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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

WAIL INTERFERENCE IN WIND TUNNELS WITH SLOTTED AND 

POROUS BOUNDARIES AT SUBSONIC SPEEDS 

By Barrett S. Baldwin, Jr., John B. Turner,
and Earl D. Knechtel 

SUMMARY 

Linearized compressible-flow analysis is applied to the study of 
wind-tunnel-wall interference for subsonic flow in either two-
dimensional or circular test sections having slotted or porous walls. 
Expressions are developed for evaluating blockage and lift interference. 

INTRODUCTION 

In solid-wall wind tunnels the effects of blockage severely limit 
model sizes that can be tested at high subsonic . speeds; in fact, the 
model must become vanishingly small as sonic speed is approached. It 
has been demonstrated that if the walls are ventilated (e.g., slotted 
or porous) then blockage is reduced and much larger models can be 
tested. However, wall-interference effects, although reduced, still 
exist and must be evaluated in order to correct the wind-tunnel data to 
free-air conditions. 

It is the objective of the present investigation to analyze two of 
the principal wall-interference effects, blockage and lift interference, 
for two- and three-dimensional subsonic flows in ventilated test 
sections, where blockage refers to the mean incremental velocity induced 
in the vicinity of the model by wall interference and lift interference 
is the mean upwash so induced. In the three-dimensional case it is 
convenient to perform the analysis for a circular test section. The 
results obtained for the circular test section may be applied to a square 
test section of equal cross-sectional area since the wall interference 
at the center of the tunnel should be relatively insensitive to such a 
change in the shape of the wall.
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SYMBOLS 

A factor in Fourier integral transform of	 cp 

a Blot width of slotted wall (see fig. 1) 

b wing span of model wing 

c constant factor in nonlinear term of boundary equation 

G Fourier integral transform with respect to	 x of 'p 

g dummy variable of Fourier transform 

h half tunnel height 

10 modified Bessel function of the first kind and order zero 

I modified Bessel function of the first kind and order one 

K0 modified Bessel function of the second kind and order zero 

K1 modified Bessel function of the second kind and order one

K	 slot constant, - - in [sin() ] 

2	 slot separation of slotted wall (see fig. 1) 

L	 lift on the model 

M	 free-stream Mach number

Te me	 parameter proportional to size of two-dimensional model, 

Mr	 parameter proportional to size of three-dimensional model, 

n	 coordinate in the direction of the outward normal to the wall 

dummy variable of integration 

B	 porosity parameter 

r,e,x	 cylindrical coordinates 

U	 free-stream velocity 
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u,v,w	 perturbation velocity components in the x, y, z directions, 
respectively 

u*,v*,w*	 additional velocity components due to the presence of the 
walls 

U,V,W	 additional velocity components having rapid spacewise 
variation near the walls 

additional velocity components at the position of the model 
due to the walls 

W	 complex velocity in the y, z plane 

X	 complex variable equal to z + iy (physical plane) 

x,y,z	 Cartesian coordinates 

M	 dummy constant in limiting process 

P	 /,--- ^ 

. 

i 
r	 circulation 

complex velocity potential 

total perturbation velocity potential, cp + cp* 

Pi	 approximate perturbation potential due to model in free air 

additional perturbation potential due to tunnel walls 

additional wall-interference potential arising from non-
linear term in boundary equation 

P	 free-stream density 

Te	 cross-sectional area of two-dimensional model 

Tr	 volume of three-dimensional model 

function of X, equal to	 + i n (transformed plane) 

t.'Tl	 Cartesian coordinates in transformed plane
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ANALYSIS 

General Statement of the Problem 

The effect of the tunnel walls on the flow around a model, in'-the 
case of ventilated walls, can be calculated using the same basic method 
as that used in reference 1 for the closed-wall case. As in reference 1 
the analysis is based on the linearized equation of subsonic compressi-
ble flow

2	 2p2cp	
(1) 

where q' is the perturbation velocity potential of the flow in the 
tunnel. 

Let p= q 3 + cp*, where (p1 is the potential of the flow about the 
model in free air and cp* is the potential of the additional flow due 
to the presence of the walls. 

If (p is taken to be a known solution of equation (1) which 
approximates the true free-air potential at points far from the model, 

can be calculated from the fact that the sum (p 1 +(P* satisfies a 
known boundary condition at the wall. Since the values of at the 
wall only are used, any inaccuracy in the value of (p 1 near the model 
should not affect the calculation of (p* appreciably. 

The primary objective in this procedure is to estimate the change 
in stream conditions caused by the walls at the position of the model. 
It is assumed that the velocity components derived from (p* are con-
stants near the model which can be subtracted-from the stream velocity 
to obtain the equivalent free air stream velocity. Thus, 

	

eu =	 at x=y=z=O 

is the blockage correction, and 

(p* 

	

=	 at x=y=z=O 

is the upwash correction in the three-dimensional case. 

