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NACA RM L51D18a 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

SOME EFFECTS OF SPAI'MISE AILERON LOCATION AND 

WING STRUCTURAL RIGIDITY ON THE ROLLING EFFECTIVENESS 

OF 0 .3-CHORD FLAP-TYPE AILERONS ON A TAPERED WING 

HAVING 63° SWEEPBACK AT THE LEADING EDGE AND 

NACA 64Aoo5 AIRFOIL SECTIONS 

By H. Kurt Strass, E. M. Fields, and Eugene D. Schult 

SU14MARY 

Some effects of aileron spanwise location and wing structural 
rigidity on the rolling power of 0.3-chord plain, flap-type ailerons on 
a wing with a taper ratio of 0.25, an aspect ratio of 3.5, and swept 
back 63° at the leading edge have been investigated by the Langley 
Pilotless Aircraft Research Division by the use of rocket-propelled 
test vehicles. 

The results show that, for rigid wings, aileron spanwise location 
is a significant consideration with the maximum rolling effectiveness 
per unit aileron span occurring at approximately mid-exposed span. At 
speeds above Mach number of approximately 0.9 the O.3l14. -selnispan inboard 
aileron was more effective than the 0.5O-semispan outboard aileron. The 
relative effectiveness of the Inboard aileron increased with Mach number 
until, at Mach number of 1.6, the inboard aileron was approximately 
150 percent more effective than the outboard aileron. The large effect 
of wing flexibility on control effectiveness is demonstrated by the fact 
that for solid alulmTLnum-alloy wings the loss of control effectiveness of 
an outboard 0.50-semispan aileron exceeds 30 percent of the rigid-wing 
values at a Mach number of 1.11.. 

INTRODUCTION 

Jich research effort has been expended at the Ames Aeronautical 
Laboratory evaluating the performance of a thin, highly tapered, highly
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swept wing and several versions of this wing have been investigated 
(see, for exmp1e, references 1 and 2). In an extension of this work, 
the Langley Pilotless Aircraft Research Division has investigated the 
rolling effectiveness of a wing similar to that of reference 2 and 
equipped with 0. 3-chord, plain, flap-type ailerons in the speed range 
between 0.8 M 1.6 by means of rocket-propelled test vehicles. The 
wings tested were swept back 63° at the leading edge, had a taper ratio 
of 0.25, employed the NACA 6'-AO05 airfoil section parallel to the model 
center line, and had several values of stiffness. 

SYMBOLS 

(b2	
35) A	 aspect ratio,	 --- = 

b	 diameter of circle swept by wing tips, 2.25 feet 

average wing incidence for three wings measured in plane of 
a, positive when tending to produce clockwise roll as seen 

from the rear, degrees 

N	 Mach number 

m	 concentrated couple, applied near wing tip in a plane parallel 
to the body center line and normal to wing-chord plane, 
foot -pounds 

P	 static pressure, pounds per square foot 

p	 rolling velocity, radians per second 

pb/2V	 wing tip helix angle, radians 

S	 area of two wing panels measured to fuselage center line, 
lit square feet 

V	 flight-path velocity, feet per second 

y	 spanwise position of end of aileron measured normal to model 
center line, feet 

dc/d m	 section twIsting-moment parameter for constant lift
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dcm/dE rate of change of section pitching-moment coefficient with 
aileron angle, per radian 

drt/d	 rate of change of wing angle of attack with aileron angle as 
obtained for constant lift at section 

deflection of each aileron measured in a plane perpendicular 
to the chord plane and parallel to the model center line 
(average for three wings), degrees 

fraction of rigid-wing rolling effectiveness retained by 
flexible wing 

A	 sweep of wing leading edge, degrees 

ratio of tip chord to root chord at model center line 

e angle of twist, produced by m, at any section along wing span 
in a plane parallel to free stream and normal to wing-chord 
plane, radians 

1/rn0	 wing-torsional-stiffness parameter, measured parallel to model 
center line, radians per foot-pound (elm) 

Subscripts: 

a	 altitude (except a) 

