

NATIONAI ADVISORY COMMITTEE FOR AERONAUTICS

TEOHNIOAL NOTE NO. 1026

CHARTS OF THERMODYNAMIC PROPERTIES OF FLUIDS ENGOUNTERGD IN
CAICULATIONS OF INTERNAI COMBUSTION GNGINE CYCLES
By H. C. Eottel and G. O. Williams

SUMMARY

Abstract

A single chart has been prepared that simplifies the calculation of the thermodynamic properties of air, various octene-air mixtures, and mixtures of those with their products of combustion at all temperatures below which chemical dissociation becomes unimportant. Tho chart is based on the use of 1 pound mol of mixture, and examples of its use are given in the form of the calculation of a turbocompressor power plant and a supercharged otto engine cycle.

INTRODUCTION

Reference 1 presented thermodynamic property charts for the products of combustion of octene and air in different ratios. For the calculation of various engine cycles, there is necessary in addition a chart or set of charts giving the thermodynamic properties of unburned air-fuel mixtures. Such an unburned-fuel-air mixture chart has been calculated, and so plotted that it applies to various afr-fuel ratios and various ratios of burned to unburned gases, and includes pure air as the basic chart.

This investigation, conducted at the Massachusetts Institute of Technology, was sponsored by and conducted with the financial assistance of the National Advisory Oommittee for Aeronautics.

The completion of this project would not have been possible without the conscientious and efficient assistance of Mrs. Edward Addelson, who made all the calculations and did all the drafting and lettering on the final charts.

FUNDAMENTAL DATA

Abstract

The charts in reference 1 were each on a basis of 1 pound of air plus the appropriate fuel, and the coordinates were entropy S and internal energy F_{i}, A set of corresponding "unburned" charts on the same basis could be prepared, one corresponding to each "burned" chart. If, however, the basis for the propertiea of unburned mixtures is not 1 pound of air but 1 pound mol of mixture, the p-v-T relations for various mixture ratios are substantially the same - identical, of course, if the various air-fuel mixtures were perfect sases.

Furthermore, if the coordinates of the chart are entropy S and temperature T rather than S and $\mathrm{S}_{\mathrm{t}} \mathrm{as}$ previously, the representation of the properties of aifferent mixtures on a single chart is facilitated. It will be shown that the small variations, with air-fuel mixture ratios, from a common p-V-T reletion due to gas imperfections and from a common $H-T$ or E rT relation due to molal-specific-heat variations from fuel to air, can be allowed for on a sinfle chart. Such a chart can then be used for all mixtures, burned or unburned and including pure air, at the temperatures of interest here (up to $1800^{\circ} \mathrm{R}$ (1340 F) for unburned fuel-air mixtures, $2520^{\circ} \mathrm{R}\left(2060^{\circ} \mathrm{F}\right)$ for burned mixtures).

Although such a single chart has tbe disadvantage over a series of charts that a change in basis is involved during the calculation of some thermodynamic oycles, that change is not difficult (an example will be given); furthermore, the advantages of a sirele chart are many. Besides the physical simplification of handiing a gingle chart there is the posaibility of calculation of complete gas turbine cycles of any mixture ratio of present interest ingtead of only those ratios for which burned charts are arailable; a comparison of the alr-standard cycle with the actual fuel cycle can be made directly on the single chart; the chaft gives directly the properties of dure air for calculation of various pumping or power cycles.

In the previous charte zero values were assigned to various thermodynamic properties at a base of 100° F. Since calculations of high-altitude power-plant performance will involve the present chart at temperatures to $-60^{\circ} \mathrm{F}$ or lower, it is desirable to drop the temperature base to a value below any anticipated in order to involve differences of positive numbers in engineering calculations. The base chosen
was $200^{\circ} \mathrm{K}\left(360^{\circ} \mathrm{R}\right.$ or $\left.-100^{\circ} \mathrm{F}\right)$ because basic thermodynamic data are tabulated in the literature at that temperature.