Boundary Conditions 

In this section a single expression approximately representing the 
boundary conditions of solid, porous, and slotted walls and an open jet 
will be developed.
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Let x be the coordinate in the direction of the free stream 
and n the coordinate in a direction perpendicular tothe x direction. 
Consider a wall which is perpendicular to the n direction (i.e., 
parallel to the free stream). If the wall is solid, the condition of 
no flow through the wall can be expressed as 

at the wan 

In the case of an open jet there is no pressure drop across the jet 
boundary so that there is zero perturbation pressure at the boundary. 
With a disturbance in the stream this boundary does not remain parallel 
to the free stream. However, for convenience, the condition of zero 
perturbation pressure is imposed at a surface parallel to the free 
stream and coinciding with the jet boundary far upstream of the 
disturbance (see ref. 2). Also, for convenience, this surface can be 
called an open wall and the boundary condition can be expressed as 

at the wall 

In reference 3 an average boundary condition for a porous wall is 
derived. The average velocity normal to the wall is assumed to be 
proportional to the pressure drop through the wall, a linearized 
approximation to viscous flow through a porous medium, and the pressure 
outside the wall is assumed equal to the free-stream pressure. This 
leads to the boundary equation 

+	 = 0	 at the wall	 (2) 
x Rn 

The quantity R is a porosity parameter defined by 

Lp	
H
	 (3) 

where 

AP	 pressure drop through the wall 

P	 stream density 

U	 stream velocity 

The quantity PU/H can be determined experimentally by measuring the 
mass flow and pressure drop through a sample of the wall under con-
ditions corresponding to zero stream velocity. 

Porous walls to which equations (2) and (3) are applicable will 
henceforth be referred to in this report as ideal porous walls.
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An approximate boundary equation for a slotted wall is derived in 
Appendix A. The pressure at the slots is assumed constant and equal to 
the free-stream pressure. The resulting uniform boundary condition is 

P+K ? =o	 at the wall	 (4) 
xn 

where K is related to the slot geometry by 

K = _ iri [sin (.)]
	

(5) 

Slotted walls to which equation (4) is applicable will henceforth be 
referred.to in this report as ideal slotted walls. 

Solutions for wall interference based on equations (2) and (Ii.) can 
be obtained in one calculation by combining them in the form 

+ K	 +	 = 0	 everywhere at the wall	 (6) 
xn R 6n 

Thus, wall-interference solutions based on equation (6) contain, as 
special cases, those of the closed wall (K 8 	 or l/R- u), ideal 
porous wall (K = 0), ideal slotted wall (l/R = 0), and open jet 
(K = 0 and l/R = 0). Furthermore, equation (6) can be assumed to 
describe a slotted wall having mixed potential and viscous flows in the 
slots. In that case the porosity parameter R can be determined 
experimentally, as it is in the case of a porous wall, by measuring the 
mass flow for a given pressure drop through a sample of the wall. 

If it is found that a nonlinear relationship between pressure drop 
and mass flow exists, it may be necessary to add a term of the form 
f(P/n) to equation (6). This case is discussed in Appendix B. 

In addition to the foregoing interpretations of equation (6, an 
interpretation identifying it with slotted walls with tapered slots 
(Z and a functions of x) and potential flow in the slots is possible. 
This case is discussed in Appendix C where it is found that instead of 
representing viscous effects, the parameter R is related to the taper 
by

1 d

x=0	
CT 

where K(x) is the same as in equation (5). 

Blockage in a Two-Dimensional-Flow Tunnel 

Under the assumption of infinitesimal model size, the blockage cor-
rection will be calculated using equation (6) as the boundary equation.
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Let x be the coordinate in the free-stream direction and y the 
coordinate in the direction perpendicular to the walls. Let h be the 
half tunnel height so that the walls are at y = -h and at y = +h. 
In these coordinates equation (1) becomes 

2m	 rn 2	 2 

	

O'VOY	
(8a) x2 6Y2 

and equation (6) becomes 

(T+ - 
x	 Xy R 6y Jyr±h 

The ± signs on the second and third terms are required because at 
the upper wall, n = +y and at the lower wall, n = -y, n being the 
coordinate in the direction of the outward normal to the wall. 

	

If (P is replaced by Tj 
+	

equations (8a) and (8b) yield 

2 62T* + 	
= 0	 (9a) x2	 y2

l+K1+l1	 (9b) 
x __y R y )	

= 
= ±h	 -	 xy -	 i)y = ±h 

These two equations are sufficient to determine T when (Pa, the dis-
turbance due to the model in free air, is known. 

As in reference 1, the disturbance due to the model at zero angle 
of attack in free air is approximated by a two-dimensional doublet 
which can be expressed as

X 
P1 = - I\x2 + 2,2)	 (10) 

2it  

The reasoning behind the choice of the doublet is as follows: The 
source-sink distribution representing a nonlifting model contains the 
same total sink strength as total source strength, so that the distant 
flow field would not resemble that of a single source or sink. The 
center of gravity of the source distribution would lie forward onthe 
model compared to the center of the sink distribution which would be aft. 
Hence, there would be a dipole or doublet effect of the model at a 
distance. Other higher-order effects would be much less than that of 
the doublet at large distances. The constant me is related to the 
size of the model with sufficient accuracy for present purposes by
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TeU 
Die (ii) 

where Te is the area of the model in the xy plane. 

