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RESEARCH MEMORANDUM

WALL INTERFERENCE IN WIND TUNNELS WITH SLOTTED AND
POROUS BOUNDARIES AT SUBSONIC SPEEDS

By Barrett S. Baldwin, Jr., John B. Turner,
and Earl D. Knechtel

SUMMARY

Linearized compressible-flow analysis is applied to the study of
wind-tunnel-wall interference for subsonic flow in either two-
dimensional or circular test sections having slotted or porous walls.
Expressions are developed for evaluating blockage and 1ift interference.

INTRODUCTION

In solid-wall wind tunnels the effects of blockage severely limit
model sizes that can be tested at high subsonic speeds; in fact, the
model must become vanishingly small as sonic speed is approached. It
has been demonstrated that if the walls are ventilated (e.g., slotted
or porous) then blockage is reduced and much larger models can be
tested. However, wall-interference effects, although reduced, still
exist and must be evaluated in order to correct the wind-tunnel data to
free-air conditions. s

It is the objective of the present investigation to analyze two of
the principal wall-interference effects, blockage and 1ift interference,
for two- and three-dimensional subsonic flows in ventilated test
sections, where blockage refers to the mean incremental velocity induced
in the vicinity of the model by wall interference and 1lift interference
is the mean upwash so induced. In the three-dimensional case it is
convenient to perform the analysis for a circular test section. The
results obtained for the circular test section may be applied to a square
test section of equal cross-sectional area since the wall interference
at the center of the tunnel should be relatively insensitive to such a
change in the shape of the wall.
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SYMBOLS

factor in Fourier integral transform of o*

gslot width of slotted wall (see fig. 1)

ving span of model wing

constant factor in nonlinear term of boundary equation
Fourier integral transform with respect to x of @

durmy variable of Fourier transform

half tunnel height

modified Bessel function of the first kind and order zero
modified Bessel function of the first kind and order one
modified Bessel function of the second kind and order zero

modified Bessel function of the second kind and order one
slot constant, — 1 In | sin( 22
. b1 21

slot separation of slotted wall (see fig. 1)

1ift on the model

free-gtream Mach number

parameter proportional to size of two-dimensional model, %%
parameter proportional to size of three-dimensional model, %?
coordinate in the direction of the outward normal to the wall
dummy variable of integration

porosity parameter

cylindrical coordinates

free-stream velocity
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u,v,w

uk , Vi, Wk

tn

«

perturbation velocity components in the X, ¥, 2z directions,
respectively

additional velocity components due to the presence of the
walls

additional velocity components having rapid spacewise
variation near the walls

additional velocity components at the position of the model
due to the walls

complex velocity in the y, z plane

complex variablé equal to z + iy (physical plane)
Cartesian coordinates

dummy constant in limiting process

J1-W¥

circulation

complex velocity potential

total perturbation velocity potential, ¢ + o*

approximate perturbation potential due to model in free air
additional perturbation potential due to tunnel wails

additional wall-interference potential arising from non-
linear term in boundary equation

free-stream density

cross-sectional area of two-dimensional model
volume of three-diménsional model

function of X, equal to § + in (transformed plane)

Cartesian coordinates in transformed plane



ANATYSIS

General Statement of the Problem

The effect of the tunnel walls on the flow around a model, in -the
case of ventilated walls, can be calculated using the same basic method
as that used in reference 1 for the closed-wall case. As in reference 1
the analysis is based on the linearized equation of subsonic compressi-
ble flow

32 82¢ ) 3 @ _
"

where @ 1is the perturbation velocity potential of the flow in the
tunnel. '

0 (1)

Iet 9= ¢ + ¢, where ¢ 1is the potential of the flow about the
model in free air and % is the potential of the additional flow due
to the presence of the walls.

If @; 1is taken to be a known solution of equation (1) which
approximates the true free-air potential at points far from the model,
¢% can be calculated from the fact that the sum @, + ¢* satisfies a
known boundary condition at the wall. Since the values of @; at the
wall only are used, any inaccuracy in the value of ®; near the model
should not affect the calculation of ¢* appreciably.

The primary objective in this procedure is to estimate the change
in stream conditions caused by the walls at the position of the model.
It is assumed that the velocity components derived from @%* are con-
stants near the model which can be subtracted from the stream velocity
to obtain the equivalent free air stream velocity. Thus,

. :
Mu = §9— at x=y=2=0
ox
is the blockage correction, and
%
Aw = §i at x:y:z:O
oz

is the upwash correction in the three-dimensional case.
Boundary Conditions

In this section a single expression approximately representing the
boundary conditions of solid, porous, and slotted walls and an open jet

will be developed. ]
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Let x be the coordinate in the direction of the free stream
and n the coordinate in a direction perpendicular to’the x direction.
Consider a wall which is perpendicular to the n direction (i.e.,
parallel to the free stream). If the wall is solid, the condition of
no flow through the wall can be expressed as

39 _

on
In the case of an open jet there is no pressure drop across the jet
boundary so that there is zero perturbation pressure at the boundary.
With a disturbance in the stream this boundary does not remain parallel
to the free stream. However, for convenience, the condition of zero
perturbation pressure is imposed at a surface parallel to the free
stream and coinciding with the jet boundary far upstream of the
disturbance (see ref. 2). Also, for convenience, this surface can be
called an open wall and the boundary condition can be expressed as