DESCRIPTION OF CHART

Used as an Air Ohart

The chart is best viewed first without consiaeration of the various peripheral plots. It is then a representation of the p-v-T-s relations for pure air, due allowence having been made for departure from perfect gas. Lines of constant volume, cubic feet per pound mol (labeled V), and ines of constant pressure, pounds per square inch absolute (labeled f) e. are plotted on S-T coordinates, with temperature scale irom $360^{\circ} \mathrm{R}$ (the base temperature) to $2520^{\circ} \mathrm{H}$ (2060 F). Zero value has been assigned to entropy at the base temperature and 1 atmosphere (14.696 paia).

The value at zero pressure (i.e., for perfect-gas conditions) of the enthalpy, called H° (British thermal unite per pound mol) can be read from the first vertical scale to the right of the T-scale. This scale consists of a number of diagonal curved lines at the bottom of which appear values of F, the ratio of fuel used to that required for stofehometrically complete combustion. For air, $F=0$, the left edge of the H-scale is read. To allow for the effect of pressure on the enthalpy of air, refer to figure 2A or 23 , the line marked $F=0$, where the value (H- H°)/P is found as a function of temperature. For example, when volune and pressure are 16 cubic feet per pound mol and 500 psia, the entropy is found to be -2.05, temperature is $740^{\circ} \mathrm{R}$, $H^{\circ}=2660$ Btu per pound mol. From figure 2 A , at $740^{\circ} \mathrm{R}$ and $F=0$, (H- $\left.H^{\circ}\right) / \mathrm{P}=-0.085$, from which $H-H^{\circ}=500$ $x 0.085=-42.5$, and $H=2660-42=2618$ Btu per pound mol. It will be noted that the pressure correction to H^{0} to obtain H becomes negligible at pressures below latmosphere or temperatures above $1000^{\circ} R$, and that, for many calculations, figures 2A and $2 B$ may be ignored. Values of H° are based on $H=0$ at the base temperature and 1 atmosphere.'

Similar to H^{0}, \exists° (the value of internal energy at zero pressure) can be read from the extreme right scale, and the pressure correction from figure 3A or 3B, using the inne $F_{0}=0$. For the previous example, when $T=740^{\circ} \mathrm{R}$, $\mathbb{T} 0^{\circ}=1180$ Btu per pound mol, $\left(\mathbb{Z}, \mathbb{H}^{\circ}\right) / P=-0.10, \quad \mathbb{F}=1180$ $=0.10 \times 500=1130$. The base for E is consistent with
${ }^{1}$ This Eives H° a value of 7 Btu per pound mol at the base temperature.
that for $H ; \quad y_{i}=\frac{-144 P V}{777,75}$ at the base temperature and 1 atmosphere.

Used as a Mixture Chart
The use of the chart in determining the properties of an air-fuel mixture will next be described, without inclusion of the thermodynamic basis for the procedure. Suppose the mixture contains 20 percent more fuel then the stcichiometric mixture. Then $F=1,20$. The mixture may, in addition, consist in part of unpurged combustion products from the previous cycle in an Otto cycle engine, together with some fresh fuel-air mixture. The weight fraction of the former in the total mixture is referred to as f, the "unpurged fraction, or welght-fraction of the fuel in the burned state. For Otto-cycle calculations, f mey vary from 0.01 to 0.05 ; for combustion in a gas turbine cycle, f is C on entry and about l.o on learing. As an example, consider a mixture with $F=1.2$ and $f=0,05$, at a temperature of 9500 R and pressure of 100 psia. From figure 5, one pound of air produces 0.03545 mols of such a mixture. This is the conversion factor in going from the present chart to the burned charts, (See reference 1.) Because in many problems the oxygen of the air is partially or wholly combined with fuel, the ordinate of figure 5 is labefed "pound mols of mixture per pound of air constituents." Erom the main chart, at $T=950^{\circ} \mathrm{R}$ and $P=100, V_{\text {air }}=102$. This volume applies for air, Since the p-v-T relations for air and for the mixture are somewhat different, a correction is read from figure 7 ; $V_{m i x}-V_{a i r}$
$=0.07, V_{\text {mix }}=102.07$. Since the uncorrected volume can be read tc no better than $1 / 2$ percent, the correction at this temperature and pressure is obviously not worth making.

