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SUMMARY 

The results of an experimental and analytical investigation of the 
flutter characteristics of a nonuniform sweptback cantilever wing are 
presented. The angle of sweep was 3•50 and concentrated weights which 
were 78.4 percent and 42.0 percent of the weight of the wing were mounted 
at approximately one-third and three-quarters of the span, respectively. 
The experimental information was obtained in the Langley 4.5-foot flutter 
research tunnel, and a Rayleigh-Ritz type of analysis was employed in 
the flutter calculations. 

Correlation of experiment with theory based on uncoupled still-air 
vibration modes is demonstrated for this swept-wing configuration. The 
flutter calculations using just two modes gave results which were only 
7 percent conservative, and this agreement is considered good in view of 
the fact that two eccentrically mounted concentrated weights were included 
in the configuration. The use of three and four uncoupled modes in the 
analysis produced only a small change in the results obtained with two 
uncoupled modes. This fact implies that the analytical results with 
two modes had closely converged on an answer which for practical purposes 
is the limit of convergence of the Rayleigh-Ritz process for this case. 

For completeness, related theoretical information is included in 
an appendix, and this information consists of the determinantal flutter 
equation and general expressions for the determinant elements for any 
number of uncoupled modes.

INTRODUCTION 

Experimental and analytical studies of flutter of a uniform unswept 
cantilever wing carrying a variably located concentrated weight are 
reported in references 1 to i-. Reference 1 provides an experimental
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background which consists of the results of flutter tests made with a 
single concentrated weight mounted at various spanwise and chordwise 
positions on the wing. Some of these results are analyzed in reference 2 
by the direct solution of the differential equations of motion of the 
wing during flutter. This type of analysis yields a solution which is 
exact within the bounds of simple beam theory but this type of analysis 
is impracticable for application to an actual airplane wing. In ref-
erences 3 and 4 a Rayleigh-Ritz type of flutter analysis is applied to 
selected cases from reference 1 to investigate the validity of certain 
modal approximations involved in the analysis. These investigations 
were made with the use of uncoupled modes in reference 3 and coupled 
modes in reference 4. For each flutter calculation these modes were 
based on the elastic and inertial properties of the wing-weight system 
under consideration. 

The flutter of swept wings without concentrated weights is studied 
in reference 5, in which the oscillating two-dimensional aerodynamic 
forces and moments of reference 6 have been modified to account for the 
effects of sweep. Uniform cantilever wings having sweep angles up to 600 
were analyzed by means of a Rayleigh-Ritz approach in reference 5; the 
modal functions used were uncoupled first bending and first torsion modes 
for an ideal uniform cantilever beam. 

The present paper is a continuation of the work presented in the 
references mentioned in the foregoing discussion and has as its objective 
the correlation of theory with experiment for a nonuniform sweptback 
cantilever wing carrying concentrated weights at two widely separated 
positions along the length of the wing. The aerodynamic forces and 
moments derived in reference 5 are used. The uncoupled modes included 
in the analysis were determined from the measured elastic and inertial 
properties of the wing-weight configuration. As many as four such modes 
were used in the analysis. Experimental flutter data were obtained with 
both concentrated weights mounted on the wing for two different root 
conditions. In one of these conditions the root section was clamped 
parallel to the air stream in the usual manner for sweptback wings. In 
the other condition a triangular-shaped area at the root was restrained 
so that the wing behaved structurally as an unswept cantilever beam. 

Additional information of a related nature is presented in an 
appendix. This information is concerned with the theoretical aspects 
of the problem and contains the d.eterminantal flutter equation together 
with expressions for the determinant elements for any number of uncoupled 
modes.
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a	 nondimensional distance of elastic axis relative to mid.chord, 
from midchord measured perpendicular to elastic axis 

b	 half-chord of wing measured perpendicular to elastic axis, feet 

br	 half-chord of wing measured perpendicular to elastic axis at 
reference station, feet 

c	 chord in air-stream direction, feet 

El	 bending stiffness of wing, pound-feet2 

fe	 experimental flutter frequency, cycles per second 

fi	 experimental natural frequency in ith coupled mode, 
cycles per second 

theoretical flutter frequency, cycles per second 

Fhj ( Tl)	 amplitude function of wing in ith bending mode 

Fe j ( TI)	 amplitude function of wing in ith torsion mode 

GJ	 torsional stiffness of wing, pound-feet2 

gi	 structural-damping coefficient in ith coupled mode 

h	 bending deflection of elastic axis, positive downward, feet 

IM 	 mass moment of inertia of wing per unit length about elastic 
axis, slug-feet 

kn	 reduced frequency referred to velocity component perpendicular 
to elastic axis (wb/vn) 