It is convenient to solve equations (9) by the Fourier transform 
method. The Fourier transform of P, is defined by the relations 

G1(g,y) = f P1 (x,y)e1 dx	 (12a) 

Co 

q(x,y) = f G1 (g,y)e	 dg	 (12b) 
CO 

Analogous expressions defining the Fourier transforms of e are 

Co 

*1 
G g,y) =r cp*(xy) e igx dx	 (13a) 

211J 
-Co 

Co 

* 
P 

	

( x, Y) =f
G *(g,y)e_igx dg	 (13b) 

00 

With the substitution of equation (13b) into (9a) and with an interchange 
in the order of differentiation and integration there results 

Co 

*	 *	 -igx 

f 2 - G (g,y)e 3 dg +
	

G (g,y)e	 dg = 

-00 

Performing the indicated x differentiation and collecting the two 
terms under the common integral yields 

f (_* +	 ) -igx dg = o 
OD 

This integral will be zero if 

-	 y2=°	 (ilfa) 

Substituting equations (12b) and (13b) into equation (9b) and 
proceeding as before yields
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(	 * igG	 igK	 _(_1gGi	 + igK_) 1 -—	 - 
oy	 R CY

(1li.b) 

Equations (i ll-a) and (1 1th), involving the transforms G1 and G* of 
P i and Cp, can now be solved in the place of solving equations (9a) and 
(9b). The general solution of equation (14a) is 

= A(g) cosh (3gy) + B(g) sinh (gy) 

Substituting the second term of this expression into equation (13b) 
yields a term of p having an odd y dependence. From symmetry 
considerations it can be seen that qY3' should have even y dependence. 
Therefore, B(g) must be zero and, hence, 

	

G* = A(g) cosh (j3gy)	 (15) 

The unknown factor A(g) will be determined by substituting equation (15) 
into equation (ill-b), but G 1 must be known for this purpose. 

In order to find G1 , equation (10) is substituted into equa-



tion (12a) and there results
1 f _X - G1 (g,y) = 	 - (16) 21t 21r 

-00 

X2-+ P2Y2 

From reference Ii. , It is found that 

..!. r	 i	 ei	 e- 
21t J x2 +	 -	 231y 

'In reference 4. G(g) is defined as G(g) = f F(f)e i2A fg df. In 

the tables of F(f) versus G(g), F is usually given as a function 
of p where p = i2icf. If P(p) is the function of p given in the 
table, it follows that F(f) = P(p) = P(l2icf). With the substitution, 

x = 2icf, it is found that G(g)	 -- I P(ix)e'xg dx. Thus, G(g) in 
2itJ 

the tables is the Fourier transform, as defined in equations (12) of 
the function of x which results from replacing p by ix . in P(p).
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where the symbol I I denotes absolute value. Differentiating both 
sides of this with respect to g yields 

x +f32y2 e1gxdx_!.Le_IIf3YJ 
-	 2g 

so that

= me .	
e 

g	 -gJIyl	 (17) - -  
JI 

Substituting equations (15) and (17) into (hi-b) yields 

A(g)- Ig cosh (gy)	 ig K g sinh (gy) ±	 g sinh (gy) 1	1= 
Jy=±h 

— –ige	 +gKi 
me 1 g 

E	
-Igi lI -. 	 (- Ig I p

iJ 
)e' I ± 

Igi 

—1 (—IgIO Y ) e-19101yi] y = ±h 

Making the indicated substitutions (y = ±h) and solving for A(g) yields 
the single complex equation 

A(g) = - -

[cosh (3gh) + K3g sinh (3gh) + i	 sinh (3h)]

(18) 

Substituting equations (15) and (18) into equation ( 13b ) yields 

00	 9\ _gt3h 

= -
- ig K + - )e	 cosh (gy) -'Ox 

Me	
Tg

R/
dg 

-Co [cosh (gh) + Kg sinh (gh) + I sith (gh)]



r 
q * = me( 

2itI B 
[.0

cosh (gy) cos (gx) 
2	 1	 sinh (3gh) cosh (gh) + Kg sinli (h)	

+ 
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Upon separation into real and imaginary parts and making use of the fact 
that an integral from - to -- is twice the value of the integral 
from 0 to w if the integrand is an even function and zero if it is an 
odd function, this becomes 

2	 2 { r

	

I e (Kg) 2 + [(1 - Keg) +( 	
- 

2	 2 2	
[cosh (gh) + Kg sinh (h)] +	 sink (gh)]	

J [R 

cosh (gy) sin (gx) dg 

With the substitution, q = 3gh, this becomes 

*	 [	
cosh cos 

_ me	 (2)\%13h) I  	 2	 2 dq+ = - 2h	
° [cost (q) + q sin q ] + I sinhi (q)] 

([i	
q)2 ()2] 

+ 
[ (

1 - q)2 ()2] e2Q 

2	
[cosh (q) + K q sinh (q) 

I 2 + [ sixth (q)]2 

(qy\	
(19) cosh (—Isin(—M)dq 

\hJ

iT
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The integrals indicated in equation (19) have not been found in 
closed form. However, if the derivatives of P* are desired at a 
small number of points for a small number of values of K/h and 13/R, 
the derivatives can be taken in the integrand and the resulting inte-
grals evaluated numerically or graphically. 

The quantity of primary interest is Lt, the value of 
evaluated at x = y = 0. Performing the indicated differentiation on 
equation (19) and setting x = y = 0, the expression 

2	 2 

AU
me	

[l(q) ][ 

[cosh (q) + q
L

qj)2 + 

\,R) I 
+[ sinh q 2
	 kdq 

[R

(20) 

is obtained for the additional stream velocity at the position of 
the model ue to the walls. 

