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‘SUMMARY

An analytical evaluation of the air and fuel
acteristics of hydrogen, a-methylmhphthakne, and
been made.

specific-impulse cW-
~aphite carbon has

Adiabatic constant-pressure combustion temperature, air’specific
i~ulse, and fuel specifie impulse are given for each fuel. The spe-

. ctiic impulse data for octene-1, taken as representative of aviation
gasoline performance, are presented for comparison.

*
At an initial air temperature of 560° R and a pressure of 2 atmos-

pheres, the adiabatic constant-pressm ccxibustiontemperatures for
hydrogena a-methyhaphthalene, and graphite carbon were 4256°, 4188°,
and 4173 R, respectively, for a fuel equivalence ratio of 1.0.

At a given air specific impulse, the decreasing order ti fuel-
weight specific impulse is hydrogen, octene-1, a-methylnaphthalene, and
graphite carbon.

At a given air specific impulse, the decreasing order of fuel-
volume specific impulse is graphite carbon, a-methylnaphthalene,
octene-1, and hydrogen.

INTROIWTIGN

An investigation to evaluate the performance
several proposed ram-jet fuels is being ccmducted

characteristics of
at the NACA Lewis

laborato~. - As a part of this program-an ansQticaZ evaluation of the
afi and fuel specific-impulse characteristics of aluminum, magnesium,
boron, diborane, pentabaane, hydrogen, atiation gasoline, ~aphite
carbon, a-methylnaphthslene, and slurries of the above metals in avia-
tion gasoline is being made. The performance characteristics obtain-
able with octene-1, taken as representative

v“‘“

of aviation gasoline, were

I ‘1
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chosen as the reference standard with which the

NACA RM E!51J?05

performance of the
other fuels was to be compared. Data on the theoretical air and fuel
specific-impulse characteristics of octene-1, aluminum, magnesium,
altinum - octene-1, and magnesium - octene-1 slurries, diborane, penta-
borane, baon, and boron - octene-1 slurries are presented in refer-
ences 1, 2, and 3. Experimental ram-jet conibustionperformance data
for diborane, aluminum, and magnesium-hydrocarbon slurries are presented
in references 4, 5, and 6, respectively.

This report presents data for hydrogen, u-methylmaphtklene, and
graphite carbon in the following order:

(a) Adiabatic combustion-flame temperature as a function of equiva-
lence ratio

(b) Air specific impulse as a function of equivalence ratio

(c) Fuel-weight specific impulse as a function of equivalence
ratio

(d) Fuel-weight specific impulse as a function of air specific
impulse

(e) Fuel-~olume specific impulse as a function of air specific
impulse

The terms fuel equivalence ratio and stoichiometric fuel fractian
are based on the oxygen available in the atmosphere and are used inter-
changeably.
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SYMBOLS

The following symbols are used in this report:

area, (sq ft)

stream thrust, (lb)

fuel-air ratio

acceleration due to gravity, (ft/sec2)

molar enthalpy, (cal/gram mole)

i~al rocket specific iqpulse, {lb-see/lb mixhre)

Mach nuniber

u

h

r-l

G
N-

.

.— ●

n

D



NACA RM E51J?’05 3

.

●

%

m

ni

P

E R
F
F

Sa

Sf

Stf

T

v

w

x

P

molecular weight of

mass, (slugs/see)

constituent i

number of moles of constituent i

pressure, (lb/sq i%)

gas constant, (ft-lb/@b) (OR))

air specific impulse, ((lb)(sec)/lb air)

fuel-weight specific impulse, ((lb)(sec)/lbfuel)

fuel-volume specific impulse, ((lb)(sec)/cu f% fuel)

static temperature, (%)

velocity, (ft/see)

weight flow, (lb/see)

weight fraction of solids in Jet gases

density, (lb/cu ft)

Subscripts:

a air

c combustor-exit conditions

e nozzle-exit conditions determined by ambient pressure

f fuel

J jet

3 nozzle throat

The analytical
hydrogen fuel. The
graphite carbon was
cated.

station

ANAL~ICAL METHOD

method is described with specific reference to the
general procedure used with ct-methylnaphthaleneand
similar; the significant differences will be indi-

.
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Hydrogen. - The hydrogen was assumed to be 100 percent pure; air
was assumed to be composed of 3.78 moles of nitrogerito every mole of
oxygen. For convenience in calculation and for comparison of theoreti-
cal and actual performance values, the conibustorconditions were selec-
ted as inlet-air temperature of 560° R and pressme of 2 atmospheres.
The ccmibustorinlet-alr velocity was assumed to be negligibly small;
friction effects were neglected. The conibustion-productgases of fixed
composition were assumed to be expamded to 1 atmosphere at the exit of a
converging nozzle. The air specific-impulsefunction proposed in refer-
ence 7 was used as “ameasikreof the power output in order to make the 2
results as general as possible. me air specific impulse is defined as

--
E

the stream thrust per unit weight of air flow per second for a flow
state of Mach rmmiber1.0. —

At a given stoichiometricfuel fraction, the ram-jet combustion
gas temperature and composition were calculated for an adiabatic
constant-pressure conibustionat 2 atmospheres by the matrix method of
reference 8. All gases were assumed to follow the universal gas law.
Thermo@mmic data of reference 9 were used. The gasecnm constituents
considered in the equilibria were: H2, H@, Nz, NO, 02, OH, H,
N, and O. Calculations were made over an equivalence-ratiorange
from 0.1 to 1.0 in intervals of 0.1.