®
ox

In reference 3 an average boundary condition for a porous wall is
derived. The average velocity normal to the wall is assumed to be
proportional to the pressure drop through the wall, a linearized
approximation to viscous flow through a porous medium, and the pressure
outside the wall is assumed equal to the free-stream pressure. This
leads to the boundary equation

.@fﬂ.{.}.é(g:
X R on

0] at the wall

at the wall

0 at the wall (2)

The quantity R 1s a porosity parameter defined by

pU 9
Ap Y S% (3)
where
Ap pressure drop through the wall
p stream density
U stream velocity

.The quantity DU/R can be determined experimentally by measuring the
mass flow and pressure drop through a sample of the wall under con-
ditions corresponding to zero stream velocity.

Porous walls to which equations (2) and (3) are applicable will -
henceforth be referred to in this report as ideal porous walls.
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An approximate boundary equation for a slotted wall is derived in
Appendix A. The pressure at the slots is assumed constant and equal to
the free-stream pressure. The resulting uniform boundary condition is

.é? + K 32¢ =0 at the wall (4)
ox oxon

where K 1is related to the slot geometry by

1 ’ na
K=—<1n [Fin <;Z J (5)
Slotted walls to which equation (4) is applicable will henceforth be
referred to in this report as ideal slotted walls.

Solutions for wall interference based on equations (2) and (4) can
be obtained in one calculation by combining them in the form

é? + K —éi? + 1 99 =0
ox oxdn R on

Thus, wall-interference solutions based on equation (6) contain, as
special cases, those of the closed wall (K > » or 1/R=> »), ideal
porous wall (K = 0), ideal slotted wall (1/R = 0), and open jet

(K = 0and 1/R = 0). Furthermore, equation (6) can be assumed to
describe a slotted wall having mixed potential and viscous flows in the
slots. In that case the porosity parameter R can be determined
experimentally, as it is in the case of a porous wall, by measuring the
mass flow for a given pressure drop through a sample of the wall.

everywhere at the wall (6)

If it is found that a nonlinear relationship between pressure drop
and mass flow exists, it may be necessary to add a term of the form
£(X/dn) to equation (6). This case is discussed in Appendix B.

In addition to the foregoing interpretations of equation (6), an

interpretation identifying it with slotted walls with tapered slots
(l and a functions of x) and potential flow in the slots is possible.
This case is discussed in Appendix C where it is found that instead of
representing viscous effects, the parameter R 1is related to the taper
by

1 dK

R_.d-;(l}{:O (7)

where K(x) is the same as in equation (5).
Blockage in a Two-Dimensional-Flow Tunnel

Under the assumption of infinitesimal model size, the blockage cor-
rection will be calculated using equation (6) as the boundary equation.
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Let x be the coordinate in the free-stream direction and y the
coordinate in the direction perpendicular to the walls. Let h be the
half tunnel height so that the walls are at y = -h and at Yy = +h.

In these coordinates equation (1) vecomes

2 2
2@._q)+£.p—o

= 8
32 of (Ba)
and equation (6) becomes
o9 o . 139
> ey tR Yy goon O (8)

The % signs on the second and third terms are required because at
the upper wall, n = +y and at the lower wall, n = -y, n being the
coordinate in the direction of the outward normal to the wall.

If ¢ is replaced by @; + Q*, equations (8a) and (8b) yield

o o | For _ 0

PSEt 5% (9a)
_a_ﬁ’fiKazq)*tla@*> = - a’(pltKachlil.ail> (9b)
ox BxBy R ay y = th ox Bxay R By y = *h

These two equations are sufficient to determine o* when @;, the dis-
turbance due to the model in free air, is known.

As in reference 1, the disturbance due to the model at zero angle
of attack in free air is approximated by a two-dimensional doublet
which can be expressed as

P = % <;—+}i83y—2> (10)

The reasoning behind the choice of the doublet is as follows: The
source-sink distribution representing a nonlifting model contains the
same total sink strength as total source strength, so that the distant
flow field would not resemble that of a single source or sink. The
center of gravity of the source distribution would lie forward on the
model compared to the center of the sink distribution which would be aft.
Hence, there would be a dipole or doublet effect of the model at a
distance. Other higher-order effects would be much less than that of
the doublet at large distances. The constant me is related to the
size of the model with sufficient accuracy for present purposes by
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where T, 1s the area of the model in the xy plane.