Solid wall.- Letting 

LU	 = 

K Ti —>

K —> co or 1/R —> co in equation (20) yields 

me	 P eq	 it me 

232h2J	 (q) dq = -24 2h2	
(21) 

0 

Ideal porous wall.- At K 0 equation (20) becomes 

00	
P 

me	
[cosh (q) - ()2
	

1	 eqdq (22) LUI	 = 
K	 - 2Tc2h2	

2 

= 0	 o I cosh (q)
 

I+ 
[(i) sinla (q)12 

Ideal slotted wall.- With hR = 0 we have 

(1 - q) e2qdq 
me _________________ 

= 0 = - 
2h2 1 Au	 (23) 

IR	
0	 e-2" 

Open jet.- For both K = 0 and 1/B = 0 

= - me	 f1 
2q q = - IC me	

(21-) 
K	 32h2 J 1 + e2q	 4b ç3h2 

0 

B
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In the general case (eq. 20), the value of Au lies between the 
values for the solid wall and the open jet, and Au can be made arbi-
trarily small by an appropriate choice of K/h and /R. Figure 2 is a 
plot of the values of K/h and 3/R at which Au = 0. These values 
were computed numerically near the ends of the curve and interpolated 
in the middle. Equations (21), (22), and (2 1 ) are in agreement with 
the results of reference 3. Figure 3 is a plot of equation (23), show-
ing the variation of blockage factor with slot parameter for the two-
dimensional-flow, ideal, slotted tunnel. 

Since the effect on the blockage correction of letting 0 approach 
zero is the same as letting 1/B approach zero, it can be concluded 
that as the stream Mach number approaches unity, the blockage correction 
factor for an ideal porous wall approaches that of an open jet. Simi-
larly any effect of viscosity or taper of a slotted wall described by 
equation (6) would be suppressed at near sonic speed so that the block-
age correction factor would approach that of an ideal slotted wall. 

Blockage in a Circular Tunnel 

Again, the blockage due to the wall interference of a very small 
model will be calculated using equation (6) as the boundary equation. 

Let x be the coordinate in the free-stream direction and r the 
cylindrical coordinate perpendicular to the x direction. Let r0 be 
the tunnel radius so that the wall is at r = r0 . Using these coordi-
nates, equation (1) becomes, in the case of rotational invariance, 

	

2cPl	 (re) =0	 (25) 

and equation (6) becomes 

	

(+K2	 L\	 =0	 (26) 
xr H r,1r = ro 

Then cp* must satisfy the equations

=0	 (27a)
rr(r)

CP1 )r (2m)

	

xr B 6r r = ro	 6xxr R 6r	 =ro 

(See fig. 1.)
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Again, from reference 1 the free-air solution is approximated by 

x 
1 -	 + 2r2)3/2	

(28) 

The constant mr is related to the size of the model by 

mr = U Tr	 (29) 

where Tr is the volume of the model. Correction factors which take 
into account the shape of the model and the presence of shock waves are 
discussed in reference 5. 

Substituting, as before, the Fourier integral expressions for cp 
and (P1 into equations (27) yields 

2 g2G* iL_ 'r" =0 
-	 rr	 r)

(30a) 

(	 * ! G*s\	
( .gG1-K . g	 + 1 -i i— igG - Kig — + 

	

r R)	 r 
r=r0

	

	 =r0

(3ob) 

The general solution of the first of equations (30) is 

= A(g) 10 (gr) + B(g) Ko (3gr) 

where 10 and K0 are the modified Bessel functions of zero order of the 
first and second kinds, respectively (see ref. 6). Since K0 (p3gr) has 
a singularity at r = 0 which would lead to a singularity in cp* at r = 01

	

B(g) must be zero and, hence,	 - 

= A(g) 10 (3gr)
	

(31) 

Substituting equation (28) into the Fourier integral expression of 
P1 yields

x	 igx 
=	

2 f(X2 + 2)3/2 e	 dx	 (32) 
- 

From reference 4 it is found that 

I

1	 1gx1y (f3rJgJ)

00	
It 

-
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According to equations (12), the inverse relation 

00 

fKo (Or gJ) e - 'gx dg 

	

-	 jx2+2r2 

follows. Taking the derivative with respect to x of both sides of 
this equation yields 

f (-ig) 1 Ko (rg)e 1 dg = - 
it 

From this, according to equations (12),

x 

(x2 + 2r2)3/2 

00 

_	 dx = ig	 K (rJgJ) 2i J (x2 + 

so that

	

G1 = Mr  ig K0 (Or IgJ)
	

(33) 

Substituting equations (31) and (33) into equation ( 30b ) yields 

A(g)[_ig 10 (gr0 ) -ig K3g Ij (gr0 ) +-! g I (ro)] = 

-	 ig[-ig K. (ro191) -Ig K(-fgl) K1 	 (r0 JgJ) + 

(-Igl) K1 (roJI)] 

the derivatives of 10 and Ko being found In reference 6. Upon 
solving for A(g), substituting the result into equation ( 13), and 
substituting q for Prog there results
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Au

r0 

mr	
j[Ko()Io(q) -	 K1(q)11(q) ]q2dq 

	

2	 2	 (37) 
4Tcp3 r03 IT	

[Io(q)] + [
	

i(q)] 

Ideal slotted wall.- With (l/R)= 0 we have 

	

Au I	 = -	 ifir	
f [Ko() - q -- 1C1 (q)] q2dq

(38) 
1Iicf3 3r03 It	

[Io() + q _- Ii()] 

Open jet.- For both (l/R) = 0 and K = 0 

	

Au	 = -	 air 2rKo()	 0.63 air 

= 0	 1IT133r03 IT	 10(q) q2dq = - 2IT2r0313	
(39) 

1K I- = ° 
ro 

The values of Au in equation (35) lie between the values for the 
closed wall and the open jet. Figure 4 is a plot of values of K/r0 
versus f3/R at which Au = 0; the shape of the curve was calculated near 
the ends and interpolated in the middle. A graph of equation (38) appears 
in figure 5 showing the variation of blockage factor with slot parameter 
for the cylindrical, ideal slotted tunnel. 

