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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM

SMALL-SCALE TRANSONIC INVESTIGATION OF THE EFFECTS OF 

PARTIAL-SPAN LEADING-EDGE CAMBER ON THE 

AERODYNAMIC CHARACTERISTICS OF 

A 500 38 , SWEPTBACK WING

OF ASPECT RATIO 2.98

By William J. Alford, Jr., and Andrew L. Byrnes, Jr. 

SUMMARY 

A small-scale transonic investigation of two semispan wings of the 
same plan form was made in the Langley high-speed 7- by 10-foot tunnel 
through a Mach number range of 0.70 to 1.10 and a mean-test Reynolds 
number range of 745,000 to 845,000 to determine the effects of partial-
span leading-edge camber on the aerodynamic characteristics of a swept-
back wing. This.päper presents the results of the investigation of 
wing-alone and wing-fuselage configurations of the two wings; one. was 
an uncàmbered wing and the other had the forward 45 percent of the 
chord cambered over the outboard 55 percent of the span. The semispan 
wings had 500 38' sweepback of their quarter-chord lines, aspect ratio 
of 2.98, taper ratio of 0.45, and modified NACA 64A-series airfoil sec-
tions tapered in thickness ratio. Lift, drag, pitching moment, and 
root-bending moment were obtained for these configurations. 

The results indicated that, for the wing-alone configuration, use 
of the partiàl-span leading-edge camber provided an increase in maximum 
lift-drag ratios up to a Mach number of 0.95, after which no gain was 
realized. For the wing-fuselage combination, the partial-span leading-
edge camber appeared to cause no gain in maximum lift-drag ratio 
throughout the test range of Mach numbers. The lift-curve slopes of 
the partial-span leading-edge camber configurations indicated no sig-
nificant change over the basic configurations in the subsonic range but 
resulted in slight reductions at the higher Mach numbers. No signifi-
cantly large changes in pitching-moment-curve slopes or lateral center 
of additional loading were indicated because of the modification. The 
partial-span leading-edge camber resulted in a slight increase in mini-
mum drag at the higher Mach numbers for the wing-alone configuration 
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and the increase occurred throughout the Mach number range for the wing-
fuselage configuration. The partial-span leading-edge camber modifica-
tion did not prove as effective in improving the performance character-
istics as did twisting and cambering a wing of the same plan form to 
give a uniform loading at a lift coefficient of 0.27 and a Mach number 
of 1.10, as was done in a previous investigation. 

INTRODUCTION 

Previous investigations (refs. 1 and 2) have shown that the per-
formance characteristics (as indicated by (L/D)) of low-aspect-ratio 
sweptback wings could be substantially improved by twist and camber. 
From a practical standpoint, however, the use of twist and camber pre-
sents several structural problems, particularly when considered for 
application to a variable-sweep airplane which may require that the 
inboard wing sections remain symmetrical in order to house the variable-
sweep mechanisms. In addition, it is obviously desirable to maintain 
straight-line elements in the vicinity of the flap and aileron hinge-
line locations. 

In an attempt to achieve some of the favorable effects of warped 
wings with a more practical modification applicable to existing swept 
wings and to variable-sweep airplanes, a wing was arbitrarily modified 
by drooping the forward 145 percent of the chord of the outboard 55 per-
cent of the semispan to provide essentially the-same camber as the 
warped wing of reference 1 while leaving the trailing 55 percent of 
the chord of the entire semispan coincident with the chord plane of 
the flat wing of reference 1. The wing with the drooped leading edge 
will hereinafter be referred to as the "modified wing," and the uncam-
bered wing shall be called the "basic wing." Because of current 
interest in all types of wing configurations through the transonic 
speed range, both wing-alone data and wing-fuselage data were obtained 
and are presented in this report. The fuselage tested is the same as 
that of reference 1 and is similar to that of a current research 
airplane. 

This investigation of two semispan wings mounted on a reflection 
plane was made in the Langley high-speed 7- by 10-foot tunnel thi'ough 
a Mach number range of 0.70 to 1.10 and an angle-of-attack range from 
-100 to 220 . Lift, drag, pitching moment, and root-bending moment were 
obtained for these configurations. 
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COEFFICIENTS AND SYMBOLS 

Twice semispan lift 
lift coefficient,

qS 

drag coefficient, Twice semispan drag 

qS 

Cm	 pitching-moment coefficient referred to 0.25, 
Twice semispan pitching-moment 

qS 

CB	 bending-moment coefficient about axis parallel to rela- 

fi	
Root 

ve wind in plane of symmetry, 	
bending moment

b q 

q	 average dynamic pressure over span of model, PV2, 

lb/sq ft 

5	 twice wing area of semispan model, 0.125 sq ft 

mean aerodynamic chord of wing, 0.215 ft, based on 

b/2 
relationship	 cdy (using theoretical tip) 

c	 local wing chord parallel to plane of symmetry, ft 

b.	 twice span of semispan model, 0.61 ft. 