1'	 length of wing measured along elastic axis, feet 

m	 mass of wing per unit length along elastic axis, slugs per foot 

M	 Mach number
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ra	 nond.imensional radius of gyration of wing about elastic axis 

(p: 

Jmb2 

t	 time, seconds 

v	 free-stream velocity, feet per second 

Ve	 experimental flutter speed in air-stream direction, 
feet per second 

Vi	 experimental indicated flutter speed in air-stream direction, 

feet per second ( where p0 is density of air 

under standard conditions in slugs per cubic foot 

vn	 component of air-stream velocity perpendicular to elastic 
axis, feet per second (v cos A) 

VA	 theoretical flutter velocity in air-stream direction, 
feet per second 

x	 nondimensional location of center of gravity, relative to 
midchord, from elastic axis measured perpendicular to 
elastic axis 

y'	 coordinate along elastic axis, feet 

TI	 nondimensional coordinate along elastic axis (y'/l') 

e	 torsional deflection of elastic axis, positive with leading 
edge up, radians 

Ic	 mass-density ratio at flutter (rpb2/m) 

A	 angle of sweep, degrees 

P	 density of testing medium, slugs per cubic foot 

angular frequency of vibration, radians per second 

angular frequency of ith uncoupled bending mode, 
1	 radians per second 

angular frequency of ith uncoupled torsion mode, 
1	 radians per second
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EXPERIMENTAL APPARATUS AND TEST PROCEDURE 

Wing.- The model tested in this program was a nonuniform cantilever 
wing with the 38-percent-chord line swept back 31..5° as shown in figure 1 
and built of laminated balsa wood with a dural insert. In figure 2 the 
detailed cross-sectional views at the root and tip show this type of 
construction more clearly. 

In order that the structural properties of the wing nearly fulfill 
the requirements of the analytical assumption of a straight elastic axis, 
these quantities were measured with a rigid restraint of bismuth and tin 
alloy molded to the root. The manner in which this restraint was mounted 
can be seen in the general view of the wing in the test section (fig. 3). 
The restraint was made perpendicular to a line located at 38 percent of 
the chord (in the air-stream direction). Figure 1 indicates the location 
of the measured centers of gravity and also the measured elastic centers 
which determine the location of the elastic axis. The corresponding 
values of Xa and a are given in table I. 

The lengthwise variations in bending and torsional stiffness are 
given in figure ii-. The definite increase in torsional stiffness near 
each of the concentrated weight positions is attributed to the attach-
ment of the weight mounts in a plane skewed relative to the plane in 
which static loads were applied to measure stiffness. 

The lengthwise distributions of mass and mass moment of inertia 
(see figs. 5 and 6, respectively) were obtained (after the flutter runs 
were completed) by cutting the wing into twelve segments perpendicular 
to the 38-percent-chord line (segment numbers indicated along trailing 
edge of wing in fig. 1). Figure 7 presents the lengthwise variation in 
mass-density ratio (shown as l/c) for each flutter run. In run 1 the 
root restraint was mounted on the wing and in run 2 the root restraint 
was removed. Values for the square of the radius of gyration are given 
in table I. Other properties of the wing are as follows: 

Geometric aspect ratio (based on the half-wing) ........ . li.64 

Taper ratio (tip chord to root chord in air-stream direction) . . O.28 
Airfoil section, parallel to air stream ........NACA 651-012 
Weight of wing, pounds ......................3.79 

Concentrated weights. - Two concentrated weights, made from an alloy 
of bismuth and tin, were located on the wing at approximately one-third 
and three-quarters of the span as shown in figure 1. The inboard weight 
was 78.4 percent and the outboard weight was 42.0 percent of the weight 

of the wing. Both weights were rigidly attached to -inch-thick d.ural
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weight mounts which in turn were rigidly fastened to the dural insert 
of the wing in the air-stream direction. The positions of the weights 
on the weight mounts remained unchanged during the test program. 

