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SOME WIE~D-TUNREL RESULTS OF AN INVE~TIGATION OF TBE 

FLUTTER OF SWEITBACK- AND TRIANGULPR-WING 

MODELS AT MACH NUMBES 1.3 

By W. J. Tuovila 

F lu t te r  tests of  untapered,  low-aspect-ratio, sweptback-wing models 
and of  triangular-wing models of sol id  magnesium, a l u m i ,  and steel 
construction have  been made in an intermittent  supersonic w i n d  tunnel 
a t  Mach number 1.3. F lu t te r  data me presented  for 31 sweptback-wing 
models w i t h  00, 30°, 450, and 60° sweepback' and f o r  24 triangular-wing 
models. The f l u t t e r  boundaries are indicated on plots  of s t r e m i s e  
thickness  catio and aspect  ratio. .  No attempt h&s been made to   co r re l a t e  
the results with  analytical developments. 

INTRODUCTION 

Many d e s i k e r s  of a i r c ra f t  and missiles that are intended t o  t r ave l  
a t  supersonic  speeds  are  faced with the  problem of predicting flutter 
speeds fo r  wing plan forms fo r  which there is no generally  acceptable 
analytical  solution.  Experimental  information is  also  very  limited. A 
f e w  flutter data have been  obtained in the  transonic-speed  range w i t h  
techniques involvbg rocket-propelled  vehicles and freely  fall ing  bodies 
(references 1 t o  3) .  Wind-tunnel f lut ter  data obtained a t  Mach number 1.3 ' 

ase reported in references 4 and 5. 

As part  of the  general program of the  National Advisory Committee 
for.Aeronautics t o  study wing flutter a t  supersonic Mach numbers, t he  
present  paper  reports  the  results of a systematic series of  wind-tunnel 
experiments on the f lutter of  sweptback and triangular missile-tne wing 
models made of solfd magnesium, aluminum, and s t e e l  at Mach rrumber 1 . 3 .  
Results are presented  for 31 sweptback-wing models with  symmetrical 
hexagonal-section  shapes and with  various sweep angles  of Oo, 30°, 450r 
and 60° and f o r  24 t r i t m g u l a r - w i n @ ;  models of essentially  f lat-plate 
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construction. Model parameters have  been tabulated and f l u t t e r  boundariee 
are  indicated on plots of  streamwise  thickness r a t i o  and full-span aspect 
ra t io .  

Although the  information  provides  material  for  correlation  with 
analytical  developents, no correlation i s  attempted i n  thie paper. 
Many of these  data have, however, been  used i n  reference 6 f o r  evaluating 
an empirical   f lutter  cri terion. 
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streamwise  root  chord,  inches 

section  thickness,  inches 

full-span  aspect  ratio 

angle  of sweepback of leading edge, degrees 

angle between leading edge  and t r a i l i ng  edge on arrcwhead 
wings, degrees 

first natural frequency,  cycles  per second 

f i rs t  natural frequencies which appeared t o  be  predominantly 
torsion,  cycles  per second 

f l u t t e r  frequency,  cycles  per second 

length of leading  edge  for swept wtngs and distance from root 
t o   t i p ,  measured perpendicular t o  root,  for  triangular-wing 
models, inches 

weight of w i n g  model,  pounds per inch of span 

density of material, pounds per  cubic  inch 

MODELS AND TESTING " H O D  

A l l  the wing models tested were made from standard-gage  sheets 
of aluminum, magnesium, and s tee l .  The untapered sweptback models were 
made from 2-inch strips  with 3/8 inch  of  the  leading and t r a i l i ng  edges 
beveled t o  form a symmetrical  hexagonal airfoil-section shape. The 
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triangular models  had 1/8 inch of the  leading and t r a i l i ng  edge beveled. 
Figure 1 i l lus t ra tes   the   p lan  forms of the models tested and table  I 
l i s t s   t h e  model parameters at f l u t t e r .  

. I  The  wind tunnel  used fo r  these  tes te  i s  a two-dimensional blowdown 
W tunnel  having a 9.24 X l8.23 inch test section  operating from atmospheric 

stagnation  pressure t o  a vacuum chauiber. The t e s t s  were run at a Mach 
number of  1.3. Since  the Oo, 30°, and 45' swept models would have 
f lut tered and probably  failed during the  start ing  transient  tunnel flow, 
these models were injected into the  fully develoa%Cfl6w- through a s l o t  
i n  the  tunnel  side wall. The models were clamped i n  jaws that formed 
a small  half-body a t   t h e  model r o o t  as i l l u s t r a t ed  i n  f igure 2. 

Since  the  tunnel  operates  at a fixed 'Mach nuniber and air density,' 
it w a s  necessary t o  vary the wing parameters in order to   obtain  the 
point of neut ra l   s tab i l i ty .  . For these  experiments  the wing span w a s  
increased by increments of about 10 percent on successive runs u n t i l  
f l u t t e r  occurred. The f lut ter   f requencies  were detected by s t r a i n  
gages at tached  a t   the   root  of the models and were recorded  by  an 
oscillograph. 