0	 sea level 

r	 reference station (exposed aileron midspan) 

I	 inboard

MODELS MD TECHNIQUE 

The test vehicles used in the present investigation are shown in 
the photograph presented as figure 1 and in the sketch of figure 2. 
The total exposed wing area for three panels was 1.56 square feet, the 
area of two wings taken to the center line of the fuselage was i.14.4 
square feet, and the aspect ratio was 3.5. The ailerons had 0.3 free-
stream chord and simulated sealed faired ailerons in that there was no 
surface discontinuity at the aileron hinge axis. The airfoil section 
parallel to the model center line for all models was the NACA 6l-AOO5.
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Depending upon the value of wing torsional rigidity desired, the 
material of which the test wings were constructed was either solid steel, 
solid aluminum alloy, or composite construction of aluminum alloy and 
beech. The latter ty-pe of contruction is illustrated in figure 3 in 
conjunction with a general description of the test wings. 

The torsional-stiffness parameters of all the test wings were 
obtained by applying a known couple at the wing tip and by measuring the 
resulting twist along the span. The couple was applied and the twist 
was measured in a plane parallel to the free stream and normal to the 
wing-chord plane. The variation of the torsional-stiffness param-
eter 1/me with exposed span measured normal to the model center line 
Is presented in figure 1.t for the three methods of construction employed. 

The flight tests were made at the Pilotless Aircraft Research 
Station at Wallops Island, Va. The test vehicles were propelled by a 
two-stage rocket-propulsion system to a Mach number of about 1.7. 
During a 10-second period of coasting flight following rocket-motor 
burnout, time histories of the rolling velocity were obtained with 
special radio equipment and the flight-path velocity was obtained by 
the use of CW Doppler radar. These data, in conjunction with atmos-
pheric data obtained with radiosond,es, permitted the evaluation of the 
aileron rolling effectiveness in terms of the parameter pb/2V as a 
function of Mach number. The Reynolds number for the tests varied from 
approximately 3 x io6 at M = 0.7 to 6.6 x io6 at M = 1.6. Refer-
ence 3 gives a more complete description of the flight testing 
technique.

ACCURACY AND CORRECTIONS 

Based upon previous experience, the maximum experimental error is 
estimated to be within the following limits: 

	

Subsonic	 Supersonic 

	

pb/2V .................±0.0050	 ±0.0025 

	

M ................... ±.005 	 ±.005 

The sensitivity of the experimental technique, however, is such that 
much smaller irregularities in the variation of pb/2V with Mach number 
maybe detected. For purposes of economy and ease of construction, 
small variations from the desired values of 00 and 50 for wing
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incidence and control deflection, respectively, were permitted. The 
data were corrected for effect of wing incidence i by use of the 
following equation which was derived from strip theory for rigid wings: 

pb	 2	 l+2X 
2V 57.3 iw 1 + 3X = O.0299iv radians 

The validity of this correction has been verified in reference il-. The 
corrections for aileron deflection were made by reducing the data to 

Pb2V and then multiplying by the nominal a value of 50• All the 

data presented have been corrected to nosLinal incidence and aileron-
setting values of Q0 and 0, respectively. The actual measured values 
for the models tested are presented in table I. 

No attempt was made to correct for the effect of test-vehicle 
moment of inertia about the roll axis on the measured variation of 
pb/2V with Mach number since the method of analysis suggested in refer-
ence 3 indicated that the magnitude of the correction is negligible. 

The pb/2V values of figures 5 through 8 have not been corrected to 
sea-level conditions.

RESULTS AND DISCUSSION 

Aeroelastic Effects 

The variation of pb/2V with Mach number and the effect of wing 
stiffness on pb/2V are shown in figures 5 through 8, along with the 
pressure ratio Pa/Po at which corresponding pb/2V values were 
obtained, for the various configurations tested. From the data in 
these figures it can be seen that a wing of the present type will 
encounter large rolling-effectiveness losses unless the construction 
is extremely rigid. For example, at sea level, the loss in control 
effectiveness due to wing flexibility exceeds 30 percent of the rigid-

wing value at M = 1.11 for the outboard O .50 aileron when used with 
a wing constructed of solid aluminum alloy. 