Again, letting 13 —>O has the same effect on the blockage cor-
rection as letting (l/R)—>o, so that near sonic speed the ideal porous 
wall should act like an open jet and the slotted wall should act like 
an ideal slotted wall. 

Lift Interference in a Circular Tunnel 

The upwash correction will be calculated using the infinitesimal 
model size approximation and the approximate boundary condition of 
equation (6). 

Let	 x be the coordinate in the free-stream direction, z	 the 
coordinate in the direction of 

ft^ 
lift on the model, and	 y	 the remaining
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Cartesian coordinate. The cylindrical coordinates r and e are related 

to the Cartesian coordinates by r = 	 + z2 and z = r sin e. It can
be seen from reference 1 that the appropriate free air solution is 

rb I'	 x _'\ sine	
(40) 

r 

which is the potential of a horseshoe vortex having infinitesimal span. 
The fact that the actual span is finite introduces higher-order terms 
which are negligible at distances large compared to the size of the 
model. Here rb is related to the lift on the model by 

	

L = pUri
	

(1il) 

The Fourier transform with respect to x of Cpj cannot be found. 
An arbitrary parameter a will be introduced into the potential so that 
the Fourier transform of a related function can be found. Let this 
function be

rb

	

—a/+ 22 - -	
2r2)	 e	 (12) cpi =	

ax r 

so that

lim c1pt = cp1 

Then a will be eliminated from the resulting cp*' by taking the limit 
with a at zero. 

From reference It- it is found that the Fourier transform of 

e'	
2r2af3r K1 (Or ,/g2 + 

is

	

	 By the use of an inversion, 
jg

2 _+M2 

differentiation, and reinversion, as in the derivation of equation (33), 

it is found that the transform of __ e1 + 2r is
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ig43rK1(3rJg2+ a2) 

-	
so that the transform of p1 ' is 

	

G1 ' = £	 (a-i-ig) Ki(r,Ig2lct2) sin U 	 (II)

sv2+ct2 

From physical reasoning, it can be seen that the sin 0 factor 
of cp1 will result in the same angle dependence for cp, so that sin 0

	

will be a factor common to	 cp*' and their Fourier transforms G1'
and G*'. With cylindrical coordinates, equation (1) is 

	

02 — +	 "\+ --	 = 
x2 r r( r) r2 

In the case of sin 0 dependence, this becomes 

+(r	 -	 p = o 

	

x2 rr	 ar.) r2 

and the boundary condition remains the same as in equation (26). Sub-. 
stituting the Fourier Integral expressions for P1' and P' In these 
equations, as before, yields 

	

_r 7r
_ç32g2G* ? 1	 r	 - 1 G* I = 0	 -(44a)

+(	 r)	
r2 

igG* t _ Kig G*' + ± G*

	

 

R	
- (iGivKIg G1 ' + 1  

r	 r r R r )

(44b) 

The solution of equation (IfIfa) which has no singularity at r = 0 is 

= A(g) I 1 (rg) sin 0	 (47)
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Ideal -porous wall, At 

lb	 Ii_131 
wI	 =

14-itro2	 R 

I r

K = 0 equation (18) becomes 

[K1 (q)10 (q) + K0 (q)1 1 (q) q3dq  

1	 1 
2 

2 2(q) +() [i 1 (q) - qIo(q)]2j 

Ideal slotted wall. - When hR is set equal to zero in equa-
tion (14 8) , a limiting process is required to obtain the correct result 
at (/R) = 0. The result of this process is 

7K 
lb  

= 
1(2 ( K 

Open jet.- Letting K = 0 in equation (70) yields 

=_ Pb 

13

K -=0 ro 

The value of Aw in the general case of equation (48) lies between 
the values for the closed wall and the open jet. 

CONCLUDING REMARKS 

A method of evaluating wall interference of partly open walls involv-
ing mixed potential and viscous flows has been presented. Expressions for 
blockage and lift interference for both slotted and porous walls have been 
derived. Some new details of the method may prove useful in other theo-
retical treatments of this type of problem. 

The results of the analysis indicate that near sonic speed, the 
blockage correction for an ideal porous wall approaches that of an open 
jet. Similarly, any linear viscous or taper effect of a slotted wall is 
suppressed near sonic speed, so that the blockage correction approaches 
that of an ideal slotted wall. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., May 29, 1953 

4^

(50)
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APPENDIX A 

DERIVATION OF THE BOUNDARY EQUATION 

In this appendix an approximate smoothed or average boundary equa-
tion for a slotted wall will be derived. 

An ideal slotted wall has zero perturbation pressure at the slots 
and zero normal flow at the strips. These conditions can be expressed 
as

	

=0	 at the slots	 1	 -

(Al)

	

= 0	 at the strips
J 

When the slot spacing and model dimensions are small compared to 
tunnel dimensions, the perturbation flow can be separated into a rapidly 
varying and a relatively uniform part so that the two parts can be 
investigated separately. It will be shown that the effect of the rapidly 
varying part can be replaced by a condition on the relatively uniform 
part.