To obtain enthalpy, first determine H° from the righthand scale by moving horizontally along the T F 950 -ine to $F=1.2$; and interpolate between the dashed-line scales corresponding to an fof 0,05 , finding $H^{\circ}=4590$. Similarly, $\mathrm{m}^{0}=2690$ (Inear interpolation and extrapolation are valid for obtaining values at f other than 0 or O.C5). From figure 2A, $(H-H O) / F=-0,08$ and $(E-E O) / P=-0.12$. Then, $H=4590-0.08 \times 100=4582$, and $E x 290-0,12 \times$ $200=2678$. The corrections, for this example, were barely worth making,

The only additional property of interest is entropy, Absolute values of entroy for mixtures do not appear on the chart; but a ohange in entropy along a specified path or the change in other properties alofg a path of constant entropy
may be evaluated. The variotion, with temperature and preasure, of the entropy of a mixture differs irom that of pure air because of differences in specific heats and in p-r-T relations for the two. Allowance for the apecificheat effect appears in families of curves running almost vertically along the left dide of the chart, labeled ($\mathrm{s}_{\mathrm{mix}}-\mathrm{S}_{\mathrm{ai}}$), and plotted against temperature. Allowance for the effect of differencesin p-v-T relations of air and of gas mixture is much less fmportant, and may be neglected for many uses of the ehart. (See later example.)

As an oxample, suppose the last given mixture is to be compressed isentropically from its temperature and presare of 9500 R and 100 paia, respectively, to a new pregsure of 600 pila, The entropy of air at the first condition is found to be 2.99, and the difference between the entropy of the mixture of interest and that of air (exclusive of a constant Which is independent of temperature and pressure) is read fron the family of almost vertical lines at the left of the plot. It is found to be 0.63. The sum of these is 3.62 . Now move upward from $950^{\circ} \mathrm{R}$ and 100 paia along auch a path that the new value of the sum of $S_{\text {air }}$ and ($S_{\text {mix }}-S_{a i r}$) is the same. Thie may be done by trial anderror, choosiag various temperatures until the condition is sabisfied. Mush simpler is the graphical procedure of laying the odge of a sheet of papar horizontally along the 950° fsotherm and marking on it the distance between the points where the line $P=700$ on the ifight, and $F=1.2, f=0.05$ on the loft, cut the inotherm, Then, move the horizontal odge of tho paper vertically upward keeping the left-hand point on the line labeled $" F=1.2 ; f=0.05 "$ until the right-hand point coincides with the line, $P=600$, From this precedure it is apparent that the families of lines at the left may be thought of as direction linef for moving along a constantmentrepy path with a fiven mixture of fuel, aif, and combutinn produota. At $P=600$ it is found that $T=1435^{\circ}$ and $V_{\text {air }}=26$. Strictly, a pressure correction to entropy should be made, using peripheral figure 8, The correction ia appreciable only for the lower left region of the main chart (low temperature, high pressure). Furthermore, numefieal values read from figure 8 indicate that, along paths of apprcximataly constant entropy tho pressure correction is substastially egnstant (within a ΔS of 0.005 , i.e., one-tenth of a golil square) and may therefare be neglected. The only remaining correction is to convert fror Vaif to $\mathrm{V}_{\mathrm{mi}} \mathrm{fture}$. At tha fnitial temperature the differenoe of the two was negligiblo. (See previour expmple.) At the final temperature of 14350 R
the correction is even less important. The work of compression in a flow system is LH. By rounding off the result from the previous example, $H_{1}=4580 ; H_{z}=8790$, $\left(\mathrm{H}_{a}-\mathrm{H}_{a}{ }_{a}\right) / P=0.05 ; \mathrm{H}_{a}-\mathrm{H}^{\circ}=30, \mathrm{H}_{a}=8820$. Then, work $=8820-4580=4240$ Btu. This number is established to about. 10 Btu by careful use of the chart. Omission of the pressure corrections to H would have given the answer 4200 Btu - that is, 1 percent lower. Treatment of the whole problem as though the gas were air rather than a partially burned fuel-air mixture would have given a final temperature of $1540^{\circ} R$ and a work of compression of 4390 Btu (3.5 percent high).

