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AN APPROXTMATION TO THE EFFECT OF GEOMETRIC DIHEDRAL ON
THE ROLLING MOMENT DUE TO SIDESLIP FOR WINGS
AT TRANSONIC AND SUPERSONIC SPEEDS

By Paul E. Purser
SUMMARY

A simple geometric relation has been found, by use of which the
effect of geometric dihedral on the rolling moment due to sideslip at
transonic and supersonic speeds may be estimated for wings if either
the damping in roll or the rolling moment due to differential wing inci-
dence is known. No data are available for use in a direct check of the
proposed method at transonic speeds. Theoretical data are availsble,
however, for checks at supersonic speeds and experimental data are avail-
able for checking estimated ratios of damping in roll to rolling moment
due to differential wing incidence at transonic and supersonic speeds.
It is believed that these checks Jjustify the use of the proposed
approximation.

INTRODUCTION

A recent summary of methods for estimating lateral stability deriv-
atives (reference 1) calls attention to the lack of experimental data
at transonic and supersonic speeds for all derivatives except possibly
the demping in roll (or rolling moment due to rolling) (references 2 to 10.)

Linear-theory calculations are availilable for several derivatives
at supersonic speeds and, among these, references 11 and 12 treat the
effect of geometric dihedral on the rolling moment due to sideslip for
narrow and wide triangular wings.

The present paper offers a simple geometric relation whereby the
exlsting informetion on demping in roll msy be used to estimate the
effect of geometric dihedral on the rolling moment due to sideslip.
Values for the dihedral effect calculated from this epproximation are
compared with existing linesr-theory values.
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SYMBOLS

rolling-moment coefficient (%§§>

rolling moment, pound-feet

dynamic pressure (%-pr) pounds'per square foot -
wing area, square feet
wing span, feet

mass density of air, slugs per cubic foot

velocity, feet per second

wing-tip helix angle, radians

rate of roll, radiens per second
angle of sideslip, degrees

differential wing incidence, degrees per half-wing

dihedral angle, degrees per half-wing

taper ratio Tip chord
Root chord

angle of attack in plane normal o half-wing for side-
slipping wing with dihedral, degrees (see reference 13)
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aCy
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1
numerical functions relating C,; [I' and Cy to " Cy
f2 B iy, P
METHOD
Basis : S

The basis for the proposed method of estimating the effect of dihe—
dral on the rolling moment due to sideslip is that:

(a) For a wing with dihedral, sideslip imposes a rectanguler distri-. ~ _ _
ybution of angle of attack over each half-wing and the angle of attack is
equal in magnitude but opposite in sign for the two half-wings as in the
case of differential wing incidence (reference 13).

(b) For wings with differential incidence, reference 14 shows that
af{Rb

a reasonable approximation to the rolling effectiveness div or the
W

C,

W
°1
(c) Therefore, the effect of dihedral on the rolling moment due to

sldeslip should also be subject to reasonable approximstion by use of . .
simple strip theory provided one knows values of Cliw or CZ for the -

ratio can be obtained from simple strip theory.

wing under considersation.

Derivation

Reference 14 gives the ratio of rolling moments due to rolling and .
those due to differential wing incidence as: : —

a5 Pb |
=___< (1)
ai, ) 1+3
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but since . ) T o s
Pb . . - T -
af == C
) . My | S ¢
ai, C,
iy
then
5 1+ 2 - |
Cy. = —== C = f-C .-

Reference. 13 shows, that for wings with dihedral, the half-wing angle-of-
attack loading in sideslip is similer to that produced by differential ~
wing incidence. The magnitude of the angle-of-attack loading is = 7

iy = o = B sinT . - ~(b)
or : -
EEE-= sin T ) (3)
ap . _ —
then )
= dy (6)
CzB —-Cziw 3p y | - M
and with the assumption that for small angles sin 'equals 57F3' o o .
. e
r
- —_— | (D
C?'ﬁ Cziw 57.3 - = ( .
From equations (3) and (7) B ol LT
Cyn = 1+ 2x\ c I (é) T
B~ 57.3 \T+ 3y '57.3 - N

or
C
‘g _ .2 L+ 2o, =0, (9)
T (57.3)2 1+ 3 P P oo

il
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and equation (7) converts to
C Cz
g My - (10)

where a1l angles except g%- are in degrees. _.

The numericel functions f; and f, 1in equations (3) and (9) are

Plotted against taper ratio A in figure 1.
DISCUSSION

There sppears to be no experimental ‘information availsble at trans-
onic and supersonic speeds to allow a check of equations (9) and (10).

ac
Equation (3) for calculating Eif s however, 1s considered to be adequately

C1
checked by the experimental data presented in reference 14. Values of _TE

calculated from Iinear theory for triangular wings at supersonic speeds

. _ C2
are given in reference 12 and the linear-theory values of —TE for rec-

tanguler wings at supersonic speeds were obtained as a limiting case
(differential deflection of full-span full-chord flaps or differential
wing incidence) from reference 15. These theoretical results are shown
in figure 2 along with values calculated from equation (9) by using CZP

from linear theory and also using experimental data for CZP of thin

wings from reference 10. In genersal, the agreement between linear theory
and the present approximation is fairly good for either theory or experi-
ment for Clp' The agreement between values of CZQ/P calculated from

theoretical and experimental values of CZP is simply a reflection of

the agreement between theory and experiment for CZP of thin wings.

C:

i.

The agreement of the present approximations with experiment for 5 LS
C 1

and with supersonic linear theory for _ZQ are felt to be sufficlently

Iy
good to Justify the use of equations (9) and (10). .

Although not generally applicable nor intended for use at subsonic

speeds, it is interesting to note that the use of equation (9) does check
fairly well with theory for the particular case of the narrow triangle
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(reference 11). This comparison is essentially a comperison of the
slopes through zero of the two curves in figure 2(a).

Langley Aeronautical Laborstory
Netional Advisory Committee for Aeronautics
Langley Field, Va. '
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Figure 1.- Variatlon with taper ratio of the functione relating CZ
c

1
and —B to C, .
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Linear theory, references 12 and 1§
== e — Equation(9) and linear theory C;

A4 B gpquation(9)and experimental G,'p from reference 10
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(b) Rectangular wings.

Figure 2.~ Comparison of linear theory and présent approximation for effect
of geometric dihedral on rolling moment due to sideslip.
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