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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDW-1 

SOME EFFECTS OF SPOILER HEIGHT , WING FLEXIBILITY, 

AND WI NG THICKNESS ON ROLLING EFFECTIVENES S AND 

DRAG OF UNSWEPI' WINGS AT MACH NUMBERS BETWEEN 

0 . 4 AND 1.7 

By E . M. Fields 

SUMMARY 

Rolling effectiveness and drag tests of-spoi lers on unswept wings 
have been conducted over the Mach number range from 0 . 4 to 1 . 7 by the 
Langley Pilotless Aircraft Research Divis ion utilizing rocket - propelled 
test vehicles in free flight . The wings which were of aspect ratio 3 . 7 
were unswept and untapered, had thicknes s ratios of 3, 6, and 9 percent, 
and covered a range of flexibilities . Full- span solid sharp - edge spoilers 
were 102ated at the 0 . 8 - chor d line . 

Increasing ·the wing flexibility increased the rolling effectiveness 
at s~bsonic speeds and decreased it at superso~ic speeds. Increasing 
the spoiler height increased the rolling effectiveness linearly near 
M = 1.0 but the increase was nonlinear at the other speeds tested. The 
rigid-wing rolling effectiveness of the 3 - percent - thick wing, compared 
to that of the 9 -percent - thick wing, was lower at subsonic speeds, higher 
at low supersonic speeds, and about the same at speeds above M = 1.3. 
The drag generally increased linearly with increased spoiler height 
except at the lower supersonic speeds . 

INTRODUCTION 

The Langley Pilotless Aircraft Resear ch Division is conducting a 
general investigation of spoiler - type devi ces for roll control . Refer­
ence 1 shows that the 0 . 8 - chord spoiler l ocation resulted i n rolling per ­
formance generally superior to that of the 0 . 4 - chord or 0 . 6 - chord loca­
tions. The present tests we r e conducted to determine the effects of 
spoiler height on rolling effect i veness and dr ag for the untapered and 
unswept 9 - percent - thick wings having full - span , solid, sharp - edge spoilers 
located at the 0.8 - chord station. Additional tests at one spoiler height 
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were mad e with wings having 6 - percent a.'1d 3 - pe rcent hickness r'3.tios and 
different construction characteristics to deter~ine th e e ffects of wing 
thicknes s ratio and flexibility OD rOlling' e ffe ctiveness . 

A comparison is :nade of the r .olling effectivenes s loss jue to wing 
flexibility f or a spoller a.'1d an aileron, a.'1d the drag f or a spoiler and 
an aileron is presented fo r the case where both controls have the same 
estimated value of rolling effectiveness . 
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SYMBOLS 

diamet e r of circle swept by wing tips, 2 . 1B5 ft 

wing chord parallel to model center line, 0.59 ft 

aspect ratio, b/c, 3 . 7 

density of air, slug/ft3 

model flight - p'3.th velocity, ft / sec 

dynamic pressure of the undisturbed stream, pV2/2, 
Ib / sq f t 

exposed area of thr ee wings, 1 . 563 sq ft 

drag coefficient of test vehicle, Drag/qS 

spoiler be ight above wing surf ace, ft 

Mach number 

rolling VGlocity of test vehicle, radians / sec 

wing -tip helix angle , positive for down- moving wing 
with s poiler on upper surface, radians 

Reynolds number, based on c 

angle of wing twist due to, and. :neasured in plane of, 
applied couple m, radians 

concentrated couple applied near wing tip in a plane 
parallel to test -vehicle center l ine and. perpendicular 
to wing- chord pla.Tl e , ft - lb 

----------- ----------------------- -------



NACA RM L52HlB 

(e/m) 
r 

¢ 

(1 - ¢)/(e/m) r 

t 

(e/m) measured at the mid - exposed -s pan station, 
radians /ft - lb 

fraction of rigid- wing r olling effectiveness retained 
by the flexible wing 

fraction of rigid -wing rolling effectiveness lost by 
t he flexible wing per unit torsional flexibility 
parameter, l/(radians /ft lb ) 

wing maximum thickness, ft 

MODELS AND TEST TECHNIQUE 

3 

Geometric details of the test vehicle s and construction details of 
the test wings used in the present investigation a r e presented in fig ­
ure 1. Tne three wings on anyone test vehicle were spaced 1200 apart 
around the tes t-vehicle fuselage and were nominally identical. The full­
span, SOlid, sharp-edge spoilers were attached to the wings along the 
O. B- chord line wit~ no gaps between the spoiler and wing surface . 