The rigid-wing values, obtained by the method of reference for 
the O.50 outboard aileron, are used to obtain the relative loss in 

control effectiveness (1 - cp) due to wing twisting and these (i - q) 
values are in turn substituted in equation (1) of reference 5 to give 
dcm/d	 dc /d6 

These	 m,	 values are then used in conjunction with the
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information presented in reference 5 to estimate the rigid-wing values 
for the other aileron configurations tested. It was necessary to extend 
the calculations of reference 5 to include the case of the 0. 314b. 

inboard aileron.	 2 

dc 
The values of	 obtained from this investigation are corn-. 

pared in figure 9 with similar data from reference I. These data indi-
cate that the twisting moment produced by the aileron decreases as the 
wing sweepback increases. Because of the method of derivation, the 
values are only strictly applicable to wings of the same sweep, aspect 
ratio and stiffness variation as the test wings; however, it is believed 
that minor variations in these parameters should not affect the value of 
these data. For design purposes, the values of figure 9 should be used 
in conjunction with equation 1 of reference 5 when estimating the loss 
of wing-aileron rolling effectiveness due to wing flexibility. 

Aileron Span and Spanwise Location 

Figure 10 sunnnarizes the rigid-wing rolling-effectiveness results 
for the various wing-aileron configurations. Values in reference 2, 
presented for comparison, were obtained by measuring the rolling moment 
on a constrained model and by using calculated damping coefficients to 
calculate the pb/2V. In addition, results obtained at M = 0.3 in 
the Langley 1- by 10-foot tunnel for the same models are presented as 
an aid in estimating the rolling effectiveness in the region for which 
no data are available (0. 3 M 0.9). The low-speed wind-tunnel 
rolling-effectiveness data were obtained by mounting the rocket models 
upon a sting which allowed the models to revolve freely with negligible 
friction. The agreement between the two testing techniques has been 
found to be good in previous tests where data at the same Mach number 
were available. References 6 and '1 give a more complete description of 
the low-speed wind-tunnel testing technique and the agreement between 
the free-flight and wind-tunnel data. The agreement between the super-
sonic wind-tunnel data of reference 2 and comparable free-flight data 
is good. At N = 0 .3, the wind-tunnel tests show the outboard aileron 
to be approximately 60 percent more effective than the inboard aileron, 
but at N = 0 .95 the flight tests show that the two aileron configu-
rations had equal effectiveness. Above M = 0 .95, the inboard aileron 
became relatively more effective with increasing Mach number until, at 
the highest Mach number tested (N = 1.6), the inboard aileron was 
approximately 150 percent more effective than the outboard. A similar 
condition was encountered previously in the free-flight tests of a 
sweptback untapered wing, for which data are presented in reference 8. 

The results for the two lengths of outboard ailerons and the 
0.8lI aileron from figure 10 are replotted in figure 11 as the
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variation of pb/2V with the corresponding spanwise location of the 
inboard end of the aileron. The rolling effectiveness of a given aileron 
or segment of aileron is determined by the increment in pb/2V between 
the inboard and outboard ends. The region of maximum aileron effective-
ness per unit span occurs where the , slope of the curve has the highest 
value and, for this configuration, is approximately at m.idspan. It 
should be noted that the outer part of the ailerons become proportion-
ally less effective with increasing Mach number until, at the highest 
Mach number for which data are available, this part is almost inef-
fective as a roll-producing device. Figure 12 presents the measured 
variation of pb/2V with Mach number for the inboard O.31 1 aileron 
as compared with the estimated variation obtained from figure 11, where 
the estimated value is equal to the difference between the values of 
pb/2V corresponding to the inboard and outboard ends of the inboard 
0. 3l14 aileron. Satisfactory agreement is obtained between the esti-
mated and measured values.