The nozzle-exit gas temperature was calculated at a constant com-
position for isentropic e~ansion to ambient pressure at the nozzle
exit. Frcm the gas composition and temperature, the jet velocity was
calculatedly using the following equation [reference 10):

(1)

The air specific-impulsevalues were then calculated according to
the equation given in reference 1

r I
Sa=(l+ f/a) #+~(1-X (2)

For the fuels considered herein, the
the exhaust x was zero.

Equation (2) may be derived from the
specific impulse

weight fraction of solids i’n

defining equation for air

—
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The fuel-weight specific impulse is defined as the stream thrust at the
nozzle exit per unit fuel flow. The fuel-weight specific-impulsevalues
were derived from the air specific-impulse values from the relation

~ = Sa (a/f)

Fuel-volume specific impulse is defined as

(4)

“f -sf pf (5)

The air specific impulse is a measure of the potential thrust; the fuel-
weight specific impulse is a measure of the time \pound of fuel will
maintain the given air specific impulse.

a-Methylnaphthalene. - The gaseous constituents assumed present in
the equilibria when a-methylnaphthalene was used as the fuel were:
C02, co, IQO, 02, 112, NO, H2, H, O, OH, and C!. The assigned
enthalpy of a-methylnaphthalene was taken as 1357.3 (kcal/mole) for
these calculations.

Graphite carbon. - The gaseous constituents assumed present in the
equilibria when graphite carbon was used as the fuel were: C02, co,
02, 112, NO, O, N, and C.

RESULTS AND DISCUSSION

Temperature. - The adiabatic constant-pressure combustion tem-
perature and the nozzle-exit gas temperature for hydrogen,
m-methylnaphthalene, and graphite carbon are shown in figures l(a),
l(b), and l(c), respectively. The nozzle-exit gas temperatures are
those used in deriving the air and fuel specific-impulsevalues from
equations (2) and (4); they are the static temperatures at the nozzle
throat for a flow state Mach number of 1.0.

At a stolchiometric fuel fraction of 1.0, an initial air tempera-
ture of 560° R, and 2 atmospheres pressure, the combustion temperatures
for hydrogen, cx-rnethylnaphthalene,and graphite carbon are: 4256°,
4188°, and 4173° R, respectively.

Air specific impulse. - The variation of air specific impulse with
stoichiometric fuel fraction for hydrogen, a-methylnaphthalene, and
graphite carbon is presented in figures 2(a), 2(b), and 2(c), respec-
tively. At a stoichiometric fuel fraction of 1.0, the air specific-
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impulse values are 179.3, 168.7, and 166.1 ((lb)(sec)/lbair) for hydro-
gen, a-methylnaphthalene,and ~aphite carbon, respectively.

Fuel-weight specific impulse. - The variation of fuel-weight spe-
cific impulse with stoichbmetric fraction of hydrogen,
a-methylnaphthalene,and graphite carbon is presented in figures 3(a),
3(b), and 3(c), respectively.

Relation between air and fuel specific impulse. - Comparison of
fuel specific impulse for a series of fuels can best be made at the
same air specific impulse, that is, at equivalent thrust levels. The
variation of fuel-weight specific impulse with air specific impulse for
hydrogen, a-methylnaphthalene,and graphite carbon is presented in fi&
ures 4(a)j 4(b), and 4(c), respectively. These data were obtained by
cross-plotting the data for air and fuel-weight specific impulse pre-
sented in figures 2 and 3.

—

The data presented in figure 4 are shown again in figure 5 for com-
parison with the octene-1 reference curve. Reference lines of constant
fuel-air ratio are shown in figure 5 to,facQitate comparisons. It iS

evident from figure 5 that hydrogen gives a better fuel-weight specific
impulse at a given air specific impulse tlminocten&-1,
a-methylnaphthalene, or graphite carbon. Octene-1 is better than
a-methylnaphthaleneand a-methylnaphthalene is better than graphite
carbon qn a fuel-weight specific impulse basis.

The limitin value of air specific impulse for octene-1 is

7172.8 ((lb)(sec) lb air). Limiting values of air specific impulse were
not calculated for hydrogen, a-methylnaphthalene,and graphite carbon.
Calculations for these fuels were made up to an equivalence ratio of
1.0.

