corner of the base of a body is primarily a 
function of the local flow near the base, it would appear that forebody 
configuration is of little significance in the present tests, except 
perhaps for Reynolds number differences due to changing forebody length . 
The effect of Reynol ds number is discussed in the following section. 

Reynolds Number 

The local Reynolds numbers at the base of the bodies varied by a 
factor of 4 between configurations. The magnitude of the Reynolds 
numbers would denote turbulent flow at the bases of all bodies. The 
results of reference 4 for boattailed bodies and of reference 1 for 
cylindrical bodies indicate that a large change in the Reynolds number 
of a turbul ent flow has little effect on base pressure. Although the 
evi dence is not conclusive, it would appear that the effect · of Reynolds 
number var i ations in the present tests are smal l . 

CONFI DENTIAL 
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Base Orifice Location 

Base pressures were measured in the rocket blast tube (after burnout) 
for models 3 and 5 and were measured close to the rim of the rocket 
nozzle for the remaining test models (see fig. 4). This difference 
in base orifice location may represent a random variable in the corre­
lation of the test results. An indication of the effect of orifice 
location, over the transonic speed range, is provided by the results of 
reference 3. For open bases, such as those of the present tests, the 
pressure measured inside the rocket chamber was, in each case, greater 
than the pressure measured on the base annulus for bodies with and 
without boattailing. These results may partially explain the difference 
in base pressure between models 3 and 4 which had almost identical 
afterbodies but different orifice locations. 

Fin Interference 

The effect of sweptback fins on the base pressure is not definitely 
known. The results of reference 10 show that, for thin fins (0.05 thick­
ness or less) vith rectangular plan form and trailing edge located 1 chord 
length ahead of the base~ the effect of the fins on the base pressure 
vas negligible. Thus, vhile the effect of sweepback is still unknown, 
it seems reasonable to aSffUIDe from the thinness and position of the test 
fins that their effect on the base pressure vas small . 

CONFIDENTIAL 
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Figure 1.- General arrangements of test models. All dimensions 
are in inches. 
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Model-I Model-2 Model-3 Model-4 Model-5 

Figure 2 .- General views of test models. ~ 
L-70797 
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Figure 3.- Typical model -booster arrangement on launching stand. 
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(b) System used for models 3 and 5. 
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Figure 4.- Schematic diagrams of pressure installations employed on 
test models. All pressure tubes are 0.19 inch inside diameter. 
All dimensions are in inches. 
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Figure 6.- Pressures, in coefficient form, measured on the sides and 
bases of test bodies. 
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