Testing equipment and procedure.- The experimental program was 
conducted in the Langley 4.5-foot flutter research tunnel at nearly 
atmospheric pressure in a mixture of air and Freon-12 in the ratio of 
approximately 1 to 9. Bending and torsional strains of the wing during 
flutter were recorded electrically by the use of resistance-wire strain 
gages mounted at the locations indicated in figure 1. The strain-gage 
signals were fed through a system of electrical bridges and amplifiers 
into a recording oscillograph. Portions of the oscillograph records at 
flutter for both runs are shown in figure 8. The flutter frequencies 
were obtained from these records. These frequencies along with other 
pertinent data are given in table II. The structural-damping coefficients 
were determined from the rate of decay of oscillations in still air on 
the vibration records of the natural frequencies. 

The wing was excited in its natural frequencies before and after 
each run to determine whether the internal structure of the wing had 
been damaged by flutter. Also during flutter the wing was photographed 
by means of a high-speed motion-picture camera located outside the 
tunnel in the position indicated in figure 9. Figure 10 shows two 
sequences of pictures taken with this camera. The flutter oscillations 
for run 2 (without root restraint) can be seen in figure 10(a), whereas 
those of a similar model, which fluttered to destruction, appear in 
figure 10(b). 

Experimental results.- Comparison of the flutter data for both runs 
in table II shows that the indicated flutter speed of the wing-weight 
configuration with the root restraint installed was approximately 

2- percent higher than that without root restraint. The flutter frequency 

was increased by approximately 12 percent with the addition of the root 
restraint. 

The effect of the root restraint on the natural modes of vibration 
may be seen by examining the natural frequencies given in table II. In 
order to identify the natural frequencies in table II according to their 
bending and torsional characteristics, further experimental study of the 
natural modes of vibration was conducted for the same wing-weight con-
figuration having a wing built to the same specifications as the subject 
wing. The results of this study are given in figure 11 which shows the 
nodal patterns and corresponding natural frequencies for the first three 
modes of vibration. The root condition shown in figure 11(a) is similar 
to that for run 1 in table II and the root condition in figure 11(b) is 
similar to that for run 2 in table II. The first mode, designated by 
fhl in figure 11, is predominantly first bending; the second mode,
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designated by fh2l is predominantly second bending; and the third mode, 
designated by ft l, is predominantly first torsion. Comparison of the 

frequency data in this figure with the corresponding frequency data in 
table II shows that the natural frequencies f1, f2, and f 3 may be 
described as first bending, second bending, and first torsion, respec-
tively. It may be of interest to point out that a comparison of the 
ratio of first bending to first torsion fl/f3 for run 1 with that for 
run 2 shows an increase of about 7.3 percent due to the root restraint 
condition and that this increase is of the same order of magnitude as 
the corresponding increase in flutter frequency. 

ANALYTICAL INVESTIGATION 

Method of analysis. - As pointed out in the introduction, this 
paper employs a Rayleigh-Ritz type of flutter analysis in which the 
flutter mode is approximated by a combination of chosen modal functions. 
Many such functions could be used but the ones usually selected are 
either the coupled or uncoupled modes of vibration of the system. The 
present paper made use of uncoupled modes which were determined by 
calculations based on the measured elastic and Inertial properties of 
the system. 

With the use of generalized coordinates, each mode is assumed to 
represent a degree of freedom. For each degree of freedom the section 
properties are integrated over the length of the wing to obtain the 
kinetic and potential energies together with the work done on the wing 
by the structural and aerodynamic forces. In the aerodynamic part of 
the problem the effect of sweep is taken into account by the method 
developed in reference 5. In the structural part of the problem the 
root section is assumed to be sufficiently stiff so that the wing behaves 
as if it were clamped normal to the elastic axis, and the elastic axis 
is assumed to lie entirely within the boundaries of the main part of 
the wing. Experimental data gathered with the use of a root restraint 
indicate that these assumptions are fairly well, justified for conventional 
swept wings of moderate length-chord ratio. 