(11)

It is convenient to solve equations (9) by the Fourier transform
method. The Fourier transform of @®; 1is defined by the relations

il

G1(g,y) %f 0y (x,y)e 8 ax (122)

o (x,y) = G1(g,y)e 18X ag (12p)

,|\8

- 00

Analogous expressions defining the Fourier transforms of @ are

¢*(g,y) = gif O*(x,y)et8* ax (13a)
P (x,y) =f ¢*(g,y)e 18 gg ‘ (13b)

With the substitution of equation (13b) into (9a) and with an interchange
in the order of differentiation and integration there results

- < [ ]

2 >
f B? -a—% Mg,y)e 8 ag + ay2 ¢¥(g,y)e 18 ag = 0

Performing the indicated x differentiation and collecting the two
terms under the common integral yields

< BZgZG* y2 e—igx dg =0
This integral will be zero if
* .
-RPG + =0 (14a)

Byz

Substituting equations (12b) and (13b) into equation (9b) and

proceeding as before yields
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g 6t a_isz_) ( : 61+16>
<1gG +1gKay R Oy +h- ig G, ¥ 1ig K TRy

(1hb)

th

Equations (1k4a) and (1%0), involving the transforms G, and G¥ of
P, and @*, can now be solved in the place of solving equations (9a) and
(9b). The general solution of equation (1ka) is

= A(g) cosh (Bgy) + B(g) sinh (Bay)

Substituting the second term of this expression into equation (13b)
yields a term of ¢¥ having an odd y dependence. From symmetry
considerations it can be seen that ¢¥* should have even y dependence.
Therefore, B(g) must be zero and, hence,

G* = A(g) cosh (Bey) . (15)

The unknown factor A(g) will be determined by substituting equation (15)
into equation (14b), dbut G; must be known for this purpose.

In order to find G,, equation (10) is substituted into equa-’
tion (12a) and there results .

G (g:Y) = 5y 2nu/ﬂ ;5‘:-§§§§ el8X gy ‘ (16)

From reference 4, it is found that®
. o

i f 1 Jdexg, . 1 _-lelslyl
en J €+ BBy - 2B|y|
1Tn reference 4, G(g) is defined as G(g) = J/‘ F(£)ei2nf8 g, 1n
‘—00

the tables of F(f) versus G(g), F is usually given as a function
of p where p = i2xf. If P(p) is the function of p given in the
table, it follows that F(f) = P(p) = P(i2xf). With the substitution,

o .
x = 2nf, it is found that G(g) = ;L J/’ P(ix)e’*® dx. Thus, G(g) in
T
-00

the tables is the Fourier transform, as defined in equations (12) of
the function of x which results from replacing p by ix_ in P(p).




where the symbol | l denotes absolute value. Differentiating both
sides of this with respect to g ylelds

ix g e-|g|;3[y|

i elg)(d_){:_}-_
wd, T T

so that
6y =21 L et [ElPlY] (17)
« g
Substituting equations (15) and (17) into (14b) yields
A(g) [- 1g cosh (Bgy) ¥ ig K Pg sinh (Bgy) * = Bg sinh (Bgy)} T

me | g[ ool Blyl ( Y_\-lelslyl
~-—i—i—-1ig € Fig K{i—|gip— e +
b gl el v

| i <-|g [ TZ’T) e'lglﬁ‘le .

Making the indicated substitutions (y = th) and solving for A(g) yields
the single complex equation

<i 2 g kp +%>e‘lglﬁh

€]
[cosh (pgh) + KBg sinh (Bgh) + i % sinh (Bgh)

Alg) = —%

(18)

Substituting equations (15) and (18) into equation (13b) yields

- h s
o <1 -Ig_l ~ 1g KB + E>e 1% cosn (pay) eiex
P = - £ R dg

Uzt '
o [cosh (Bgh) + KBg sinh (Bgh) + 1 ﬁ sinh (th)j]
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Upon separation into real and imaginary parts and making use of the fact
that an integral from - to 4o is twice the value of the integral

from O to » if the integrand is an even function and zero if it is an
odd function, this becomes

o* = — 5 % cosh (Bgy) cos (gx) o dg +
o I:COSh (Bgh) + KBg sinh (th):l + [% sinh (th)]
. B 2 2 B z h
Lo (] [ (5
> . 2 2
o {cosh (Bgh) + KBg sinh (th)] + [‘1% sinh (th)]
cosh (Bgy) sin (gx) dg
With the substitution, q = Bgh, this becomes
® cosh <q_y> cos <§>
x__ T |B f h Bh 4
¢ = oxgh |R 4+

B 5
I:COSh (q) + I-r—f g sinh qJ + [% sinh (Q)J

N EEOIEIE DO

[cosh (q) +-E q sinh (q) :l + [g— sinh (q:,

cosh <q1> gin <gx_ )dq (19)
h gh

-
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The integrals. indicated in equation (19) have not been found in
closed form. However, if the derivatives of ®% are desired at a
small number of points for a small number of values of K/h and B/R,
the derivatives can be taken in the integrand and the resulting inte-
grals evaluated numerically or graphically.

The quantity of primary interest is Au, the value of BQ)/BX

evaluated at x = y = 0. Performing the indicated differentiation on
equation (19) and setting x =y = 0, the expression

BN IR D EONE I DN O

L p2h2 A [coshA(q) + E q sinh (q)J 4{:§ sinh q]

qdq

(20)

is obtained for the additional stream velocity at the position of
the model due to the walls.

