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OF ATTACK AT TRANSOmIC SPEEDS OF A SM4I;tSCAI;e 

0' SWEEP WING, 450 SWEFTEACK WING, 

AND 6oo DELWA WING 

By Harleth G. Wiley ' 

SUMMARY 

In order t o  extend  the  scope of an NACA transonic  research program 
to include  the aerodynamic characteristics of  wings a t  high  angles of 
attack, a series of wings of various plan forme were fnvestigated in 
the  high-velocity  field of the  side-wall  reflection  plate of the Langley 
high-speed 7- by 10-foot  tunnel a t  angles of attack of 0' to about 60° 
and Mach nlmibers of approximately 0.6 t o  1.1. < 

This paper presents  the aerodynamic characteristics from Oo t o  
about 60' angle of attack of a 0' sweep wing of aspect  ratio 4 and taper 
r a t io  0.6, a 450 sweptback WFng of aspect  ratio 4 and taper   ra t io  0.6, 
and a 60° delta wing of aspect  ratio 2.31 and taper   ra t io  0. Presented 
also are  the  effects of 1eading-f;dge  roughness on the Oo sweep &Lng of 
a constant-thickness  flat-plate airfoil section on the 450 weptback 
wing, and of a fuselage on the 60° delta w i n g .  

11 

The data show that  the maximum l i f t  coefficients obtainable increased 
with increase in sweep angle and decreased w i t h  Mach  number a t  the lower 
subsonic Mach nunibers.  The maximum lift coef f ic ien t   for   a l l  w i n g s  
increased w i t h  Mach nmiber above a Mach  nuniber of 0.95 w i t h  less  Bffect 
of sweep angle. 

e 

The current  trend in high-speed a m l a n e  and guided-missile  design 
b- to incorporate  high wing loaangs and high  operational flight ceilings 

necessitates  careful  conaideration of the aerodynamic characteristics . of the  specific wing plan forms a t  high  angles of attack. In order to 
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extend the range of available data a t  transonic speeds to include-high 
angles of attack, a series of w i n g  plan forms was investigated on the 
side-wall  reflection  plate of the Langley  high-speed 7- by lO-foot  tunnel. ' * 

Presented in   t h i s  paper are  the results o F a n  investigation  over 
an angle-of-attack  range-of  approximately 0' t o  &lo of a Oo sweep and a 
450 sweptback wing with an aspect  ratio of 4, and a ho delta wing with 
an asp.ect r a t io  of 2.31. The three wings had eimilar NACA 65se r l e s  
airfoil   sections  with a thicknem  ratio of 6 percent  in  the  plane of the 
a i r  stream.  Presented €1160 are the  effects of leading-edge roughness on 
the Oo sweep wing,  and the  effect  of the  presence of a fueelage on the 60° delta King, and the aerodynamic characteristics of the 4-50 sweptback 
win@; with a COnsta~t-thiCknes6 flat-plat*airfoil  section. 

CL 

cLmax 

CD E drag  coefficient, 

maximum. lift coefficient 
c 

Twice drag of semispan model 

¶? 

cm pitching-moment coefficient-referred t o  0.25, 

Twice pitching moment ofsemispan model 
qSE 

CB bending-moment coefficient in plane of  symmetry about axis 
paral le l  t o  f r ee   a i r  stream, 

S 

b 

Bending moment of semispan m d e l  

0 
qs b 
2 F  

effective dynamic pressure Over span of model, PV 1 2  , lb/sq ft 

twice  area of semispan model, sq  f t  

twice span of semispan model, f t  
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C 

mean aerodynamic chord of wlng, 

local wing chord, ft  

chord a t  wing t ip ,  ft 

chord a t  wing root, ft  

spanwise distance from plane of symmetry, ft  

mass density of ab?, slugs/cu ft  

average  free-stream air velocity, f p a  

effective Mach  number over span of model 

average chordwise Mach nmber 

local Mich  number 

Reynolds nmber of w i n g  based on E 

angle of attack, deg 

angle of a t t ack   a t  which maximum lift coefficient 'is 
obtained, deg 

variation of pitching-moment coefficient  with lift 
coefficient 

variatlon of bending-moment coefficient  with lift 

variation of lift coefficient with angle of attack, - &L 

coefficient 

ha  

l if t-drag  ratio,  CL 
CD 

Sketches and geometric characteristics of the models ae tested on 
the  side-wall  reflection-plate  balance  are shown in figure 1. The 
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00 sweep wing, also  designated  as 0-4-0.6-006, f o r  bo sweep of the 
quarter-chord line, an aspect  ratio of &,a taper   ra t io  of  0.6,  and an 
mACA 63006 a i r fo i l   sec t ion   para l le l   to   f ree  stream, respectively, was 
made of steel.  For the leading-edge rcru@;hnegs tests on the 0' sweep 
wing, No. 60 carborundum grains were glued to   the  upper and lower sur- 
faces of the wing from the  leading edge to 0 .O5 chord. 