y	 spanvise distance from plane of symmetry, ft 

P	 air density, slugs/cu ft 

V	 stream velocity over model, ft/sec 

[b/2 
effective Mach number, 
	 cMa d.y 

M1	 local Mach number 

CL 

CD
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Ma	 average chordwise Mach number 

R	 Reynolds number, pV/i 

absolute viscosity, slugs/ft-sec 

a.	 angle of attack of root chord line (parallel to 
fuselage reference line), deg 

d	 chordwise distance from wing leading edge parallel to 
plane of symmetry, ft 

z	 camber measured from undistorted portion of chord 
plane, ft - 

z'	 - maximum camber measured perpendicular to a line con-
necting the leading and trailing edge of strea.mwise 
sections, ft (see fig. 3) 

L/D	 lift-drag ratio 

aCLO	 angle of attack at zero lift coefficient, deg 

Ycaj	 lateral center of additional loading (lateral center 

of lift due to change in angle of attack), 100 

percent semispan 

Cm0	 pitching-moment coefficient at zero lift coefficient 

Cn min
minimum-drag coefficient 

-'  

C

	

	 lift coefficient at minimum drag coefficient 
Dmin 

[L/D)max

(L/D)maxmd I performance ratio - maximum lift-drag ratio of the 
modified configuration referred to the maximum 

basic	 lift-drag ratio of the basic configuration 

CLIL/	 lift coefficient at maximum lift-drag ratio 
/D)max
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MODELS AND APPARATUS 

The basic wing and the modified wing (with partial-span leading-edge 
camber) were constructed of steel and had 500 38' of sweepback of their 
quarter-chord lines, aspeët ratios of 2.98, and taper ratios of 0.15. 
The airfoil sections of the basic wing perpendicular to the 29 . 3-percent-
chord line, where this chord line intersects the streamwise root and tip 
chords, were NACA 64( 10 )AO10.9 at the root and NACA 64( 08AOO8.1 at the 
tip. The same 64A airfoil thickness distributions were placed around 
the mean camber surface of the modified wing. The maximum streamwise 
thicknesses were 7.4 percent at the root and 5.6 percent at the tip. A 
two-view drawing of the modified wing-alone configuration is presented 
in figure 1, and a photograph of a typical configuration mounted on the 
reflection plane is presented in figure 2. Ordinates of the fuselage 
used are given in table I. 

The modified wing was designed to have the same camber, drooped 
below the chord plane, in the leading 145 percent chord and over the 
outboard 55-percent span as the warped wing of reference 1, while 
leaving the trailing 55 percent of the chord of the entire semispan 
coincident with the chord plane of the flat wing of reference 1. The 
chordwise camber variation for several semispan stations, along with 
spanwise maximum camber variation, is presented in figure 3. 

Force and moment measurements were obtained with a strain-gage-
balance system and with recording potentiometers. The angle-of-attack 
values were obtained by means of slide-wire and recording potentiometers. 

TESTS 

The investigation was made in the Langley high-speed 7- by 10-foot 
tunnel with the model mounted on a reflection plane (fig. 1) located 
about 3 inches from the tunnel wall to bypass the wall boundary layer. 
The reflection-plane boundary-layer thickness was such that, with no 
model installed, a value of 95 percent of the free-stream velocity was 
reached at a distance of approximately 0.16 inch from the surface of 
the reflection plane at the balance center line for all test Mach num-
bers. This boundary-layer thickness represented a distance of about 
4.5-percent semispan for the models tested. 

At Mach numbers below 0.93 there was practically no velocity gradient 
in the vicinity of the reflection plane. At higher Mach numbers, how-
ever, the presence of the reflection plane created a high local-velocity 
field which permitted testing the small models up to a Mach number of 1.10 

CONFIDENTIAL



6	 CONFIDENTIAL	 NACA 1M L52DO8a 

before choking occurred in the tunnel. The variations of local Mach 
numbers in the region occupied by the models, obtained from surveys 
made with no model in position, are shown in figure II. Effective test 
Mach numbers were obtained from additional contour charts similar to 
those shown in figure 4 by the relationship 

Ib/2 
M= 	 cMady 

SO 

From these contours it was determined that Mach number variations 
(outside of the boundary layer) of less than 0.01 generally were obtained 
over the region to be occupied by the models below a Mach number of 0.95. 
These variations had values of 0.05 and 0.07 at Mach numbers of 0.98 and 
1.10, respectively. It should be noted that the Mach number variations 
of this investigation are principally chordwise, whereas the Mach num-
ber variations of reference 1 are principally spanwise. 