The f i r s t   n a t u r a l  frequency, which was predominantly a bending 
mode,  was obtained  before each flutter run by f l icking  the wing i n  
bending and recording  the  frequency.  Forced-vibration  teats were made 
on the  untapered awept wings t o  determine the  lowest  frequency which 
had the  appearance of a tors ion mode of vibration and these  frequencies 
are  recorded as fa in table  I(a).  No frequencies  higher  than  the 
first natural bending mode were obtained, however, f o r  the triaguhr 
wings .  

RESULTS AND D I S C U S S I O N  

The model parameters and f l u t t e r  boundaries a t  Mach nmiber 1 . 3  and 
a t  an air   densi ty  which corresponds t o  30,000 feet   a l t i tude  are   given 
in   t ab l e  I. 

Flut ter   boudarfes  f o r  the  untapered  sweptback models are  presented 
graphically  in  f igure 3 by plott ing streamwise  thiclmeae ratio  againet 
full-span  aspect r a t io .  A curve  has  been drawn through  the  flutter 
points  for  the aluminum models t o  indicate  the  general   f lutter  trend. 
A comparison of  this curve wi th   t he   f l u t t e r  poFnta f o r  the magnesium 
and s t e e l  models indicates  t4e  effect  of different  materials which have 
very nearly the aame r a t i o  of s t i f fness  t o  density. A t  a given  aspect 
r a t io - the  magnesium models require  the  greatest  thickness  ratio a t  the 
f l u t t e r  boundary and the   s t ee l  models, the  least .  From these  experiments 
the geometric  dimensions and physical  properties of the w i n g s  at the 



4 It NACA RM L5X13 

f l u t t e r  boundary a t .  a Mach number of 1.3 could  be determined. Since 
the   t es t s  were run a t  a fixed Mach  number it was not  possible t o  deter- 
mine whether the  f lut ter   region extended t o  higher  or lower  speeds. 
Previous  experience, however, as w e l l  as the   resu l t s  of references 1, 
3, and 4, indicate that the flutter region extends t o  lower Mach nunibers 
fo r  most of  the wings tested.  Further  discussions of t h i e  phenomenon 
are  given  in  references 3 and 7. 

Some of  the magnesium and aluminum models swept back 45O were tested 
with half the w i n g  t ip  cut  off   perpendicular  to  the a i r  stream as shown 
in   f igure  1. Cutting  off  the w i n g  t i p  i n  t h i s  manner had a pronounced 
favor.able  effect and allowed a 16- t o  37-percent  reduction i~ thickness 
r a t i o  at a given  aspect  ratio. A comparison  of the f lutter boundaries 
of the regular and the  clipped-tip aluminum models i s  shown in   f igure  4. 
The  magnesium models exhibit  the same trends, as can  be  seen by a com- 
p r i s o n  of the resul t s   in   t ab le  I (a) .  

F lu t te r  boundarics for six  triangular-wing  plan forms are  presented 
in   f igure 5 on the basis of  streamwise  thickness r a t i o  at the model root 
and the  full-span  aspect  ratio.  Sketches of the model plan forms are 
located above the i r  corresponding f l u t t e r  boundaries. Becauee of the 
limited amount of data available no attempt i s  m a d e  t o  generalize  about 
the  effect  of plan form on f lu t t e r .  S imi l a r  models made of magnesium, 
aluminum, and steel show the same effect   as that which was observed on 
the untapered sweptback models; the magnesium models required  the great- 
es t   th ickness   ra t io  a t  t he   f l u t t e r  boundary and the steel models, the 
leas t .  A few trfangular models with Oo sweep were t e a t e d  but  they 
diverged  before f l u t t e r  could be obtained. 

The data presented  are  intended t o  provide f l u t t e r  information a t  
Mach number 1 . 3  f o r  wings of  various plan- forms,  such as those used on 
missile w i n g s  and t a i l  fins. The data may a l s o  provide material for  
correlation  with  analytical  developmeks. 

Langley Aeronautical  Laboratory 
National  Advisory Committee fo r  Aeronautics 

Langley Field, Va. 
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(b) Arrowhead-type-wing models. 

Figure 1.- Plan forms of wing model.e tested. 
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Figure 2.- Sketch of model momt. 
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Figure 3.- Aspect r a t i o  and thiclme~s r a t i o  required t o  attain flutter 
boundary a t  Mach number 1.3 f o r  wings of so l id  magnesium, 8hrdnu!n, 
and steel at var loue sweep a n g l e s .  

.I 

I ; I  
- .  . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  . . . .  . .  . . . . . . . . .  ~. . . . . . .  

. . . . . . . . .  

0 
P 

I 
g 

E 
8 

n 
b 

UI 
F 

W 
I-J 

... 



. 
.028 

.024 

*IO 
.020 

.016 

.012 

.OOd 

.004 

n 

11 

" 0  1 2 3 
Aspect ratio, A 

4 5 



. . . . . . . . . . .. . . . . . . 

P 
N 

P 

Arpeot n t i o ,  A '" 

I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . .  . . . . . . . . . . . . . . . . . . . . . 

I 

. .  . 

w 

. 



SECURITY I N F O R M A T I O N  

.- . . 