Once the integrated expressions involving the energies and work 
done by structural and aerodynamic forces are determined, the equation 
of equilibrium, given by Lagrange's equation, may be written for each 
degree of freedom. Each equation then becomes one of a set of simul-
taneous homogeneous equations, and the condition of consistency of these 
equations leads to the flutter condition. This procedure is discussed 
further in appendix A, not only for three degrees of freedom but also 
for any number of freedoms. General expressions are also given in this 
appendix for the coefficients in the equilibrium equations for any number 
of degrees of freedoms.
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Application of method of analysis. - In the application of this type 
of analysis to the general case of a weighted nonuniform sweptback wing, 
the lengthwise variation in structural and aerodynamic properties must 
be taken into consideration in accordance with the foregoing assumptions 
regarding the angle of sweep. In the present paper the distribution of 
elastic and inertial properties over the main part of the wing were 
determined for an arbitrary number of lengthwise segments taken perpen-
dicular to the elastic axis. In determining the aerodynamic forces use 
was made of reference 7 in which the aerodynamic functions derived in 
reference 6 appear in useful form for flutter calculations. In order 
to take into account, partially, the effects of wing taper on these 
quantities, the variation in the reduced wave length l/k over the 
length of the wing was considered, and the aerodynamic functions corre-
sponding to each 1/k were determined with the aid of reference 8 in 
which the tabulated lift and moment data from reference 7 are fitted to 
families of overlapping parabolas. 

As previously mentioned, uncoupled modes were employed for the 
wing-weight system analyzed in this paper. These modes, based on the 
elastic and inertial properties of the present configuration, were 
calculated using the iterative procedure of reference 9 and are presented 
in figure 12 along with their corresponding frequencies. The slopes of 
the first and second bending modes are given in figure 13. 

With the elastic, inertial, and aerodynamic properties known for 
each section along the length of the wing, the integrated expressions 
for the coefficients in the equilibrium equations were computed and the 
determinant of these coefficients was solved to obtain the flutter 
condition. The determinants involving three and four degrees of freedom 
were so'ved by the iterative method presented in reference 10. This 
method is particularly well-adapted to The Bell Telephone Laboratories 
X-66744 relay computer at the Langley Laboratory which was used in 
performing these calculations. 

ANALYTICAL RESULTS AND CORRELATION OF 


THEORY AND E)PERIMEI 

In table III the results of flutter calculations are compared with 
experimental results for the subject sweptback wing with two concentrated 
weights. Pursuant to the foregoing analytical assumptions all calcula-
tions were based on the structural properties and parameters corre-
sponding to the restrained root condition. Hence, the differences 
between the analytical results for restrained and unrestrained root 
conditions (runs 1 and 2, respectively) are due to the difference in 
density between the two conditions. For investigating the effects of
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introducing higher uncoupled modes Into the analysis, the tunnel con-
ditions corresponding to run 1 were used. The structural-damping 
coefficients were assumed to be zero in all calculations. The tabulated 
theoretical flutter speeds and flutter frequencies were obtained from 
conventional plots of these quantities against the theoretical damping 
coefficient. The characteristics of these curves were such that no 
significant change would have been encountered had structural damping 
been included. 

In discussing these results particular attention is directed toward 
the flutter speed. As can be seen in table III the theoretical flutter 
speed was approximately 7 percent conservative when just two modes, 
first bending and first torsion, were employed in the analysis. This 
agreement is considered remarkably good in view of the fact that two 
eccentrically mounted concentrated weights were located on the wing. 
Judging from the results of reference 3, one would suspect that higher 
uncoupled modes should have been included in the analysis to obtain a 
theoretical flutter speed as satisfactory as that obtained using just 
two modes. However, in this instance the theoretical flutter speed was 
not significantly altered when various combinations of second bending 
and second torsion modes were added. This fact indicates that, with 
the use of the first bending and first torsion modes of the present 
wing-weight system, the Rayleigh-Ritz process, as applied to this con-
figuration, had satisfactorily converged on an answer which for practical 
purposes is the same as would have been obtained with any number of 
higher-order modes added. 