Solid wall.- Letting K —> @ or 1/R => @ in equation (20) yields

i = 22f dq = — —— (21)
K 2npZh sinh (q) 4 g=h
= > o 0
h
Tdeal porous wall.- At K= 0 equation (20) becomes
- .
a g l:cosh (q) - <ﬁ> sinh q:,
Mu = o — f , R = e dqdg (22)

2npZh® J [cosh (q)J2+ K-g-) sinh (Q)}

Ideal slotted wall.- With 1/R = O we have

ag o

K -
© (i -5 %> e 2qqdq
e
Au = - 2
B = [ > —
- =90 o] 1+ - é>-+(: - = )
R h h
Open jet.- For both K = 0 and 1/R = O
[+ <] .
Mu = - Ze e®l9dq _ _ 1 Do (2k)
np%h® J 1+ e 18 g2y

Tiw 51X
I
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In the general case (eq. 20), the value of Au lies between the
values for the solid wall and the open jet, and Au can be made arbi-
trarily smell by an appropriate choice of K/h and B/R. Figure 2 is &
plot of the values of K/h and B/R at which Au = O. These values
were computed numerically near the ends of the curve and interpolated
in the middle. Equations (21), (22), and (24) are in agreement with
the results of reference 3. Figure 3 is a plot of equation (23), show-
ing the variation of blockage factor with slot parameter for the two-
dimensional-flow, ideal, slotted tunnel.

Since the effect on the blockage correction of letting B approach
zero is the same as letting l/R approach zero, it can be concluded
that as the stream Mach number approaches unity, the blockage correction
factor for an ideal porous wall approaches that of an open jet. - Simi-
larly any effect of viscosity or taper of a slotted wall described by
equation (6) would be suppressed at near sonic speed so that the block-
age correction factor would approach that of an ideal slotted wall.

Blockage in a Circular Tunnel

Again, the blockage due to the wall interference of a very small
model will be calculated using equation (6) as the boundary equation.

Let x Dbe the coordinate in the free-stream direction and r the
cylindrical coordinate perpendicular to the x direction. Let ro be
the tunnel radius so that the wall is at r = r,. Using these coordi-
nates, equation (1) becomes, in the case of rotational invariance,

2 P9, > 25

g % r ar : (25)
and equation (6) becomes

@+K¥£+l@> -0 (26)

ox 3xor R Ar/, - To

Then @ ‘must satisfy the equations

g2 Po¥ +10 <} 20 ) =o0 (27a)
%> r Or or
<% * * be) P 19
9_2+K§.2._cp_+l§2 = - _.ipJ:+K q)l-f.__?& (27b)
S3x 3 R dr/r = 1o ox oxdr R Or -

(See fig. 1.)



Again, from reference 1 the free-air solution is approximated by

¢, =L (28)
b (2 + Pr?)3/2
The constant my is related to the size of the model by
me = U T, (29)

where Ty, 1is the volume of the model. Correction factors which take
into account the shape of the model and the presence of shock waves are
discussed in reference 5.

Substituting, as before, the Fourier integral expressions for o¢*
and ¢, into equations (27) yields

e > (30a)
r or
i G Lk ie OO 1 _ (. ) Gy , 1 3Gy
< ig G K ig e + = or ( ig Gy K ig > + = 2 o ).
I‘=I'o “ro
(30D)

The general solution of the first of equations (30) is
¢* = A(g) Io (Ber) + B(g) Ko (Bgr)

where Io and Ko are the modified Bessel functions of zero order of the
first and second kinds, respectively (see ref. 6). Since Ko (Bgr) has
a singularity at r = O which would lead to a singularity in ¥ at r =
B(g) must be zero and, hence,

¢* = A(g) Io (Ber) (31)
Substituting equation (28) into the Fourier integral expression of

¢, yields

G, = EE iﬂ o 18%

f(xz + ;321-2)3/2 (32)

From reference 4 it is found that

el8% gx = TlT X, (Br|gl)

_1_f 1
wJ o JE + PR
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According to equations (12), the inverse relation

1

1 -1 = _
_fw;Komrlgl) R

follows. Taking the derivative with respect to x of both sides of
this equation yields

(-1g) = Ko (Brlg|)e 8% ag = - x
:[ k1o ()(2 + Bzr2)3/2
From this, according to equations (12),
1 X igx _oe 1
o [ E e ¢ e (erleD
so that
my | -
G1 = ~5 ig K, (prlgl) (33)
7t

Substituting equations (31) and (33) into equation (30b) yields

Alg) [-ig Io (Bery) -ig KBg I (Bero) + % Bg I, (Bgro)J =

- Erg ig [-ig Ko (Brolgl) -1g k(-Ble|) Ky (prolgl) +

% (-8lg]) ki (Brolgl)}
the derivatives of I, and Ko, being found in reference 6. Upon

solving for A(g), substituting the result.into equation (13), and
substituting q for PBryg there results
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2
O gfl}(o(.q)lo(Q) ) ﬁ_z Kl(q)ll(q):lqadq
LnB3ro3 Ty

Au = > =) (37)
K _o. . [IO(Q)} + {EIl(Q)}
i ) R
Ideal slotted wall.- With (1/R)= O we have
L] K 2
, [Ko(q -q—Kl(q)}qdq
Hu = = —k/ﬂ o (38)
8 uﬂﬁ r0 T fo) Io q) + q —_ Il(Q)J
2.0
R
Open jet.- For both (1/R) =0and K =0
m K,(q) 0.63 m
Au - r gfoq 24q = - 2:03 mr (39)
18 _ Lnp3r,® T Io(q) ada. 2n2rosﬁs
R
K _
To

The values of Au in equation (35) lie between the values for the
closed wall and the open Jet Figure 4 is a plot of values of K/ro
versus B/R at which Au = = 0; the shape of the curve was calculated near
the ends and interpolated in the middle. A graph of equation (38) appears
in figure 5 showing the variation of blockage factor with slot parameter
for the cylindrical, ideal slotted tunnel.