Wing 45-4-0.6-006  had 45' of sweepback  measured at the  quarter- 
chord l ine,  an aspectTatio-of 4, a taper  ratio  of-0.6, and ut i l ized an 
NACA 656.006 a i r fo i l .   sec t ion   para l le l   to  free stream. Wing 45-4-0.6-PL., 
a f la t -p la te   a i r fo i l   var ia t ion  of the 45O sweptback wing, consisted 
essentially of a 0.25-inch f l a t   s t e e l  plat-with a radius leading edge. 
No attempt WES made t o   f a i r  %he t i p  and t r a i l i ng  eQe. 

Wing 60' A 4 0 6  camprised a del ta  wing. of 60° leading-edge sweepback, 
with an aspect  ratio-of 2.31, a taper   ra t io  of 0, and an KACA 65-006 a i r -  
fo i l   sec t ion   para l le l   to   f ree  stream. The  wing was made of a bismuth 
and t i n  alloy bonded to.  a tapered  steel  core. a Wing contours were gener-- 
ated by straight-1ine.elements from t he   t i p   t o   t he   a i r fo i l .   s ec t ion   a t  
the  root. The half-fuselage,  the  ordinates of which are given i n   f i g -  
ure 1 and  which was used i n  conjunction w i t h  the &lo delta wing for  some 
of the  teete , was made of brass. 

The  models  were  mounted on an electrical  strain-gage  balance which 
was enclosed  within a eealed chamber behind the- reflection-plate  fairing. 
For  these tests-, each model wae mounted with  the wing-root  chord 0.03 inch 
from the surface of the  reflection plate. (This O.03-inch clearance was 
a l s o  maintained between the  half-fuselage and the-reflect3on  plate for 
testB of fuselage  effect on the 6' del ta  wing.) The clearance  hole i n  
the  reflection-plate  turntable, through which the wing root8  paesed, was 
sealed  with sponge rubber. The wlng l i f t ,  drag,  pitching moments, and 
bending ~ ~ I L ~ E I  were me8sWed with a calibrated  electrical  potentiometer. 

The tests w e r e  made on the  reflection  plate mounted on the  side wall 
of the-Langley high-speed 7- by l 04oo t  tunnel, a description of which is 
given in reference 1. The technique  involves  placing  the model in the 
local  high-velocity  field induced over the top aurf'ace of the  reflection 
plate  by the presence of the flow blockage between the  plate and the 
tunnel wall. 

Typical  contours of the veloci ty   f ie ld  over the  reflection  plate 
with  the model removed, but  with model positions superimposed on the 
contour  charts,  are  presented in figure 2. The contours  indlcate a 
maximum spanwlse Mach  number variation over the wing semispan of 0.08 

. 

.- 
-. 
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and a maximum chordwise gradient of 0.07. The effect ive  tes t  Mach nun- 
ber was obtained from contour  charts similar t o  those  presented in fig- 
ure 2 using the  relationship - 

Force and moment data for the  three  basic wings were obtained over 
a Mach  number range of approximately 0.6 to 1.10. Brief tests of the 
0' sweep  wing with  roughness, the 45' sweptback wing with  flat-plate 
a i r fo i l ,  and the 60' delta w i n g  with  fuselage were made at   several   repre-  
sentative  intermediate Mach numbers. The specific Mach numbers a t  which 
t e s t s  were made varied somewhat between mdels  because  constant  tunnel 
dynamic pressure q, rather than a constant Mach number,  was maintained 
f o r  the  tests.  Reynolds number range f o r  the 0' sweep and 450 sweptback 
wings, a8 presented in figure 3, varied from approximately ~ , O O O  t o  
800,000, whereas for the 60' de l ta  w i n g  the Reynolds nmber  range-was 
sx)o,ooo to 1,400,000. 

A l l  wings were investigated over an angle-of-attack  range of Oo t o  
- L  60' with  the  range  extended t o  69.50 for the &lo delta wing. 

The l i f t ,  drag, and pitching moments presented  herein  represent 
data f o r  complete wings, whereas bending moment is presented in terms of 
wlng semispan. - 

Small corrections t o  account for sllght  tunnel  air-flow misalinement 
and for  small balance  interactions have been spplied to the  drag data.. 
No jet-boundary  corrections were applied because of the small size  of 
the models re la t ive to the  size of the  tunnel test section.  Effects of 
the sponge-rubber sea l  on similar semispan wings have been found t o  be 
small as indicated in reference 1 and therefore have not been applied.. 