CONVERSION FROM PRESENT OHART TO "BURNED MIXTURE" OHARTS

- of rmberencer 1

The present chart will be referred to as the "modifiedairll chart for brevity. Given a system located on the modi-fied-air chart, unreacted, and of such composition that combustion would raise the temperature to a point where dissociation is important - that is, to a temperature not included on the chart - what is the procedure?

Case I.- Combustion occurs at constant rolume. It is necessary to evaluate E of the burned system above the older burned-chart base-that is, above a state in which zero value cf internal energy is assigned to $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}(\nabla), \mathrm{N}_{2}, \mathrm{O}_{2}$ at $100^{\circ} \mathrm{F}$. From the "modified-air" chart, read F at state in question before reaction, and read \mathbb{F}° at $100^{\circ} \mathbb{F}\left(=560^{\circ} \mathrm{R}\right)$. To help the reader, a heavy line appears in the E-scale at $560^{\circ} \mathrm{R}$. From the same chart (fig, 5), read $y=$ pound mols of mixture per pound of air constituents. Then (E - $\mathbb{F}_{560}{ }^{\circ}$) y = sensible internal energy per pound of original air, above 560° base, of the gas, which contains both fresh fuel-air and unpurged gas. The internal energies of combustion of these, at the base temperature, must be added to obtain $\overline{\text { E. }}$
$\mathrm{E}_{\text {burned }}$ chart $=\mathrm{y}\left[E-\mathrm{F}^{\circ}{ }_{560}\right]$ modified-air chart.

$$
+(I-f)(\Delta E)_{c, 560}+f Q_{V}
$$

The term $-\Delta \mathrm{F}_{\mathrm{c}}$, seo is the internal energy of combustion of any fresh fuel in the mixture, and equals +2,151,000 Btu per pound mol of octene, or

$$
\underline{2151000(0.01749 \mathrm{~F})}=1299 \mathrm{~F}
$$

28.95
per pound air constituents, where (0 Ol749 \vec{j}) is mols fuel per mol air, (See fig. 4.) And Q_{V} is the internal energy of combustion, at $100^{\circ} F$, of any unburned fuel in the unpurged products of a previous cycle. It is read from the right-hand side of the burned charts, or from the following table:

F	0.8	0.9	1.0	1.1	1.2	1.5
Q_{V}	2	2	2	169	336	832

Obviously, Q_{\square} has no importance for lean mixtures. Recapitulating,
$E_{\text {burned }}$ chart $=y\left[E-E^{\circ}{ }^{\circ} 50\right]$ modified-air shart

$$
\begin{equation*}
+(1-f) 1299 F+f Q_{V} \tag{1}
\end{equation*}
$$

In addition to E, volume V must be known to locate the system on the burned chart. On the modified-air chart V is per mol of mixture; on the burned chart is is per pound of air constituents. Figure 5 gives the conversion factor. y.

$$
\forall\left(V_{\text {modified-air chert }}\right)=V_{\text {burned chart }}
$$

Case II.- Combustion occurs at constant pressure. The condition to satisfy is that H is constant. On the burned charts H_{s}. is the ΔH, to the temperature in question from that temperature where both $\mathrm{F}_{\mathrm{s}}=J(\mathrm{FV})=-N R T$ and $\mathrm{H}_{\mathrm{s}}=\Sigma \mathrm{NMC}_{\mathrm{V}}(\mathrm{T}-560)$, Solutions of these eauations from the data used in calculating the burned charts indicate that, over the burned-chart range of $T=0.8$ to $1,5, T=405$ is an adequate average base temperature, constant to within $1^{\circ} F$.