The torsional flexibility characteristics of the test wings were 
obtained by applying a twisting couple near the wing tip and measuring 
the resulting twist along t he span as indicated in figure 2. 

The flight tests were made at the Langley Pilotless Aircraft Research 
Station at Wallops Island, Va . The test vehicles were propelled to a max­
imum Mach number of approximately 1. 7 by a t wo-s t age r ocket-prop'..l.lsion 
system, and test data were taken during the f ree - flight coasting period 
following second -stage propulsion-unit burnout . The test data consisted 
of time histories of the model rolling velocity and flight -path velOCity 
as obtained by special (spinsonde ) r adio equipment and CW Doppler radar, 
respectively. These data, i n conjunction with atmospheric data obtained 
from radiosondes and SCR 5B4 radar, permit the evaluation of the r olling 
effectiveness parameter pb/2V and drag coefficient CD as a function 

of Mach number. The Reynolds number and free-stream dynamic pressure of 
the tests ar e shown as f unctions of the test Mach number in figure 3. 

ACCURACY AND CORREC TIONS 

From mathematical analysis and previous experience, the accuracy of 
the r esults is estimated to be within the following limits: 
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Subsonic Supersonic 

±0 .003 
± . 003 

± . Ol 

±0 . 002 
±.002 

± . Ol 

All the pb/2V data preaented herein have been corrected by the method 
of refer ence 2 for the effects of win6 incidence resulting from con­
struction tolerances . The pb/2V data have not been corrected for the 
effect of the test -vehicle moment of inertia about the roll axis, since 
analysis (ref . 3) shows tha t this correction is negligible excep~ where 
abrupt changes in pb/2V occur as in the transonic r egion where it may 
be of the order of 20 percent or less . 

RESULTS AND DISCUSSION 

The basic data obtained from the present investigation are pre ­
sented in figure 4 as the variation of drag coefficient and rolling 
effectiveness with Mach number and represent the data that would be 
obtained from a test vehicle with two semispan wings having a spoiler 
on each wing and neglectin6 interference effects . Included is the drag 
coefficient for the body alone (ref. 4) and, from unpublished data and 
reference 2, the drag coefficient and rolling effectiveness, respec­
tively, for a 9 - percent - thick wing having no controls but an average 
wing incidence of 0 . 040 for each of the three wings . The data for the 
no - control wing are included to show the small irregularity in the 
rolling effectiveness in the transonic region for the wing without a 
spoiler and to give some drag- coefficient values for the h = 0 case. 

c 
No drag data were obtained for model 1 . 

Rolling Effectiveness 

Effect of wing flexibility .- The r o lling effectiveness data for the 
3 - percent-thickness - ratio models (fig . 4a) were plotted against (e/m)r 
for a given Mach number and the slope of the straight line drawn through 
the data points is (1 - ¢)(Pb/2V)rigid/ (e/m )r; extrapolating the straight 

line to (e/ m)r = 0 gives the rigid -wing rolling effectiveness value at 

that Mach number (see ref . 5) . The same procedure was used with the 
9- percent - thickness ratio models 7 and B of fig~re 4(c ) , with the assump ­
tion that the differences in rolling effectiveness for the 65 - and 65A 
profiles were small in the rigid case . The fraction of rigid -wing rolling 
effectiveness lost by the spoiler- equipped flexible wing per unit torsion 
parameter (1 - ¢)/ (e /m ) measured for t he thickness ratios of 3 percent 

r 

---- -- ----



NACA RM L52HIB 5 

and 9 percent are shJwn plotted against Mach number in figure 5. Nega­
tive values indicate an effectiveness gain for the flexible wing; whe r eas 
positive values indicate an effectiveness loss . The gain in effectiveness 
for the spoiler-equipped flexible wing at subsonic speeds may be explained 
by pressure measurements ( ref. 6) showing a negative p~essure area behind 
the spoiler of sufficient intensity to give a nose-d'Jwn twisting moment 
about the O.4-chord line (spoiler on the upper s~rface at 0 . 7 chord). 