A comparison of the air and fuel-volume specific-impulse character- .
istics of hydrogen, a-methylnaphthalene,an-dgraphite carbon with
octene-1 is shown in figure 6. On a fuel-volume specific-impulsebasis “
at a fixed air specific impulse} carbon and a-methylnaphthalene offer
potential advantages over octeneyl. Hydrogen is inferior to octene-1
on this basis. The densities used for liquid hydrogen,

.—

ct-methylnaphthalene,graphite carbon, and octene-1 were: 4.426, 63.99,
141.1, 44.44 pounds per cubic foot, respectively. The density of
octene-1, carbon, and a-methylnaphthalene me taken at room temperature.
The density of
point -422.86°

.
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hydrogen is taken
F: All densities

at approximately its normal boiling
are quoted for l-atmosphere pressure.
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SUMMARY OF RES’LILTS

For the conditions of this analysis, the following results were
obtained:

(1) At an initial air temperature of 560° R and 2-atmosphere pres-
sure, the adiabatic constant-pressure ccmibustiontemperatures for hydro-
gen, ~methylnaphthalene, and graphite carbon were 4256°, 4188°, and
4173° R, respectively, at the stoichiometric point.

(2) At a given air specific impulse, the decreasing order of fuel-
weight specific impulse is I@rogenj octene-1, ~methylnaphthalene, and
graphite carbon.

(3) At a given air specific impulse, the decreasing order of fuel-
volume specific impulse is graphite carbon, a-methylnaphthalene,
octene-1, and hydrogen.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,

Cleveland, Ohio.
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(a) Hydrogen.

Figure 1. - Theoretical variation of combustion and nozzle-exit
temperature with stoichiometric fraction of fuel. Combustor
inlet-air temperature, 560° R; inlet-air pressure, 2 atmospheres;
expansion ratio, 2.0.
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(b) u-Methylnaphthalene.

Figure 1. - Continued. ‘Theoreticalvariation of combustion and
nozzle-exit temperature with stoichiometric fraction of fuel.
Combustor inlet-air temperature, 560°R; inlet-air pressure,
2 atmospheres; e~nsion ratio, 2.0.
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Figure 1. - Concluded. Theoretical variation of ccmkmstion and
nozzle-exit temperature with stoichi-tric fraction of fuel.
Combustor inlet-air temperature, 560° R; inlet-air pressure,
2 atmospheres; expansion ratio, 2.0.
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(a) Hydrogen.

Figure 2. - Variation of air specific impulse with stoichicmetric
fraction of fuel. Combustor inlet-air temperature, 560° R; inlet-
air pressure, 2 atmospheres.
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.6 .8 1.0
Stoichiometric fraction of a-methylnaphthalene

(b) cz-Methybaphthalene.

Figure 2. - Continued. Variation of air specific impulse with
stoichiometric fraction of fuel. Combustor inlet-air
temperature, 560° R; inlet-air pressuxe, 2 atmospheres.
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(c) Carbon.

Figure 2. - Concluded. Variation of air specific impulse
stoichiometric fraction of fuel. Combustor inlet-air
temperature, 5600 R; inlet-air pressure, 2 atmospheres.
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Stoichia.uetricfraction of hydrogen

(a) Hydrogen.
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Figure 3. - Variation of fuel-weight specific impulse with
atoichLometrLc fraction of fuel. Ccmkwator inlet-air
temperature, 560° R; inlet-air pressure, 2 atmospheres.
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Figure 3. - Continued. Variation of-fuel-weight specific
@pulse with st.oichiometric.f’ractionof fuel. Ccsnbustor
inlet-air temperature, 560° R; inlet-air pressure,
2 atmospheres.
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Figure 3. - Concluded. Variation of fuel-weight specific
impulse tith stoichicmnetricfraction of fuel. Canbustor
inlet-air temperature>560°R; inlet-air pressure,
2 atmospheres.
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(a) Hydrogen.

Figure 4. - Variationof fuel-weightspecific.tipdse with ah specific
impulsefor severalfuels. Combustoririiet-alrtemperature,560° R;
inlet-airpressure,2 atmospheres.
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Figure 4. - Con’kbluea.Variationof fuel-weightspecificimpulsewith
air specificimpulsefor severalfuels. Ccnnbustorinlet-airtemperature
560° R; inlet-air pressure, 2 atmospheres.
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Figure 4. - Concluded. Variationof fuel-weightspecific@pulse with air
specificimpulsefor severslfuels. Co@ustor inlet-airtewerature,560°
inlet-airpreseure,2 atmospheres.
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Figure 5. - Comparison of air and fuel-weight specific-impulsecharacter-
istics of hydrogen, cwnethylnaphthalene,and graphite carbon with
octene-1.
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I@rogen, a-methylnaphthalene,and graphite carbon with ti-
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