From the modified-air chart, read H at state in question before combustion; and read $H^{\circ}{ }_{405}{ }^{\circ} \mathrm{R}$ (from the solid line on the H-scale); and from figure 5 , read $y=$ pound mols mixture per pound of air constituents. Then (H-HO 405) y F sensible enthalpy, per pound of original air, above $405^{\circ} \mathrm{R}$ base, cf the gases containing both fresh fuel and unpurged gas.
$H_{\text {burned }}$ chrrt $=y\left(H-H_{405}\right)_{\text {modified-ain }}$ chart

$$
\begin{equation*}
+(I-f)(1299 F)+f Q_{\nabla} \tag{2}
\end{equation*}
$$

It is to be noted that the chemical contributions to the value of $H_{\text {burned }}$ chart involve $\Delta \mathbb{F}_{c}$ and Q_{V}, and not $\triangle E_{c}$ and Q_{p}. This is a consequence of the fact that the burned charts define H as $H+P V$, and H_{s} as $\mathbb{H}_{\mathrm{s}}+P V$, where $\mathbb{B}_{\mathrm{s}}=\boldsymbol{J}-Q_{\mathrm{V}}$. Therefore, $H=H_{s}+Q_{v}$ and not $H_{s}+Q_{p}$.

Hxamples of Cycle Calculations

I. Turbocompressor power plant. Consider a turbine and compressor, direct-coupled. The compressor takes air at 0° F. and 8 psia, compresses it sevenfoldin pressure, with an efficiency of 75 percent. Jiquid fuel at 40° Fis then sprayed in to sive an air-fuel weight ratio of 73:l, combustion occurs at constant pressure, and the gases are expanded through a turbine with an efficiency of 90 percent to apressure of 10 psia. Per pound of fuel burned per hour, what is the available shaft horsepower?

At $460^{\circ} R$ and 8 psia, find $S=2.92, H_{i}{ }^{\circ}=696$, $\left(H_{I}-H_{i}{ }^{0}\right) / P=-0.27, H_{1}=696-0.27 \times 8=694$.

Perfect compression to $8 \times 7=56 \mathrm{psi}$ would give $T=800, H=3085-0.07 \times 56=3081$. Then ΔH would be 3081 - $694=2387$. Instead, because of imperfect compression process.

$$
\Delta E=238 \mathrm{r} / 0.75=3183
$$

Then $H_{z}=694+3183=3877, T_{a}=$ about $912^{0} R, \quad\left(\mathrm{~F}_{2},-H_{z}{ }^{0}\right)$ $=-0.04 \times 56=-2, H_{z}^{0}=3879$, and $T_{z}=912^{\circ} \mathrm{R}$.

Now, add liquid fuel. From figure 4, when pounde fuel per pound air $=1 / 73=0.01370$.

$$
F=\frac{0.0137}{0.06775}=0.2021
$$

H of liquid, per mol, from figure 9, $=-13,200$. And ΔH of combustion at base temperature of $360^{\circ} \mathrm{R}=2,150,000 \mathrm{Btu}$ per pound mol. Then

Total H of liquid $=2,150,000-13,200=2,137,000$
From equation on figure 4,
Mols fuel per mol air $=0.01749 \times 0.2021=0.003535$
H_{z} of mixture per mol of fresh mixture

$$
=\frac{3877+0.003535 \times 2137000}{1.00354}=11,390
$$

Mols burned mixture/mol fresh mixture is read from figure 6 , line marked $f=0$, at $F=0.2021 ;$ it is 1.011 .

When combustion occurs, H does not change. But, since the number of mols changed from 1 to 1.011 due to combustion, and since the chart basis is 1 mol

$$
H_{3}=\frac{H_{a}}{1.011}=11,265 \text { Btu per mol burned mixture }
$$

From chart at $H_{3}=11,265, T_{3}$ is about $1865^{\circ} \mathrm{R}$, ($\mathrm{H}-\mathrm{H}^{\circ}$)/P $=+0.04(f 1 g .2 B), H_{3}^{0}=11,265-0.04 \times 56=11,263$, and $T_{3}=1863^{\circ} \mathrm{R}\left(1403^{\circ} \mathrm{F}\right)$
S_{3}, air, from chart at $p_{3}=56 \mathrm{psi}$ and $T_{3}=1863^{\circ} \mathrm{R}$, is 9.23; $S_{m i x}-S_{\text {air }}$ is read from the group of nearly vertical lines at the left; at $F=0.202, f=1$, and $T_{3}=1863^{\circ}$, it is 0.18. The pressure correction on S is negligible. $S_{3}=9,23+0,18=9,41$ (plus a constant of no interest here).