Loss -parameter data from reference 7 for an unswept and untapered 
wing having thickness ratios of 3 percent and 9 percent and a full-span 
aileron hinged at the O. S-chord location are included for comparison . 
It can be seen that the flexible aileron-equipped wing loses effective­
ness at all speeds tested; whereas the flexible spoiler-equipped wing 
gains effectiveness at subsonic speeds and loses effectiveness at super­
sonic speeds . The percent-effectiveness change for the spoiler is less 
than one -half that for the aileron at all speeds tested. Since the change 
is proportional to the wing twisting moment ( r ef . 5), the wing twisting 
moment due to the spoiler is less th~ one -half that due to the aileron 
for a given pb/2V at any given Mach number. 

The curve for the 1 = 0 . 06 spoiler-equipped wing in figure 5 was 
c 

obtained by arbitr arily avers.ging the values for the 3 - and 9-percent­
thick wings and was used to correct the rolling effectiveness of model 4 
to rigid-wing pb/2V sinc e only one value of wing flexibility was tested 
for the 6 - percent -thick wings. 

Effect of airfoil thickness ratio.- ShO'Hll in fig~re 6 is the vari­
ation of rigid-wing rolling effectivenes3 wi th Mach number for three 
airfoil-thick~es s ratios, with ~ = 0 . 02 for all wings. The values for 

the 3 - and 9 -percent-thick wings were calculated from data obtained by 
testing two wing flexibilities of the s ame configuration, and the values 
fo r the 6-percent - thick wing wer e estimated from the information contained 
in figures 4(b) and 5. It should be noted that the measured values 
(fig. 4(b)) of the r olling effectiveness for the 6 -percent - thick wing ar e 
essentially those for a rigid wing, sinc e the test wing is estimated to 
be only slightly mor e flexible than a solid aluminum-alloy wing. The 
maximum flexibility correction applied to the measured data was 11 percent 
and, consequently, any errors resulting f rom the method of interpolating 
the data in figure 5 would have small effect on the estimated rigid-wing 
values for the 6 -percent - thick wing in figure 6. The 3-perc ent-thick wing 
had the lowest rolling effectivenes s at subsonic speeds whereas the 
9- percent - thick wing had the Imrest rolling effectiveness at supersonic 
speeds below M = 1 . 3 , both thickness ratios having about the same rolling 
eff ectiveness above M = 1.3 . The rolling effec tiveness of the 6 -percent­
thick wing was appr oximate ly the same as that of the 9 -percent -thick wing 
at subsonic speeds ani that of the 3-percent-thick wing at supersonic 
speeds, the differ ence at supersonic speeds being only slightly greater 
thaIl the quo-:;ed accuracy of the tests. 



6 NACA RM L52H18 

Effect of spoiler height .- The variation of flexible -wing rolling 
effectiveness with spoiler height is presented in figure 7 for several 
Mach numbers; the data from figure 4(c) for all models having the same 
wing flexibility were utilized . The variation of r olling effectiveness 
with spoiler height is no~linear except near M = 1 . 0 . The tendency 
toward reversed r olling effectiveness at M = 0 . 6 for the ~ = 0 . 005 
spoiler ~y be attributed to an effective cambering of the airfoil 
r esulting from a thickening of the boundary layer by the small spoiler 
projection (ref . 8) . 

Drag 

Drag comparison for spoiler and aileron .- In figure 8, for arbitrary 
levels of pb/2V at s~bsonic and supersonic speeds, a drag comparison 
for 9 -percent - thick wings is made between full - span aileron -·type controls 
hinged at the O. 8-chord location and full - span spoiler-type contro ls 
located at the 0 . 8 - chord position . The drag coefficients at each pb/2V 
level were ob~ained f r om the data of figure 4(c) (models 5, 6, 7, 9, 10) 
for the spailer - type control and from unpublished data for the aileron ­
type contr ol . For either type of control, pb/2 V was plotted against 
CD at a given Mach number and an extrapolation or interpolation was made 

along a straight line between data points to obtain the Cn for the 
desired pb/2V. The drag advantage of the aileron is less pranounced at 
supersonic speed than at subsonic speeds . Since the addition o f the 
spoiler resulted in approximately equa l drag coefficient increwmts a t 
both subsonic and supersonic speeds, the favorable yawing- moment coeffi ­
cient due to the spoiler drag should be approximately equal a t subsonic 
and supersonic speeds for the case of the spoiler on one wing, if negli ­
gible spanwis e movement of the drag center of pressure is assumed . 