The results also show that the oscillating aerodynamic forces and 
moments, based on two-dimensional incompressible flow as modified in 
reference 5 to account for the effect of sweep, were adequate for this 
configuration.

CONCLUDING REMARKS 

Flutter data are reported for a nonuniform sweptback cantilever 
wing carrying two eccentrically mounted concentrated weights. The 
wing was fluttered with and without a restraint molded to the triangular 
area at the root. The results of these experiments provide further 
evidence justifying the commonly employed assumptions of a nonskewed 
root section and a straight elastic axis over the main part of the wing 
in the flutter analyses of swept wings of moderate length-chord ratios. 

A Rayleigh-Ritz type of flutter analysis, employing uncoupled 
modal functions, was applied to this wing-weight system with the use of 
the properties appropriate to the restrained root condition. The cal-
culated flutter speeds based on two modes (first bending and first
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torsion) were about 7 percent conservative. The fact that this agree-
ment with experiment was not appreciably altered when higher modes 
(namely, second bending and second torsion) were added indicates that 
in the present application of this process the theoretical limit of 
convergence had, for practical purposes, been obtained with only two 
modes. Furthermore, the small difference between theory and experiment 
shows that the use of the two modes gave satisfactory results. 

The theoretical oscillating aerodynamic forces and moments for 
two-dimensional flow, as modified for sweep, were found to be adequate 
for the configuration studied. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va.
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APPENDIX A 

OUTLINE OF SWEPT-WING FL1yr1a ANALYSIS EMPLOYING 

ANY NUMBER OF UNCOUPLED MODES 

The manner in which higher-order modal functions are introduced 
into the Rayleigh-Ritz type of flutter analysis described in the body 
of this paper is demonstrated herein. The swept-wing analysis in 
reference 5 was developed in detail for two modes: first bending and 
first torsion. Integrated expressions involving the total energy and 
work done by applied forces for more than two modes may be readily 
obtained by following the procedure of reference 5. Consider, for 
example, the inclusion of a second bending mode. Then the mode shapes 
may be represented by the following equations: 

For first bending

hi = [Fhl('qdhl 	 (Ala)


For second bending

h2 = [Fh2(Tlflh2 	 (Am)


For first torsion

el = [Fe 1 ( T 5jl 	 (Alc) 

where [Fhlh1, [Fh2(TjJ and [Fe 1(] are amplitude functions which 

may in general be complex but in the present application are chosen as 
real quantities. The quantities 	 , and Qj are generalized 
coordinates in the three degrees of freedom defined as follows: 

iLDt = hole 

Ii- =h et -	 02 

iU)t = 001e 

where h01 , ho2, and 001 are, in general, complex quantities signifying 

phase differences among the degrees of freedom.
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The general equation of equilibrium for each degree of freedom, 
using Lagrange's equation, is 

d(T\	 T	 U	 (A2) 

where T and U represent, respectively, the total kinetic and 
potential energies of the system, Q, represents the generalized 
aerodynamic and structural-damping forces appropriate to the mth degree 
of freedom, and qm is the generalized coordinate. With the application 
of equation (A2), the generalized coordinate q m in each of the three 
equations becomes successively h l, h2, and 01 and the corresponding 
aerodynamic and structural-damping forces are represented by Qh 1, Qh2, 
and Qe l, respectively. The introduction of these quantities into 
equation (A2) and the performance of some algebraic manipulations leads 
to the equations of equilibrium in the following form: 

(hi A
	 h2br 11 +	 12 + lBll)Pbr3w2 1 = 0	 (A3) 

1h1	 h2 
+	 22 + 1B2l)1tPbr3cD2 2 t = 0	 (A14.) 

(ll + El2 + elEfl)1tPbr D22 = 0	 (A5) 

Note that these equations form a homogeneous system of equations in ..-, 

and e1; thus, the necessary condition that the system has solutions, 

other than the trivial solution, is that the determinant of the coeffi-
cients vanishes, namely:

All	 Al2	 B11 

A21	 A22	 B21 = 0	 (A6) 

D11	 D12	 E11 

This equation can be shown to correspond to a borderline condition 
separating damped from undamped oscillations, which is the flutter 
condition. 