No corrections were made t o  the  data of t h i s  paper t o  account for 
the  effects of wing f lexibi l i ty .  Such corrections, though d i f f i cu l t  t o  
determine analytically, can  be qualitatively compared t o  the  corrections 
f o r  wing f l ex ib i l i t y  8s determined in reference 1. The predminant 
effects of whg  flexibility,  torsional  deflection and spanwise change 
in angle of attack due t o  wing bending, increase in importance with 

decrease in angle of attack for awept  wings evidences i t s e l f  as a loss 
.- increase in  aspect  ratio and  sweep angle,  respectively. The spanwise 

n of lift and consequent  forward movement  of the aerodynamic center. . -" 
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Corrections of  reference 1 fo r  a 45' sweptback wing, geometrically and 
structurally  similar  to  the '  45O sweptback wing  of t h i s  paper, re f lec t  
these--loading changes with an increase in  CL of 4 t o  7 percent  -at  low 
angles of attack  over  the Mach  number rang+of 0.6 t o  0.95. Corresponding 

. 
" 

corrections  to - a m  move the aerodynamic center rearward  about 0.01c 
&L 

throughout the Mach  number range. The effects of w i n g  f l ex ib i l i ty  on 
the aerodynamic characterist ics of the 0' sweep wing and the 63O del ta  
wing of this  paser-arg  believed to be of considerably less magnitude 
than  the  effects on the 4-5' sweptback w i n g .  

RESUETS AND DISCUSSION 

The discussion of the  results  opthe  present  investigetion will Be 
predominately  based upon the summary of the aerodynamic characterist ics 
a t  high  angles of attack of the  individual wings ( f ig .  8) with  detailed 
reference  to  the  original data oFfigures 4, 5, 6, and 7 only when ape- 
c i f t c  observed phenomena merit more detailed comment.  The data of  t h i s  

paper are  not  believed complete enough in  the low ranges of angle of 

attack  to  determine-accurately  the aerodynamic parameters C k ,  - %.l 

-, and These parameters may be  obtained in references 1 to 5 f o r  

the 0' sweep  wing, -:.referencea..l, 2, 6, and 7 for   the 45O sweptback 

wing, and in referenced 8 t o  10 for   the 60' del ta  wing. 

( 

&L' 
&B 

D" &L 

Basic Wings 

Maximum l i f t  coefficient C h x  a t  Mach numbers less than  about 
0.95 increases  with  increase in sweep angle as evidenced st- M = 0.7 by 
values of C b x  of 0.73, 0.86, and 1.04 for  the 00 sweep, 450 sweptback, 

and a0 delta w i n g s ,  respectively,  (fig. 8). This  trend is also ehown 
Fn reference 2. Increase in  Mach  number i n  the lower subsonic  speed 
range  decreases  the  value of C h x  obtainable  for each of the three 
wings, but above about M = 0.85, C b a x  increases  with  increase in 

Mach number, the 0' sweep w i n g  exhibiting a high value of.l.35 a t  M = 1.1. 

The angle of a t t ack   a t  which C h X  was obtained  increased  with 

. .  

i 

increase  in Mach  number for   the 00 sweep  and 60° delta wings. A sharp t 

. 



NACA RM LFI.30 

increase from 

for  the 450 sweptback wing. I 

- 7 

= 23' a t  M = 0.8 t o  34' at M = 0.9 occurred 

Comparfson of the  results  obtained Fn the  present  investigation 
with  those  obtained  for  similar wings in other teat f a c i l i t i e s  (fig. 9) 
shows generally good agreement for  C h .  

Effect of Modifications t o  Basic Wings 

Effect of leading-edge roughness on-the Oo sweep wing . -  Application 
of leading-edge roughness to fix transit ion on the 00 sweep wing had 
negl igible   effect   a t  M = 0.81 on C h x  and on 0% 

LmaX. 

Effect of constant-thickness  flat-plate  airfoil on the aerodynamic 
characteristics of the 450 sweptback wine;.- The 45O sweptback wing with 
constant-thickness  flat-plate airfoil section  exhibfts  in  figure 6 an 
increase of 14 and 18 percent in CL over that  of the  original wing 
(fig. 5) a t  an angle of attack of 8' and Mach numbers  of 0.605 and 0.815, 
reepectlvely. A lesser  increase  occurs at other  angles of attack and 
Mach numbers investigated. Use of the  f lat-plate  airfoil   increased  the 
value of C h X  obtainable  at all Mach numbers.  The angle of a t t ack   a t  

which C b x  was obtained  increased  sli&tly.below M = 0.815, but 
decreased  about 9 to 80 a t  M = 0.910 and 1.084, reBpectively,  over 
that  obtained f o r  the  basic 45O sweptback wing (fig.  8). 