Again, letting B €>() has the same effect on the blockage cor-
rection as letting (l/R)€>O, so that near sonic speed the ideal porous
wall should act like an open jet and the slotted wall should act like
an ideal slotted wall.

Lift Interference in a Circular Tunnel

The upwash correction will be calculated using the infinitesimal
model size approximation and the approximate boundary condition of
equation (6).

Let x be the coordinate in the free-stream direction, z the
coordinate in the direction of 1ift on the model, and y the remaining
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Cartesian coordinate. The cylindrical coordinates r and 6 are related

to the Cartesian coordinates by r ==./y2 + 22 and z = r sin 6. It can
be seen from reference 1 that the appropriate free air solution is

q)l _ _P__ sin 6 (lI-O)

b X
un<“/m?/ r .

which is the potential of a horseshoe vortex having infinitesimal span.
The fact that the actual span is finite introduces higher-order terms
which are negligible at distances large compared to the size of the
model. Here I'b 1is related to the 1lift on the model by

L = oUl'p (1)

The Fourier transform with respect to x of @, cannot be found.
An arbitrary parameter o« will be introduced into the potential so that
the Fourier transform of a related function can be found. Let this
function be

o0 _I® (e-aﬂ/xz + 22
17 hx B

-ay/ $ + pEr? > sin @ (ip)
r

so that

Then o will be eliminated from the resﬁlting Q*' by taking the limit
with a at zero.

From reference L4 it is found that the Fourier transform of

oo BT R L, BTk (erife + oug).
W + @

differentiation, and reinversion, as in the derivation of equation (33),

By the use of an inversion,

/ 2.2
it is found that the transform of jl e % ¥+ Br is

ox
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1gaBrK, (Br./g2+ o2)

- so that the transform of @;' is

1) E+a®

Gy = Tbp (wtig) K, (Br/ &2+a2) sin 6 o (13)
4t JE + @

From physical reasoning, it can be seen that the 8in 6 factor
of @, will result in the same angle dependence for %, so that sin 6
will be a factor common to ¢;', ®*' and their Fourier transforms Ci'
and G*'. With cylindrical coordinates, equation (1) is

g2 éfg )
dx2 T Br

In the case of 8in 6 dependence, this becomes

0,13 (L) 1 5.9
%> r dr ar. r

and the boundary condition remains the same as in equation (26). Sub-.
stituting the Fourier integral expressions for @;' and o*' in these
equations, as before, yields

e22c* .19 .. 1 %' Z o ,
&G +;§;<r Br) -5 (Lha)
(-igG*'- Kig il +1 BG* <-1gG1'-Kig Gy 4 1 5G1'>
oar R Br r=r, dr R dr /p,
0

(4lv)

The solution of equation (44a) which has no singularity at r = 0 is

¢*' = A(g) I,(pre) sin 0 (45)
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Ideal porous wall.- At K = O equation (48) becomes

e _ oM | % 1 f [Ki(a)Ig(a) + Kg(q)Il(q) ] ¢®aq (49)
> -
X hnrg R T +(\g> [1:(q) - aTo(a))”
re

Ideal slotted wall.- When l/R is set equal to zero in equa-
tion (48), a limiting process is required to obtain the correct result
at (B/R) = 0. The result of this process is

= -1
I'v To
Lo = 5 (50)
B_, b K 13
R™ To

Open jet.- Letting K = O in equation (50) yields

Aw ___Ib

[}

CRES

The value of Aw in the generél case of equation (48) lies between
the values for the closed wall and the open jet.

CONCLUDING REMARKS

A method of evaluating wall interference of partly open walls involv-
ing mixed potential and viscous flows has been presented. Expressions for
blockage and 1lift interference for both slotted and porous walls have been
derived. OSome new details of the method may prove useful in other theo-
retical treatments of this type of problem.

The results of the analysis indicate that near sonic speed, the
blockage correction for an ideal porous wall approaches that of an open
jet. .Similarly, any linear viscous or taper effect of a slotted wall is
suppressed near sonic speed, so that the blockage correction approaches
that of an ideal slotted wall.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., May 29, 1953



APPENDIX A
DERIVATION OF THE BOUNDARY EQUATION

In this appendix an approximate smoothed or average boundary equa-
tion for a slotted wall will be derived.

An ideal slotted wall has zero perturbation pressure at the slots
and zero normal flow at the strips. These conditions can be expressed
as .

29 =0 at the slots
X
(A1)
o9
dn

0 at the strips

When the slot spacing and model dimensions are small compared to
tunnel dimensions, the perturbation flow can be separated into a rapidly
~varying and a relatively uniform part so that the two parts can be
investigated separately. It will be shown that the effect of the rapidly
varying part can be replaced by a condition on the relatively uniform
part.

field and 9, u, v, and the remaining part of the perturbation flow.

ILet a% 3, 3, and ; represent the rapidly varying part of the flow
w
For a plane wall at z = h equations (Al) require that

T +u=0 at the slots

£?