Effect of airfoil thickness ratio. - The test - vehicle total - drag 
coefficient is plotted against Mach number for three airfoil thickness 

r atios in figur e 9 . The data were taken f r om the Q = 0 . 02 tests of 
c 

figure 4 and are average values where data are available for more than 
one test of a given configuration . The results for sweptback tapered 
wings in reference 9 lead to the conclusion that the effects of wing 
flexibility a r e probably negligible. It can be seen that the drag gener ­
ally increased with increased airfoil thickness ratio, and the variation 
of drag with airfoil thickness ratio is fairly linear above M = 1 . 2 . 

Effect of spoiler height . - In figure 10 the drag data o f figure 4( c) 
have been utilized to plot the test-vehicle drag against spoiler height 
at several Mach numbers fo r the 9 - percent - thick wings. The variation of 
drag with spoiler height was essentially linear at subsonic speeds and 
the higher supersonic speeds tested but increased nonlinearly at the lower 
supersonic speeds . 
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CONCLUSIONS 

Rolling effectiveness and drag tests have been conducted over the 
Mach number range from 0.4 to 1 . 7 utilizing rocket-propelled test vehi­
cles in free flight. The wings with an aspect ratio 3.7 were unswept 
and -untapered, varied in thickness ratio from 3 percent to 9 percent, 
and had full-span solid, sharp - edge spoilers located at the 0.8-chord 
line. From these tests the following conclusions have been drawn: 

1. The variation of rolling effectiveness with spoiler he ight for 
the 9-percent-thick wings was nonlinear except near M = 1.0. Very low 
spoiler heights indicated a tendency toward roll reversal at some sub­
sonic speeds. 

2. Increasing the wing flexibility increased the rolling effective­
ness at subsonic speeds and decreased it at supersonic speeds. Compared 
with an aileron, the spoiler twisting mo~ents are considerably less at 
supersonic speeds and opposite in sign at subsonic speeds for the wing­
spoiler arrangement of these tests . 

3. The rigid-wing rolling effectiveness of the 3-percent-thick wing, 
compared to that of the 9-percent - thick wing, is lower at subsonic speeds, 
higher at low supersonic speeds , and is about the same at speeds above 
M == 1.3. 

4. The drag generally increased with an increase in airfoil thick ­
ness ratio or spoiler height . For a 9-percent -thick wing, the spoiler 
had more drag than an aileron for the same rolling effectiveness at sub­
sonic speeds but the difference was less pronounced at supersonic speeds. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va . 
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(a) Photograph of a typical test vehicle. 

Figure 1. - Test vehicles . 

z 

~ 
~ 

~ 
t-i 
\Jl 

93 
r-' 
ex> 

\0 



10 

All spoilers 0-10.8 cl70rcl -

r-----------

NACA RM L52H18 

~l07/1 
n 

I 
.5-cliOm. 

f-ol .~ __ ~-I_L..~--_..3.~.~~~--_-'_'~~~-~_~~~-"O_--/l._~--~~.:..;--~-~-"t~-m-.:..-a-=;a;...'/'".:..-+---I( -": -I JI 
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(c) Wing construction . 

Figure 1 .- Continued . 
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Figure 1.- Concluded. 
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(b) Reynolds number . 

Figure 3.- Var iation of dynamic pressure and Reynolds number wi th 
Mach number. 
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Figure 4.- Variation of drag coefficient and rolling effectiveness with 
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Figure 9.- Variation of drag coefficient with Mach number for several 
wing thickness r atios . ~ = 0 . 02 • 
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Figure 10.- Variation of drag coefficient with spoiler height for 
several Mach numbers . t = 0 . 09. 
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