A gap of about 1116 inch was maintained between the wing-root-
chord section and the reflection-plane turntable, and a sponge-wiper 
seal was fastened to the wing butt on the inner side of the turntable 
to minimize leakage (ref. 3). Force and moment measurements were made 
for the wing-alone and wing-fuselage configurations through a Mach 
number range from 0.10 to 1.10 and an angle-of-attack range from _100 
to 220 . The mean-test Reynolds number varied from 745,000 to 845,000 
for the range of Mach numbers of these tests as shown in figure 5. 

No attempt has been made to apply corrections for jet-boundary or 
blockage effects. Because of the small size of the models these correc-
tions are believed, to be negligible. Corrections due to aeroelastic 
effects were less than 1.0 percent and were not applied to the data. 

In general, the accuracy of the force and moment measurements can 
be judged by any random scatter of the test points used in presenting 
the basic data. In applying a techhique that utilizes small reflection-
plane models mounted in a localized high-velocity field, the reliability 
of the absolute values of some of the results, particularly the drag 
values, may be open to question. Experience has indicated, however, 
that valid determinations of incremental effects, such as those due to 
lift coefficient, Mach number, or changes in model configuration, 
normally can be obtained. A more complete evaluation of results obtained 
by techniques such as that used for the present investigation is given 
in reference 3.
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RESULTS AND DISCUSSION 

The basic data for the wing-alone and wing-fuselage configurations 
are presented in figures 6 and 7. The lift-drag ratios are presented 
in figures 8 and 9, and a summary of aerodynamic characteristics is 
given in figures 10 and 11. Unless otherwise stated the discussion is 
based on the summary curves of figures 10 and 11. The slopes presented 
have been averaged over a lift-coefficient range of ±0.2. 

Lift Characteristics 

The lift-curve slopes (figs. 10 and ii) of the modified configura-
tion indicated no significant change over the basic configurations in 
the subsonic range, but the modification resulted in slight reductions 
in lift-curve slopes at the higher Mach numbers. The modification also 
caused small changes in the angle of attack for zero lift and in the 
lateral center of additional loading (ycaz), but these changes are not 
consistent for the wing-alone and wing-fuselage configurations. 

Drag Characteristics 

For both the wing-alone and wing-fuselage configurations the wing 
modification generally resulted in some increase in minimum drag; .a 
maximum increase of 0.006 was obtained with the wing-fuselage combina-
tion at a Mach number of 1.10. It should be noted that the values of 
CDmin for the wing-fuselage combinations may be high because of the 

skin friction and interference drag caused by the additional fuselage 
surface exposed by the gap between the fuselage and reflection-plane 
surface. The,values of CDmin presented in this paper for the basic 

configurations were noticeably higher than for the comparable configura-
tions of reference 1. These differences could possibly be due to the 
differences in test facilities, Mach number gradients ) and effects of 
the transonic bump curvature on the effective sweep angle of the model 
used in reference 1. 

The lift coefficient for minimum drag CL 	 generally was 
Dmin 

slightly more positive for the modified wing than for the basic wing; 
however, the maximum value of  

CLCDmin
obtained with any of the con- 

figurations was only about 0.08. 
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Lift-Drag Ratios 

For the wing-alone configurations (fig. 8), the lift-drag ratios 
for the modified wing were somewhat higher than for the basic wing at 
lift coefficients above 0.1 and up to a Mach number of 0.95. Above 
0.95 a negligible increase was realized. No appreciable change in lift-
drag ratios was occasioned by the modification for the wing-fuselage 
configurations (fig. 9). 

The (L/D)m, values of the configurations with the modified wing 

have been referred to the (L/D)max values of the basic configurations, 

since the significance of a comparison of the absolute values of 
(L/D )max obtained herein with those obtained for the twisted and 

cambered wing of reference 1 might be questionable because of the dif- 

T(L/1axm d1 ference in techniques. The ratio I	 0	 referred to as-the 

L(-L/nbasic] 

performance ratio, therefore, has been resented in figures 10 and 11 
and is believed to provide a more realistic basis for evaluating the 
effects of the wing modification. For the wing alone, the modification 
increased the performance ratio up to a Mach number of 0.95, but had 
little effect at higher speeds. When applied to the wing-fuselage con-
figuration, the wing modification caused no gain in the performance 
ratio, throughout the Mach number range, which could possibly be due to 
the large increase in minimum drag caused by addition of the fuselage. 
The performance ratio of the twisted and cambered wing and wing-fuselage 
combinations of reference 1 1 obtained by adjusting the drag polars of 
that investigation to the Cin values of this paper, are presented 

for comparison in figures 10 and 11. As can be seen by this comparison, 
the present modification to the wing did not prove as effective in 
improving the performance characteristics as did the twist and camber 
used in the wing in the investigation-of reference 1. In this previous 
investigation, the twist and camber had been selected so as to provide 
a uniform loading at a lift coefficient of 0.25 and 'a Mach number 1.10. 