+w =20 at the strips

In addition

~ ~ i
u=vs=w

0 far from the wall (a3)

In order to solve for 5, use can be made of the fact that wu, v,
and w are nearly constant at the wall compared to U, ¥, and W, 80
that u and w can be considered constant in equations (A2).

Since the slots lie along the x direction, U is nearly constant
in-the x direction, so that oU/dx can be neglected compared to

OV/dy and dw/dz. As in slender airplane theory, this leads to a two-
dimensional crossflow for which ‘
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~o 2’\!
Fo |, Fo_, (AL)
oY= dz®

Then @ can be of the form Q(x) f(y,z) where Q(x) is a slowly
varying function of x, and f(y,z) satisfies the two-dimensional
Laplace equation. Then,

U = 5_q>=§9_ f(y,z)

T ox

and since 1 is equal to -u, a constant, at the slots, f(y,z) must be
constant at the slots or

v =.g£ =Q gﬁ =0 at the slots
ay oy

This equation can be used to replace the first of eguations (AE),
and altogether there results

v =0  at the slots
W = -w = constant at the strips (A5)
$ =V =w=0 far from the wall

" assuming that 0Q/dx is not absolutely zero.

Equations (Al4) and (A5) can be solved using the conformal trans-
formation technique.

Let the wall at z = h be slotted periodically from y = - to
Y = +w with the center of a slot at y = 0. Let a be the slot width
and 1 the slot separation (see fig. 1). It is sufficient to consider
only one period of the periodic flow configuration so that solid bounda-
ries can be placed at y = i(l/2) and attention confined to the region
between them.

Iet X =z + iy Dbe the complex physical plane and & = § + in the
transformed plane. Let ¢ be the complex velocity potential such that
W=%- iV, the complex velocity, is equal to d¢/dX, and ® = real part 0.
Then equation (A4) is satisfied if ® is any analytic function of X.
The boundary conditions (AS5) are satisfied by finding the analytic func-
tion §(X) which transforms the boundaries in the X plane into a con-
figuration for which the flow field with the desired flow at the bound-

aries can be found. |-‘|| Il |
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In the X plane the region under consideration is from 2z = ~-w
to z=h and from y = -(1/2) to y = +(1/2). The slot lies on the
line X =h + iy from y = - (a/2) to +(a/2).- (See fig. 6.) The
. two half strips lie on the same line from y = -(1/2) to y = -(a/2)

and from y = (a/2) to y = (1/2). The remainder of the solid boundary
lies along the line X =z — 1(1/2) from z = -» to z =h and along
the line X =z + i(1/2) from z = -w to z = h,

The transformation which will place the origin at the wall, and the
domain under consideration in the right half-plane is

E; =h - X (A6)

The effect of the transformation on the positions of the boundaries is
obtained by substituting the equations representing the boundaries into
equation (A6). Thus, the line X = h + iy becomes &; =) + iny = -iy
in the £; plane and the slot lies on this line from 1, = -(a/2) to

T = + (a/2). The two half strips lie on the same line from n; = -(1/2)
to -(a/2) and from a/2 to 1/2. Similarly, the remainder of the solid
boundary in the &, plane lies on the line &; =h - z - i(1/2) from

£; =0to §; == and on the line £; =h - z + i(1/2) from &, =0

to £, = .

To satisfy the boundary condition at the strip, a term wg, = w(h-X)
is added to the potential in the transformed plane.

The remaining boundary-value problem is solved with the aid of two
further transformations.

The transformation
£ = sinh <’§ el> (a7)

_transforms the region under consideration in the £, plane to the entire
right half of the ¢, plane, as can be seen by following the procedure
outlined for the first transformation. It is found that in the ¢,
plane, the slot lies along the imaginary axis from -i sin (na/21) to
+1 sin (na/21) and the solid boundary including the two half strips lies
along the imaginary axis outside of i sin (na/EZ).

The transformation

E = o +AA; + sin® <%%> (A8)
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transforms the region under consideration to the positive real half of
the - & plane, excluding the circle of radius sin (ﬁa/QZ) centered at
the origin. The slot lies along the half of this circle in the right
half plane, and the complete solid boundary lies along the imaginary
axis outside the circle. Thus, a source at the origin in the § plane
will satisfy the condition of no flow through the solid boundary and no
flow across the slot. Hence,the desired potential is

® = Aln (&) + wt, . (A9)

Substituting equations (A6), (A7), and (A8) in (A9) yields

® = Aln {sinh [% (h-'X)} + ,/sinhz [i‘i (h-X) J +.sin2 (g%‘)} + w(h-X)

=0

The constant A is evaluated by the last of equationé (A5), @
: . x-é_m

being the equivalent of that equation.