'V 
Let cp, u, v, and w represent the rapidly varying part of the flow 

field and cp, U, v and w the remaining part of the perturbation flow. 
For a plane wall at z = h equations (Al) require that 

	

= 0	 at the slots
(A2)

	

+ w = 0	 at the strips 

In addition

	

=v =w = 0	 far from the wall	 (A3) 

In order to solve for , use can be made of the fact that u, v, 
and w are nearly constant at the wall compared to i, V, and , so 
that u and w can be considered constant in equations (A2). 

Since the slots lie along the x direction, u is nearly constant 
in the x direction, so that fl'/x can be neglected compared to 

	

and	 As in slender	 airplane theory, this leads to a two-
dimensional crossflow for which
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+3;=o	
(AI) 

y2 

Then	 can be of the form Q(x) f(y,z) where Q(x) is a slowly 
varying function of x, and f(y,z) satisfies the two-dimensional 
Laplace equation. Then,

Q 
U = - = - f(y)z) 

x 6x 

and since I is equal to -u, a constant, at the slots, f(y,z) must be 
constant at the slots or 

C)CP 	 6f at the slots 
oy	 ciy 

This equation can be used to replace the first of equations (A2), 
and altogether there results 

SI 

v = 0	 at the slots 

= -w = constant at the strips	 (A5) 

=v =w = 0	 far from the wall 

assuming that Q/x is not absolutely zero. 

Equations (AI ) and (A5) can be solved using the conformal trans-
formation technique. 

Let the wall at z = h be slotted periodically from y = - to 
y = +oo with the center of a slot at y = 0. Let a be the slot width 
and 2 the slot separation (see fig. 1). It is sufficient to consider 
only onp period of the periodic flow configuration so that solid bounda-
ries can be placed at y = ± (1/2) and attention confined to the region 
between them. 

Let X = z + iy be the complex physical plane and	 = + ir the
transformed plane. Let 0 be the complex velocity potential such that 
W = W - i, the complex velocity, is equal to d/dX, and cp = real part 0. 
Then equation (Au. ) is satisfied if 0 is any analytic function of X. 
The boundary conditions (A5) are satisfied by finding the analytic func-
tion (x) which transforms the boundaries in the X plane into a con-
figuration for which the flow field with the desired flow at the bound-
aries can be found.	

41MW_
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In the X plane the region under consideration is from z = - 
to z = h and from y = —(Z/2) to y = +( 1/2). The slot lies on the 
line X = h + iy from y = - (a/2) to +(a/2). (See fig. 6.) The 
two half strips lie on the same line from y = -(1/2) to y = -(a/2) 
and from y = (a/2) to y = (1/2). The remainder of the solid boundary 
lies along the line X = z - 1(1/2) from z = —coto z = h and along 
the line X = z + i0/2) from z = -co to z = h. 

The transformation which will place the origin at the wall, and the 
domain under consideration in the right half-plane is 

	

E i = h — X
	

(A6) 

The effect of the transformation on the positions of the boundaries is 
obtained by substituting the equations representing the boundaries into 
equation (A6). Thus, the line X = h + iy becomes	 =	 + ii =.-iy
in the t j plane and the slot lies on this line from 11 = -(a/2) to 

= + (a/2). The two half strips lie on the same line from 11 = -(1/2) 
to -(a/2) and from a/2 to 1/2. Similarly, the remainder of the solid 
boundary in the t j plane lies on the line t j = h — z — i(1/2) from 
t j = 0 to tj = co and on the line t j = h - z + i( 1/2) from t j = 0 
to	 i =• 

To satisfy the boundary condition at the strip, a term w 1 = w(h-X) 
is added to the potential in the transformed plane. 

The remaining boundary-value problem is solved with the aid of two 
further transformations 

The transformation

= sinh ( i)
	

(A7) 

transforms the region under consideration in the	 plane to the entire 
right half of the 2 plane, as can be seen by following the procedure 
outlined for the first transformation. It is found that in the 2 
plane, the slot lies along the imaginary axis from -i sin (ita/21) to 
+1 sin (ia/21) and the solid boundary including the two half strips lies 
along the imaginary axis outside of ±i sin (iia/21). 

The transformation

2 (it a 

	

= 2 ++ sin	 (A8)
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transforms the region under consideration to the positive real half of 
the	 plane, excluding the circle of radius sin (,ta/21) centered at
the origin. The slot lies along the half of this circle in the right 
half plane, and the complete solid boundary lies along the imaginary 
axis outside the circle. Thus, a source at the origin in the E plane 
will satisfy the condition of no flow through the solid boundary and no 
flow-across the slot. Hence,the desired potential is 

= AZn () + wj	 (A9)

Substituting equations (A6), ( A7), and (A8) in (A9) yields 

2	 iia\i 

	

= in {sinh [ (h-x)] + Jsinh2 [ (h-x)] + sin	 + w(h-X) E\. 
The constant A is evaluated by the last of equations (A7), ID	 0

x —>--
being the equivalent of that equation. 

As X —> -a', the potential simplifies to 

Aln2 
I	

si [ (hx)] I + w (h-x) 

^ r 
= Am Le	

(h-x)] 
+ w(h-X) 

A (h-X) + w (h-X) 

The neglected terms are of order smaller than 1/h-X. Thus, 0 will be 
zero at infinity If A = -(l/,T) w so that 

= - w _ in {sinn [. (h.x)] +	 -9-(h-X) +sin2	 + w(h-X) 

(Alo) 

Then

= - w I In jBinh
[
 (h-z)] + Jsinh2 

[
(h_z)] + Sin	 + w(h-z) 

I	 1
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It was assumed that the velocity potential is constant over the slot. 
The value of this constant is 

= -w - in sin (la\\ 1 
I	 [	 j =	 at the slot 

I z=h 
and

w 1 i in [sin (1\1	 =at the slot 
L	 2l)jf 

Substituting this in the first of equations (A2) yields 

U + - - Zn 
1	

[
Sin () ] }	

=0	 at the slot 
 21 

Since it was assumed that u and w do not vary appreciably from 
slot to strip, this equation applies everywhere at the wall and yields 

T+K 2p•
	 1 

xn 

K = - in
at the wall	 (An) 

it	
(a\ 1 

L 
for a plane wall. 