The foregoing procedure may be extended to include many such 
freedoms, both bending and torsion. The determinantal equation (or
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flutter determinant) for the general case may be written as follows: 

A1
=0	 (A7) 

Dij	 E1 

in which the elements "A" contain solely bending terms, the elements 
"B" and "D" contain cross-coupling terms between bending and torsion, 
and the elements "E" contain solely torsion terms; the elements "A" 
and "E" containing the unknown flutter frequency appear in the principal 
diagonal and are denoted by two identical subscripts. The following 
expressions for these elements are written for R uncoupled bending 
modes and S uncoupled torsion modes, as subsequently indicated by 
subscripts. 

The terms enclosed by the brackets 	 account for effects 

associated with the first derivative of torsion with respect to span 
direction, the second derivative of bending with respect to span 
direction, and the second derivative of torsion with respect to span 
direction. These terms were not included in the present calculations, 
since limited experience has shown a relatively small contribution from 
these terms even for large angles of sweep on uniform wings (see refer-
ence 5). However, in flutter analyses on highly swept wings carrying 
concentrated weights, these bracketed terms may prove significant. 

The flutter determinant elements are 

1.0	 2 
A1 = - I	 AchFh (TI1 [Fh( h1J dii + 

rf1.0	 3 
 

Tr 	 (_) tan A(( l) + A 

	

(i_)ch) [Fhi(115j
	 [Fh.(Tj d-9- 

 

br'\2 f"°fb \tan2A ( 2
[F (E'( dii)Tr) O

(i	 j)	 (A8) 

where

i=l,2,3,...R 

j=l,2,3, . .
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Ai = T (ci h)2 +	 1 3"0(b 2 l[12 
L	

ih.)Jf	
) - 

1
1.0 2 (br_) 

Achhi(i2dr + 

b f 3"01b 3 

-) 
tan A(i)((-] + Ach) [Fhi (i5J [Fhi (TIfl - 

M
 br 211.0 

tb 
4 
ta,12 t 1 

2	 2


^b	 A	 Fhi'T]l) 1) 0 	
r)	 Tn) [	

dTj 
2_h (h11	 (A9)


for the principal diagonal element in bending, in which I = j and 
ghi is the coefficient of structural damping in the ith bending mode, 

Bjj = 1•°	 3x 

fo

	

(^r)  (	 - Ac) h . ( Je . (1 dri - 

Kf
ol.0 

()2 
	

(^_	
^L [F,, J(Tj] dTj 

r) t
an A (A [Fhr - 

(L 2) 11•0 2 a

 0	
;:)

 

tan A()h(1	 (Alo) 

where

1=1,2,3,.. .R 

j = 1, 2, 3, .	 . S 

r'1.0	
3Dij=	
(

I
JQ (Lr) ' -
 ; 

- - Ath)[Fe i (iii 	 (	 dli + 

br

r (E-) tan 4il )((a) + A )e (1J-_[Fh(1} di + 

<b )2
 f tan 

	

1.0	
2	

[Fhj ( .9]
	 (All)
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where

1=1,2,3,.. .s 

j =1, 2, 3, . . .R 

Ejj = -
	

A [Fej' Ti j [Fej ' Tlj. d - 

'br 1.0 
<\r'J	 ()5tan A(Aa7)[Fej(TI]LEep,] dij + 

(b2 r"° (L)'tan 	 + a2)G [Fe i ( -q] 2 [Fej(-q])d),q 71) J0

(1	 j) 

(Al2) 
where

1=1,2,3,.. .S 

j =1, 2, 3, . . 

1.0 b 
E11 

=E (a)2( 
+ 1cLi) f ( 7 .	 [F6t di - 

0 
b 

4 

A	 d 
* 
(i' ) a a, [Fei(Ti 

Jo	 br
dl - 

fo0 b̂r-)
 -	 tan A(AaT) [Fei( ri3j	 i(ljdl + 

dTj 

(br)2r1°(b)62(1 

a2)(_)2ej (l J_E (TI J dl)


	

it	 0 ei

(A13)
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for the diagonal element in torsion, in which I = j and g(li is the 
coefficient of structural damping in the ith torsion mode. 