As X —=> -o, the potential simplifies to

o T Aln {2 sinh [1{- (h-X):l } + w (h-X)

X => -

e

* %- (h-X)} + w(h-X)

Aln {e

~

= A ’% (h-X) + w (h-X)

The neglected terms are of order smaller than 1/h-X. Thus, ® will be
zero at infinity if A = -(1/x)w so that

® = - w ;l In {sinh [’—Z‘- (h-X)jl + »Ainhz [% (h-X)} +sin® (—g%)} R w(h-X)

(A10)

- - w‘f In {sinh {’-{ (h-z)J + »\/sinhg [’% (h-z)] + sin2<g—%>} + w(h-z)



It was assumed that the velocity potential is constant over the slot.
The value of this constant is

1 . na
) = —w <1 ra =
-wn n|:31n 21):,

y=0
z=h

\N

o9 _ éﬂ {%-l in fsin ra —]}

ox ox L v L 21) |
Substituting this in the first of equations (A2) yieids

u + {— l In |[sin ne B_W =0 at the slot
T 21 ox

Since it was assumed that u and w do not vary appreciably from
slot to strip, this equation applies everywhere at the wall and yields

at the slot

82

and

4 at the slot

2 .
ég.)+K..a_ip=O
ox oxon
at the wall (A11)

for a plane wall.

In considering a curved cylindrical wall, it appears that the above
results are not altered appreciably if the radius of curvature of the
wall is everywhere large compared to the slot spacing.2 Hence, it can be
assumed that equations (All) are applicable to any slotted wall.

2For a circular cylindrical slotted wall, solution of the boundary value
problem

3P

—_ =0 at slots
06

99 -W at strips
or

’ =0 " atr=0
ylelds a value for K identical with that obtained from equation (All).

.




In an attempt to take viscous effects in the slots into account, it
can be assumed that as in the case of the "ideal" porous wall there is a
pressure drop through the wall which is proportional to the normal
velocity at the wall. In that case the first of equations (A2) is
replaced by (u + u) +(1/R)w = O at the slots which leads to
o9 Fo . 100_,

- + =T

=% = everywhere at the wall Al2
x " 5% Rom o (812)

where K remains the same as in equation (A11) and R is to be deter-
mined experimentally. -

Equation (AlO) can be used to calculate the neglected variations
in flow quantities near the wall and also at the model if the variations
are not negligible there.

DISCUSSION OF A CRITICAL ASSUMPTION IN THE DERIVATION
OF THE BOUNDARY EQUATION

It is assumed that the perturbation pressure at the wall is pro-
portional to u + u. This is a good approximation only if

(v+9)2 + (w+w2<K2 (u+ru) U

in addition to the usual requirements for linearization. This addi-
tional requirement can be reasonably relaxed to

(w + ¥)2 2w at the wall (A13)

Equation (A10) indicates singularities in W at the edges of the
slots. Experience with wing leading edges indicates that this dis-
crepancy can be reasonably ignored. However, equation (A13) should at
least be satisfied at the center of the slots. The effect of this
condition on u and v will now be determined. Differentiating
equation (A10) yields

" | cosh [3‘1- (h-X)J

/;'_nhz I:% (h-X)} + 8in® <’f

)

2l
o~
N’
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Then
ny
c —
| os 1 | N
W =W - =W
2=k d/—sin? 18 ) - sin® (LY 2=
21 1
and
(v + W) = ¥
z=h gin <#§
y = 21
so that equation (Al3) becomes
sin® (}15%)
21
or B
v« 2 sin® <-’-@‘-> Uu at the wall (A1k)
21 ,

This result places a lower limit on the ratio of open to total area
(a/1) for which the results of this analysis can be expected to apply
to slotted sections.
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APPENDIX B
BLOCKAGE IN A CIRCULAR TUNNEL WITH
NONLINEAR VISCOUS EFFECT
If, in the experimental determination of the porosity parameter R,

it is found that an additional term of the form f (39/dn) is needed in
the boundary equation, the result is

dp , (P 139 . a—°p>=o at the wall (B1)
ox dxon R on - on

or

QP | PO 130* aspl_Ka%l_%%ﬁ_f 3P , 3P*
n

> 3 on (82)

ox dxon Ron  ox . Oxdn

This tybe of equation cannot be solved exactly by any presently known
method because of the nonlinearity. However, the equation becomes linear
if the ©* in the nonlinear term is neglected under the assumption that

£ 0% + op* - F Joli2) << t é?i at the wall (B3)
on on -\ dn ~\ on

Hence, the equation

AP* (P 13P*_ % _x F0

ox ' oxdn R On ox oxon

P _ ¢ <L§1> at the wall
n

19
R on
(BY)

will be discussed.

The transforms G¥* and G, of @% and ¢; remain the same as before,
with the exception that the factor A(g) must be evaluated from the
transform of equation (B4). For this purpose, the transform of
f(3P, /Or) is needed and can be found by evaluating

e
1 1
= = r (2L
Gt 2% 52)
- o

>

el8X gx (B5)
I'=I'o
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The transform of equation (B4) is found to be

Alg) [- igl, (Bgry) - igKpgI: + -1% BgI ]=

- X i <“igKo +ig Blg KK, — L B|g|K1> - Gf
hx® R

Upon solving for A(g) and substituting in the inverse transform
expression for @* equation (34) is obtained plus the additional term

5% = - 1 GrIo(Brg)e 18%ag
1
— @ g Bgli(Brog) - ig [Io(ﬁrog) + KBgll(Brog)

With the substitution q = Brog this becomes

P -
5(p* = -f 1 Gfe BrO I <-g‘£> 51_(1 (B6)
Y w § I(q)-1 [Io(q) + -f—o qu(q)} °\ro/ 4

<

As an example of the use of equationv(B6) let

()% &) w0

This function is chosen rather than one proportional to (39/on)Z
because the pressure drop should be an odd function of the normal
velocity.