In considering a curved cylindrical wall, it appears that the above 
results are not altered appreciably if the radius of curvature of the 
wall is everywhere large compared to the slot spacing. 2 Hence, it can be 
assumed that equations (All) are applicable to any slotted wall. 

2For a circular cylindrical slotted wall, solution of the boundary value 
problem

—=0	 at slots 

= -w	 at strips 

cp = o	 atr=O 

yields a value for K identical with that obtained from equation (All). 

Sam
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In an attempt to take viscous effects in the slots into account, it 
can be assumed that as in the case of the "ideal" porous wall there is a 
pressure drop through the wall which is proportional to the normal 
velocity at the wall. In that case the first of equations (A2) is 
replaced by (u + u) +(l/R)w = 0 at the slots which leads to 

	

+ K	 + I	 = 0	 everywhere at the wall 	 (Al2) 
xn R n 

where K remains the same as in equation (All) and R is to be deter-

	

mined experimentally.	 - 

Equation (MO) can be used to calculate the neglected variations 
in flow quantities near the wall and also at the model if the variations 
are not negligible there. 

DISCUSSION OF A CRITICAL ASSUMPTION IN THE DERIVATION
OF THE BOUNDARY EQUATION 

It is assumed that the perturbation pressure at the wall is pro-
portional to u + u. This is a good approximation only if 

(v+v)2 +(w+)2 <<2 (u+)U 

in addition to the usual requirements for linearization. This addi-
tional requirement can be reasonably relaxed to 

(w + )2 <<2uU	 at the wall	 (A13) 

Equation (MO) indicates singularities in w at the edges of the 
slots. Experience with wing leading edges indicates that this dis-
crepancy can be reasonably ignored. However, equation (A13) should at 
least be satisfied at the center of the slots. The effect of this 
condition on u and v will now be determined. Differentiating 
equation (MO) yields

cosh [! (h -X) 
L1 

	

W=— =w 	 —w 

	

dX	
( ita Jsi2 [ (hx)	 2 ] + sin	

) 

4'



NACA PM A53E29
	

29 

Then

'ty 
T)

WI 
z = h	 2	 a	 2 11y)	 z = h 

sin (!2^	
Bin 

and

	

.'-	 V 
w+w 

	

/)	 = 
z 	 sin 
y 	 (2 

1) 

so that equation (A13), becomes

<< 2Uu 

sin2 ( 

or	 - 

w2 << 2 sIn2 (La) Uuat the wall	 (AJA) 
2z 

This result places a lower limit on the ratio of open to total area 
(a/i) for which the results of this analysis can be expected to apply 
to slotted sections.
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APPENDIX B

BLOCKAGE IN A CIRCULAR TUNNEL WITH

NONLINEAR VISCOUS EFFECT 

If, in the experimental determination of the porosity parameter R, 
it is found that an additional term of the form f (3(P/3n) is needed in 
the boundary equation, the result is 

	

+ K	 + I	 + f	 at the wall	 (Bl) 

	

xn R n	 n) 

or

(+	 (B2) 

	

6x 6n R 6n	 6x 	 xn B 6n	 n%6^—n) 

This type of equation cannot be solved exactly by any presently known 
method because of the nonlinearity. However, the equation becomes linear 
if the 9* in the nonlinear term is neglected under the assumption that

IP1
f (.2i +	 -	

On"
	 f	 at the wall	 (B3) 

	

n	 n ) 	 '	 n) 

Hence, the equation 

	

K 
2q	

K e CP1 1 6T 
xn	

at the wall

(Bl1) 

will be discussed. 

The transforms G* and G1 of tp* and p1 remain the same as before, 
with the exception that the factor A(g) must be evaluated from the 
transform of equation (B it). For this purpose, the transform of 
f( (P1/r) is needed and can be found by evaluating 

Gf =	 I	 (')	 e'gx dx	 (B5) 
21t J	 r, r=r0
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The transform of equation (Bl -) is found to be 

A(g)	 igI (gr0 ) - igIq3gI 1 + .1 gI1 

mr - -i ig (—igKo + ig k IKKi -	 g IK1) - Gf 

Upon solving for A(g) and substituting in the inverse transform 
expression for	 equation (34) is obtained plus the additional term 

	

= -!	
1	 GfI0(rg)edg 

gi 1 (rog) - ig [Io(rog) + KgIi(Prog)] 

With the substitution q = ç3rog this becomes 

1	 •qx 

	

-f	 11(q)-i [Io() + K	
Ge	

r0J q 

-1	 3 (B6) 

- V 
As an example of the use of equation (B6) let 

f( E
(3

 n1 u2 \) 

This function is chosen rather than one proportional to (cP9n)2 
because the pressure drop should be an odd function of the normal 
velocity. 