Let the gas expand through the turbine to lopaia. If perfeet expansion occurs, $\mathrm{s}(\mathrm{total})$ is still 9.41. To find the condition at end of this expansion, lay the edge of a paper horizontaliy at $\mathrm{T}_{3}=1863$ from the initial coordinate. $S_{3, a i r}=9.23$, to the extreme left to line $F=0,2, f=1$. The distance between marks on the paper now represents $S_{t o t a l}$. Move the paper downward with edge kept horizontal, and left mark kept on the line $F=0.2, f=1$, until the right-hand mark intersects the line $p=10$. At this point. $T_{4}=1205^{\circ} \mathrm{R}, \mathrm{H}_{4}{ }^{\circ}=6100$. (Actually, the left-hand S-guide line is so nearly vertical that an approximate methodis frequentily better than the exact graphical one described). If the expansion path had been assumed to occur along a line of constant $S_{a i r}, ~ a ~ p r e l i m i n a r y ~ v a l u e ~ o f ~ T ~ o f ~ 1195^{\circ} \mathrm{H}$ would be read, from which $S_{m i x}-S_{a i r}=0.11$. A considerable error in T_{4} does not affect this quantity appreciably. Consequentiy, without further trial and error, $\delta_{4, a i r}=9.42$
$-0.11=9.30$, and $T_{4}=1205, H_{4}{ }^{\circ}=6100$, $H_{4}=6100$
$-0.02 \times 10=6100$.
Then - \triangle H during perfect expansion would be 17,263

- $6100=5163$, Actually, because of turbine inefficiency,

$$
\begin{aligned}
-\Delta H & =5163 \times 0.9=4647 \\
H_{4} & =11,263-4647=6616
\end{aligned}
$$

The correction from H_{4} to $H_{4}{ }^{0}$ is negligible; then

$$
\mathrm{T}_{4}=1275^{\circ} \mathrm{R}
$$

Basia of calculation of output; 1 mol air

> Mols fuel $=0.00354$ Pounds fuel $=0.00354 \times 112.1=0.397$ Mols unburned mixture $=1.0035$ Mols burned mixture $=1.011 \times 1.0035$ Work output of turbine $=1.0145$ Work intocompressor $=$

Pounds fuel $/ \mathrm{hp}-\mathrm{hr}=\frac{3545 \times 0.397}{1531}=0.66$

The low value of this figure is a consequence of asoming high values for the separate efficiencies of the compressor and turbine, without introducing compensating allowance for pressure drop in ducta and the combustion chamber.

There may be occasion to use the velocity of the exhaust gas to obtain adiitional thrust. If the exhaust gas expands reversibly from lo paia to atmospheric preasure of 8 paia, the temperature changes from 1275° to $1202^{\circ} \mathrm{R}$, and $H 0$ from 6616 to 6080. Corrections to H are negligible. Then $-\Delta H=636$ per mol mixture.

Pounde mixture per mol mixture $=\frac{\text { pounds fuel }+ \text { pounds air }}{m o l \text { mixture }}$

$$
=\frac{0.397+28.95}{2.0145}=28.95
$$

As expected with such a lean mixture, the molecular weight of the products is the same as that of air.

$$
\Delta E \text { per pound mixture }=\frac{536}{28.95}=18.52 \mathrm{Btu}
$$

This equals

$$
\frac{u^{2}}{2 g^{J}}
$$

$$
\begin{aligned}
4= & \sqrt{64.4 \times 778 \times 18.52}=962 \text { feet per second } \\
& \text { Pounds mixture per pound fuel }=74
\end{aligned}
$$

Then

$$
\begin{aligned}
\text { Pound thrust per }(1 b \text { fuel } / h r) & =\frac{\text { Mu }}{S} \\
& =\frac{74 \times 962}{3600 \times 32.2}=0.66
\end{aligned}
$$

Otto-Cycle Engine with Supercharger

Supercharged engine operating in air at $P=10$ paia and $T=20^{\circ} F\left(T=480^{\circ} R\right)$, supercharging with 70 percent efficiency to 30 paia, after which liquid fuel fs mpayedin
at 60° F with 20 percent excess fuel. Figine compression ratio is 6.