The lift coefficient at which (L/D )max occurred usually was 
slightly higher for the modified wing configurations than for the flat 
wing configurations. Large Mach number effects on CL for (L/D)max 

were indicated for all configurations investigated at Mach numbers 
between 0.95 and 1.10.
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Pitching-Moment Characteristics 

In general, the pitching-moment slopes Cm/CL were only slightly 
affected by the wing modification throughout the test range of Mach 
numbers. At the highest lift coefficients and high Mach numbers, the 
modification seemed to cause the wing alone to be slightly more unstable 
(fig. 6), whereas the wing-fuselage combination became slightly more 
stable (fig. 7).. 

The variations of the pitching-moment coefficient at zero lift 

with Mach number were practically unaffected bj the modification. 

CONCLUSIONS 

An investigation of the effects of partial-span leading-edge camber 
on the aerodynamic characteristics of a sweptback wing indicated the 
-following conclusions: 

1. For the wing-alone configuration, use of the partial-span leading-
edge camber provided an increase in maximum lift-drag ratios up to a 
Mach number of 0.95, after which no gain was realized. For the wing-
fuselage combination, the partial-span leading-edge camber appeared to 
cause no gain in maximum lift-drag ratio throughout the test range of 
Mach numbers. 

2. The lift-curve slopes of the modified configurations indicated 
no significant change over the basic configurations in the subsonic 
range but resulted in slight reductions at the higher Mach numbers. No 
significantly large changes, due to the modification, in pitching-moment 
slopes or lateral center of additional loading were indicated. The 
modification resulted in a slight increase in minimum drag at the higher 
Mach numbers for the wing-alone configuration and the increase occurred 
throughout the Mach number range for the wing-fuselage configuration. 

3. The partial-span leading-edge camber modification did not prove 
as effective in improving the performance characteristics as did 
twisting and fully cambering a wing of the same plan form in a previous 
investigation. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va.
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Canopy Ordinates 

Upper Zk 
Station Surface 
(in.) (in.) (in.) 

1.34 .89 0 
2.13 1.34 019 
2.51 1.14.2 .17 
3.05 1.142 .11 
3.83 1.33 0
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TA BL E I - FLISEL AGE and CANOPY ORDINATES 

z	 -a----	 .09 r 

A	 B	 .09r

Sta.

LA
Reference I/ne 

Upper surface --Z 
Ordinate 

Section A-A
	

Sect/on B-B 

r radius ., inches 

Fuselage Ordinates

Station 
(in.)

Upper 
Surface 
(in.)

Lower 
Surface 
(in.)

Z 
Radius 
(in.) 

0 0 0 0 
.47 .47 -.31 
.90 .72 -.141i .14 

1.97 1.08 -.53 .54 
3.05 1.26 -053 .62 
4.12 1.314 -.53 .61 
5,20 1.35 -.53 .56 
5.95 1.35 -.53 .56 
6.27 1.34 -.43 .48 
7.35 1.30 -.08 .37 
7.56 1.30 .05 .37 
7.78 1.30 .140 .37 
7.99 1.30 .60 .37 
8.142 1.26 .72 027 

9.50 1.21 .89 015 
9.71 1.19 093 .13 
9.98 1910 1.10 0
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inches	
(Span of lea,j 

camte,) 

Root

Typical sections 

Figure 1.- Wing-alone configuration with 500 38' sweptback wings, aspect 
ratio 2.98, taper ratio 0 . 11 5 , and modified NACA 64A-serles airfoil 
setions mounted on reflection plane. 

COETLAL	 -



NACA RM L52DO8a	 CONFIDENTIAL
	

13 

/
0	 * 

4	 /	

pI•  *!qA  
.*	 if 

Figure 2.- Photograph of typical model and reflection-plane setup.  
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Figure 3.- Camber variations of wing with partial-span leading-edge camber. 
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Mean test Reynolds number 
côc,zg Limits of test Reynolds number 

I	 • .8 •	 .9	 /0	 1/ 
Mach number ., M 

Figure 7.- Variation of test Reynolds number with Mach number. 
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o	 Basic wing 
o------Modified wing
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Figure 6.- Continued. 
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Figure 7. - Continued. 
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Figure 10.- Summary of the aerodynamic characteristics of the wing-alone 
test models. 
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Figure 11.- Summary of the aerodynamic characteristics of the wing-fuselage 
test models. 
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