The quantities Ach, Acc, A, A, ACT, and Aa T represent 

expressions for oscillating lift and moment as defined in reference 5 
in terms of the functions derived in reference 6. Equivalent forms of 
these expressions in terms of Lh, L, Mh, and M from reference 7 
are as follows: 

Ach = - L  

Aca = -	 + ( + a)i 

Aah = - Mh + ( + a) Lh 

Aa	 -	 +(1+ a(La+Mh) - (2 
a) Lh 

ACT = ()1-
2 il rMh( 1 - Lh) + a(1 + Lh 

AaT(\2 +a+I++a2)...aLi 
\n)	 kn	 2n [MCC 

where

Lh=l-i_(F+iG) 

La = -	 + 2(F + iG] - 2( ) (F + iG) 

Mh = 

in which F and G are the aerodynamic functions derived in reference 6.
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TABLE I


DISTRIBUTION OF GEOMETRIC AND INERTIAL PROPERTIES


OF NONUNIFORM SWEPTBACK CONFIGURATION 

Wing 
segment T1

b 
(ft) a a 2 

1 0.0415 0.1125 0.171 -0.308 0.245 
2 .1211 .404 .167 -.301 .250 
3 .207 .386 .1110 -.292 .232 

.298 .363 a_.350 -.274 a443 

5 .373 .346 .157 -.260 .220 
6 .456 .325 .090 -.244 .231 
7 .539 .304 .082 -.236 .223 
8 .622 .286 .090 -.222 .233 
9 .705 .269 .118 -.263 .223 
10 .796 .247 a.164 -.272 a45 
11 .871 .229 .091 -.237 .224 
12 .953 .206 .121 -.223 .226

avalue given for this segment includes concentrated 
weight. 
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TABLE III


SUMMARY OF THEORETICAL AND EXPERIMENTAL RESULTS 

Theoretical Experimental 

Run Density 
(slugs/cu ft)

Modes employed 
in calculations A .A e f 

(fps) (cps) (fps) (cps) 

1 0.007059 1st bending, 261.5 23.6 283.3 20.1 
1st torsion 

1 .007059 1st bending, 255.0 23.0 283 . 3 20.1 
1st torsion, 
2nd bending 

1 .007059 1st bending, 260.0 23 . 5 283 . 3 20.1 
1st torsion, 
2nd torsion 

1 .007059 1st bending, 255.0 23.0 283.3 20.1 
1st torsion, 
2nd bending, 
2nd torsion 

2a .006306 1st bending, 275 . 5 23.4 292.1 18.0 
1st torsion

aData for run 2 were obtained without root restraint. 
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Figure 3.- General view of test section showing wing with concentrated 

weights and root restraint.
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Figure .- Lengthwise distribution of mass (per unit length) of wing 

and concentrated weights.
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length) of wing and concentrated weights.
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Figure 7.- Lengthwise distribution of mass-density ratio for both 

flutter runs. 
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(a) Rim 1.	 (b) Run 2. 

Figure 8.- Oscillograph records during flutter of wing-weight 
configuration.
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(a) Run 2 (without	 (b) Run on similar model 

	

root restraint).	 which fluttered to 
destruction.	 L-70775 

Figure 10.- High-speed motion-pictures showing 1 cycle of flutter for 
each of two similar sweptback wings carrying two concentrated 
weights. The direction of increasing time is from top to bottom, 
and the cantilevered or fixed end of the wing is at the top of 
each picture.
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Mode	 Frequency Node
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(a) With root restraint.

Mode	 Frequency Node
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(b) Without root restraint. 

Figure 11.- Nodal patterns and corresponding natural frequencies for 
wing-weight configuration nearly the same as that used in analytical 
investigation.
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Figure 12.- Uncoupled bending and torsion modes and frequencies for 
nonuniform sweptback cantilever wing with two concentrated 
weights. 
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Figure 13.- Slopes of uncoupled bending modes shown in figure 12. 
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