Hence,

00 
(7 \3  

	

(32r)3	 I	 e 1dx 

	

U2	 41t)	 21T 
G =	 - 

00 [	
+ 2ro2]2

(wi) 

From reference 4 it is found that
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1 1 	 1	
e	 x 

=	 g7 K. (rog) 

2i	 (2	 2 215/2 
-	 + p	 ) ro	

r () 
(2pro)7 

Differentiating three times with respect to g yields 

e1	 1	 -	 Ig7K7(profgI) 
Tx Ix2 + p2r02)15	 (!) (2 pro)7 g3 

so that

(_m.	
3	 3 

t	
8r 5 -...- 1 g 1 7 K7 (ProI g ) Gf = 1	

ii.itp3ro3)	 r	 27 
 

2) 

or

/ mr	
33	 r

15r0
	 [II K7(IqI)](B8) Gf = iP3	

Lpro) 2f r ( 2) 
• Substituting this in equation (B6) and separating real and 

imaginary parts yields

3 3 

	

( Mr. \.	 3 
3-	 ipro)	 2 6A/ r /15 

I [Io (q) +	 q11(q) I r0 )( I r	 ro -	 -- 	
[q7Kr(q) ] coB (^qx

 
 

i	 ) dq 
; ; ro 

[

2	I]	 + [i6() +	 q11(q)l 
ro	 j 

1(q)

 

Or 
\ r0 a3 [qT 

 
1- 1(7 (q)]sin)Io	 dq )

de 

o	 11 ( q)] + [i (q) +	 q11 (q)]	

}	

(B9) 

U	 2

t—.
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Upon differentiation with respect to x and setting x=r=0, there 
results

Co 3 

	

( m	 3	 '1(q)	 [q7K7(q)] dq
3)

2	 +	 I(q)l 8u =	

26J r 
(2)	

i(q 

	

 RIF
	 I 

+ [IO(q )
r	 j 

From reference 6 it is found that 

3
[q7K7( q ) ]   ( 1152 + 168q2 - 5q4 )q2K1 (q) + (576 + 12q2 - q4)q3Kc(q) 

dq3  

and

33	 12 

28 Tit r 
(1) 

- 5005 

so that

Co 

=
 - (

______ 3 c	 1 2J1(iis2 + 168q2 -5q4 )q211 (q)K1 (q) dq

	

3)	 U2R 5005 [ D I i( q)] 2 ^ [ Io( q) +	 I i( q)1^ + 
j 

Co 

f(576 + 12q2 - 4) q3I1(q)K(q)	 dq 

2	
(Blo) 

o IR 
I i ()] + [ Io( q) +	 Ii (q)] 	

j 
ro

Setting K/ro equal to zero in (BlO) and recombining it with 
equation (37) yields



01	 H 'ci	 H 
pq c..J01

cq 

n 
01 

.5 
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01 
H1	 j 

01 01 
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H H 
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r-1 

+ 

0) U-' H 
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Since the factor Tr/ro3 is very small, the nonlinear contribu-
tion to the blockage correction should be negligible at subsonic speeds 
where 13 is not small. But as contrasted to the linear viscous effect 
which becomes small as M approaches 1, this nonlinear viscous effect. 
may become large.
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APPENDIX C 

DERIVATION OF THE BOUNDARY EQUATION 

FOR A TAPERED SLOPED WALL 

In this appendix an approximate smoothed boundary equation for a 
slotted wall with tapered slots will be derived. 

The development in this case is identical with that in Appendix A 
up to the point where it is found that 

	

= w { - I in [sin (a)] }

	

at the slots 

or

cp = v K	 at the slot	 (Cl) 

When the slots are tapered, the slot parameter K is a slowly 
varying function of x which can be expanded in a power series about 
x = O so that neglecting the higher order terms 

K(x)K	 x 
x 	 ax I X  

u 

= K I
w + diC- I	 xw	 at the slots

	

x=O	 Ix=O 

=	 = K	 +	 w +	 x	 at the slot 
6x	 1 x=Ox dx x=O	 dx I x=Ox 

Assuming that the last term will be negligible compared to the others, 
we have 

Then 

and

u=K + w	 at the slots	 (C2)



NACA RM A53E29
	

37 

Substituting this equation in equation (A2) of Appendix A yields 

u + K	 w dX w = 0	 at the slots 
I x=0 dx I x=O 

Then, as in Appendix A, since u and w do not vary appreciably from 
slot to strip 

T + K
x=O" dx x=On 

= - 1(x) in [sin 
TI 
	

2ITx7

everywhere at the wall

(c3) 

Hence, the parameter l/R in equation (6) of the text can be interpreted 
as the quantity dK/d.x	 = 0 which is related to the taper of the slots 

in a slotted wall having purely potential flow in the slots.
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(0) Two-dimensional-flow slotted test section. 

model	 re 

(b) Circular slotted test section. 

Figure I. - Cross-sectional diagrams of the two slotted test sections in 

a plane perpendicular to the free stream.
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Figure 2. - Simultaneous values of slot parameter and porosity 
parameter for zero blockage in a two-dimensional-f/ow tunnel. 
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Figure 3- Blockage factor as a function of slot parameter in a 
two- dimensional-flow, ideal, slotted tum7el. 
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Figure 4.- S/irwltweous values of slot parameter and porosity 

parameter for zero blockage in a circular cylindrical tunnel. 
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Figure 5. Blockage factcr as a fun ctfcv, of slot parameter in 

ci/rcular cylindrical, ideal, slotted tunnel.
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Figure 6. - Sketch of complex planes (Appendix A). 
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