Hence,

3 (- -]
m 3 3
Gr = S e\ 2 1 igx
f <lmﬂ/ (38°rg) o e dx

e 15/2
i

From reference 4 it is found that



1 1 gex g, _lel” Xr (Prolel)

e (4 BZrOz)lS/e Ju T ( E) (Efiro)7
Differentiating three times with respect to g yields
1 -1x° igx 1
L[ e - = 2 ok brolel)
T J + B°ro ﬁ r _155_ (2Bro) ag
so that

Ge = ) K, (Brolgl)
lmasroa I <15> 27 o 3 gg le|” X7 (Bro

or :

e G5 gy st s

Substituting this in equation (B6) and separating real and
imaginary parts yields

33

80% = p%S (__3_5"‘1‘ )3-
T \UnB g 26,/-; P<15>

(
- [I (a) + = qu( )} B:o FPE [ 7K7(q):| co8 <B_> <r0>
" -

[ % Il(q)]z 4+ [IO(Q) t qu(q)]

(B9)

——

R

Bf I:(q) E;—"-gf- [q" K7 (q)}sm <Br) °Q‘o

—o [%Il (q):|2+[l (q)+£qI1 (Q)_|

s
()
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Upon differentiation with respect to x and setting x=r=0, there
results )

3

3 ®  Ii(d) 33 [q K-,(q)J dq
_ g2 S (B L da
R < 3) R[{

B 1,(q) ] [Io(q + ;; Il(Q)J

From reference 6 it is found that

s * . L
d—a [q—’K?(Q)} = (1152 + 168¢® - 59%)g®K;(q) + (576 + 120 - q*)q®Ko(q)
dq '

and
32 __1 2
28 [x ¢ <_12_5> 5005
so that
shu = - oy >SBa_c_ B_1 2 f(llse + 168¢2-5q%)g Il(q)Kl(q) ag
UnB®ro UZ R 5005 x

A [% Il(Q):I + [Io(q) + r— I;(q ]

[e]

(576 + 1292 - %) ¢°1,(a)K (q)

[ Il(Q)} [Io(q) + -r% I, (q’)]e

dq .(BlO)

Setting K/rO equal to zero in (B10) and recombining it with
equation (37) yields
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Since the factor 7,./4nrg® is very small, the nonlinear contribu-
tion to the blockage correction should be negligible at subsonic speeds
where f 1is not small. But as contrasted to the linear viscous effect
which becomes small as M approaches 1, this nonlinear viscous effect.
may become large.
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APPENDIX C
DERIVATION OF THE BOUNDARY EQUATION
FOR A TAPERED SLOTTED WALL
In this appendix an approximate smoothed boundary equation for a
slotted wall with tapered slots will be derived.
The development in this case is identical with that in Appendix A
up to the point where it is found that ’ .

6 =w{ — L in [sin 1a ] at the slots

or

$ =wk at the slot : (c1)

When the slots are tapered, the slot parameter K is a slowly
varying function of x which can be expanded in a power series about
x = 0' so that neglecting the higher order terms

K(x) = K + & x
: x=0 dx x=0
Then
P=K w + 3K xw at the slots

x=0 E|lx-o0 |

and
q = 99 _ K ow + 4K w+ & | v x at the slot
x x=00x d&lx =0 dx |y = o Ox

Assuming that the last term will be negligible compared to the others,
we have

w at the slots (c2)




NACA RM AS3E29 ., “ o 37

Substituting this equation in equation (A2) of Appendix A yields

u + K o + aK
x=08x dx

w=20 at the slots
x =0 :

Then, as in Appendix A, since u and w do not vary appreciably from
slot to strip '

P, x e, & 3% _ 5 everywhere at the wall
ox x=09x0n dxl yx = o oOn
Y (c3)
K(x) = —.Eéfl n [sin %%%%%}
py

Hence, the parameter 1/R in equation (6) of the text can be interpreted
as the quantity dK/dxl % = 0 which is related to the taper of the slots

in a slotted wall having purely potential flow in the slots.
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(a) Two-dimensional-flow slotted test section.

(b) Circular slotted ftest seérion.

Figure /.- Cross-sectional diagrams of the two slotted test sections in -
a plane perpendicular to the free stream.
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Figure 2.- Simultaneous values of slot parameter and porosity
parameter for zero blockage- in a two-dimensional-flow tunnel.
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Figure 3~ Blockage factor as a function of slot parometer in a_'
two-dimensional/—-flow, ideal, sl/otted tunnel.
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Figure 4.- Simultoneous values of slot parameter and porosity
parameter for zero blockage in a circular cylindrical tunnel.

7.0
60

g 50 \\

% 4.0 \\ ’

A 3.0 AN

g <

Y 2o N

N

1.0 ' AN

L N

Figure 5.- Blockage foctor as a function of slot parameter in
o circular cylindrical, ideal, s/otted tumnel.




. - o 15

iy solid wall

¢

1'7/

7
QO M
o O ©

© A\\\Sg\:m K iw

Transformed plane,¢,

’. 7)2 l?

n |
27

Transformed p/ane,:’z Transformed plane , ¢

6
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