CONCLUSIONS 

An investigation of some effects of spanwise aileron location and 
structural rigidity on the control effectiveness of 0. 3-chord, plain, 
faired, flap-type ailerons on a wing swept back 63° at the leading edge 
with a taper ratio of 0.25 and having an aspect ratio of 3.5 gave the 
following conclusions: 

1. The spanwise location of the ailerons was critical, with the 
maximum rolling effectiveness per unit span occurring at approximately 
mid-exposed span in the Mach number range tested. 

2. At speeds above Mach number of approximately 0.95, the 0.314-
semispan inboard ailerons were more effective than the 0.50-semispan 
outboard ailerons with the relative effectiveness of the inboard aileron 
increasing until, at the highest speed for which data are available 
(N = 1.6), the inboard aileron was approximately 150 percent more effec-
tive than the outboard. 

3. The measured variation of rolling effectiveness with Mach number 
for the 0.3l4-semispan inboard ailerons agreed satisfactorily with that 
estimated from generalized effectiveness curves obtained from tests of 
outboard and full-span ailerons. 

4. The control-effectiveness of the particular wing-control con-
figurations for which data are presented are greatly influenced by wing 
flexibility. For example, the 0.50-semispan outboard aileron experienced
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a loss in rolling effectiveness of more than 30 percent at M 1.11 
when used with a wing constructed of solid aluminum alloy. 

National Advisory Committee for Aeronautics 
Langley Aeronautical Laboratory 

Langley Field, Va.
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TABLE I

DESCRIPTION OF INDIVIDUAL TEST VEHICLES 

Aileron l/1116r W 8a Type of construction configuration (deg) (deg) 

Inboard O.31 1 2.3 x 10 0.07 .93 Solid aluminum alloy 

7.2 _.i1- 4-.8O Solid steel

- 

thitboard 0.5 25.5 (model 1) -.13 .39 Solid aluminum alloy 
25.5 (model 2) .19 Solid aluminum alloy 
128.0 -.02 .66 Beech, aluminum-alloy core 

Outboard 0.25 50.0 .06 6.17 Solidaluminum alloy 

o.8i 
exposed span)

9.0 . 5.22 Solid aluminum alloy
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/3.4 7/ 

- 

A - 0.25 .4&/2 ou/board cth'eron ...........3.368 
B - 0.50 b/2 au/board a//e'pofl ............ 6.735 
C - 0.3/1 b/2 ,,thoard Q//PO? ............ 4.?35 
iC-O.8/4 '2 /21//-JpCfl O/it'Pe2/7 ........... /0.970 

(a) Exposed wing panel. 

/. _i,._ 

(b) Composite construction of a typical wing 
section parallel to fuselage center line. 

Figure 3.- Description of test wings. All dimensions are in inches.
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Figure 1i-. - Variation of wing torsional rigidity with span for several 
types of construction. 
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Figure 5.- Variation of pressure ratio and rolling effectiveness with
Mach number. Inboard O.31)4 aileron.	 a = 5°.
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(a) Steel wing. 

Figure 6.- Variation of pressure ratio and rolling effectiveness with 
Mach number. Outboard O .5O aileron.	 a = 50
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,L/P0 .8

.5	 /0	 i.e	 1.4	 1.6 a

A//ode! / 
___ __ ___ ___ - —Model ' 

(b) Aluminum wing. 

Figure 6.- Continued. 
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(c) Beech-aluminum wing.

Figure 6.- Concluded. 
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Figure 7.- Variation of pressure ratio and rolling effectiveness with 

	

Mach number. Qutboard 0.25 aileron. 	 a =
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1.0 

.8

.8	 1.0	 1.2	 1.4	 26 

Figure 8.- Variation of pressure ratio and. rolling effectiveness with 

Mach number. O.8i 1 aileron.	 a = 
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Figure 9..- Variation with Mach number of the effective twisting-moment 
coefficient evaluated from the experimental rolling-loss data as 
compared with similar data from reference 14.• 
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Figure 11. - Variation of rolling effectiveness with aileron span for 

outboard ailerons.	 = 0; a = 50 
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Figure 12. - Comparison of measured rolling effectiveness of inboard 

aileron with estimated, values from figure ii. 	 = 0. 
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