Effect of fuaelage on the 6oo delta wing.- The presence of the fuse- 
lage had slight  effect  on most of the aerodynamic characteristics of the 
600 delta WFng (fig.  7 ) ,  tending to increase CD a generally  constant 
amount a t  l o w  lift coefficients. There was a small decrease i n  C h a X  
obtainable, and little or  no effect  on cy: 

L a x  (f ig .  8 ) .  

Results of tes ts   a t   t ransonic  speeds and hI&  angles of attack of 
a Oo sweep, a 45O sweptback, and a 6oo delta wing 'indicate  that maximrrm 
l l f t  coefficients  obtainable  increased  with  increase in sweep angle and 
decreased  with Mach  number a t   t he  lower subsonic Mach nuuibers. The maxi- 
mum lift coefficient  increased  with  increase in Mach  number above a Mach 
number of  0.95 with less effect  of sweep angle. The angle of attack a t  
which maximum lift coefficient was obtained,  generally Yncreased with 
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Mach number. A thickened  flat-plate a i r f o i l  section used in place of - .  

the  original NACA 65-series  airfoil  sectlon  increased the value of maxi- 
mum lift coefficient  obtainable for the 45' sweptback wing. - " 

Langley -8eronautical.hboratdry 
National  Advisog Committee for Aeronautics, 

Langley Field, Va. 
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45"Sweptbock winp(45-4.0-0.6-CJO6) 

60°Delh wrhg (60" 4-0061 

Figure 1.- Dimensional  characteristics of wlngs as mounted on the 
reflection  plate. 
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Figure 2.- Typical Mach number contours 
Fn region of model 
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ng,(45-4-0.6-006)  
450 wing, (45-4 -U.s-PL.) 

Mach number, M 

Figure 3.- Variation of t e s t  Reynolds number with Mach number f o r  models 
of Oo and 4S0 swept wings and 60° delta wing. 
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60 

0 
0 

0 2 4 .6 .8 40 L2 /.4 
L iff coefficien f, C' 

Figure 4.- Aerodynamic  characteristics of an aspect-ratio 4.0, taper 
ratio 0.6, & swept wing with an NACA 6 5 A 0 6  a i r f o i l  section parallel  
to  free stream with and without trhsition. (Flagged symbols denote 
tests  with roughness.) 

%.. 
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0 .2 
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0 .2 !4 .6 .8 1.0 
Li f t  coefficient ,CL 

Ffgure 4.- Continued. 
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0 .2 tjt -6 . .8 LO 12 L 4  
Lif t  coefficient, C' 

Figure 4.- Concluded. - 
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60 

4 

0 /o  
0 
0 

0 .2 4 .6 a LO L 2  L 4  
Lift  coefficient I C' 

Figure 5.- Aerodynamic characteristics of an aspect ratio 4.0, taper 
ra t io  0.6, 45O sweptback wing with an NACA 65~006 airfoi l   sect ion 
para l le l  t o  f ree  stream. 
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Figure 5.- Continued. 
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Lif t  coeffl'cienf, e' 

Fimre 5.- Concluded. - 
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0 .2 4 .6 .8 1.0 . 1.2 1.4 
L i f f  coefficient, CL 4 

Figure 6.- Aerodynamic characterist5cs of an aspect  ratio 4.0, taper 
ratio 0.6, Eo sweptback wing with a constant-thickness "flat-plate" 
a i r f o i l  section. . .. 
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-4 
0 .2 4 .6 .8 LO 1.2 /.4 

Lift  coefficient, CL 
Figure  6.- Concluded. 
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60 

40 

. 

8 

" 

0 .2 4 .6 .8 10 12 /.4 
L iff coeffhenf, CL 

Figure 7.- Aeroctynamic characterist ics with and without a fuselage, of  
an aspect  ratio 2.31, taper  ratio 0, 600 delta wing with an NACA 65-006 
airfoi l   sect ion  paral le l  t o  f r ee  air stream.  (Flagged symbols denote . 
t e s t s  with  fuselage.) 
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Lift coefficient, CL 

Figure 7 .- Continued. 
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L i f f  coefficient, C' 

Figure 7.- Concluded. 
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Configuration 

P l a i n  wing 

Plaln w i n g  
Plain raing 

Plafn Ring 

""" 

'King lrith roughness 0 
" 

0 

'Ring with Puselage A 

Figure 8.- Variation of aemdyamic characteristics with Plach number . 

V . for Oo and 4s0 sweptback w i n g s  and a 60° delta wing. 
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.8 

4 
2 4 .6 .8 /.o /2 

MOch /7yunber* M 

Figure 9.- Comparisons of the variations of"aerodynamic characteristics 
with Hach number as obtained i n  several t e s t   f a c i l i t i e s .  