Firgt determine H of unburned air-fuel mixture entering manifold.

Isentropic compression of 1 mol of air from 10 to 30 pounds, starting at 480° R.
$H_{\text {before }}=835+0.25 \times 10=838 ; \quad S=2.77$
Compression at constant - S to 30 psi gives

$$
\begin{aligned}
& \text { Tafter }^{\text {after }}=657 \\
& H_{\text {after }}=2080+0.12 \times 30=2084 \\
& \text { Isentropic work }=2084-838=1246 \\
& \text { Actual work input }=1246 / 0.7=1780
\end{aligned}
$$

If no thermal losses are assumed, all the extra work goes into temperature in the gas, and

$$
\mathrm{H} \text { after compression }=1780+838=2618
$$

from which T is approximated as $740^{\circ} \mathrm{R}$

$$
\begin{gathered}
\left(H-H^{0}\right) / P=0.09 \\
H^{0}=2618-0.09 \times 30=2615
\end{gathered}
$$

T may now be determined exactly; it is 734° R

$$
\text { Volume }=263 \text { cubic feet }
$$

At this point, inject liquid fuel at $60^{\circ} \mathrm{F}\left(520^{\circ} \mathrm{R}\right)$. Accoraing to figure 9 ,

$$
\begin{array}{ll}
\text { Mols of liquid } & =1.2 \times 0.01749=0.0210 \\
\mathrm{H} \text { of iiquid } & =-12,200 \times 0.0210=-256 \\
\mathrm{H} \text { of mixture, per mol mixture } & =\frac{2618-256}{1.0210}=2313
\end{array}
$$

(Note that basis has changed here.)
H^{0} of mixture $=2313-0.24 \times 30=2306$, and corresponding temperature $690^{\circ} \mathrm{R}$ and $\nabla=246$, Oorfection on V is 0.2 (negligibie).

Now, assume that temperature in cylinder at end af exhaust stroke and after expansion to 10 psi is 2100° R. (This is subjeet to check by completion of the cycle calculations.) One mol products ($f=1$) at $2100^{\circ} \mathrm{R}$ and 10 psi, has $E=9720, V=2260$. For the process of mixing fresh mixture at 30 psi through a throttling valve into eumbustion products initialiy at 10 psi and rising ultimately to 30 psi, while the rolume remains constant, the enthalpy of the entering charge plus the inftial internal energy of the combustion products must equal the internal energy of the final mixture. The basis of calculation will be 1 mol of unpurged mixture from previous cycle, left in engine at top dead center,

Let $x=m o l s f r e s h$ charge entering at top dead center by throttling through intake valve and mixing with unpurged gas, but not yet including any fresh charge entering during intake stroke. One mol of fresh mixture of composition $F=1.2$ produces 1.10 mols products (fig, 6). To find the weight fraction of burned material in the reaultant mirture, convert burned and unburned parts to a common etate, either burned or unburned, and then determine the mol or volume fraction. By converting the freah mixture to the burned state.

$$
f^{\prime}=\frac{1}{1+1.1 x}
$$

The prime indicates that this is an intermediate value and not the one corresponding to the introduction of all the fresh charge; that comes in a later step.

$$
{ }^{\text {Pper mol }} \text { of resultant mixture }=\frac{2313 x+9720}{x+1}
$$

and

$$
V_{\text {per mol of resultant mixture }}=\frac{2260}{1+x}
$$

Given ∇, f^{\prime}, and E in terms of unknown x and given $P=30$, use the chart to solve for x by trial and error.

As sumed values of x	$\nabla=\frac{2260}{1+x}$	$f^{\prime}=\frac{1}{1+1.1 x}$	Values of 3 corresp.to ∇ and fi, and at $P^{\prime}=30$	$\begin{aligned} & \text { Hirom } \\ & \text { above } \\ & \text { equan } \\ & \text { tion } \end{aligned}$	$\begin{gathered} \text { Diff. } \\ \text { in } \\ \text { Sis } \\ \hline \end{gathered}$
$\begin{gathered} 5 \\ 4.6 \\ 4.76 \end{gathered}$	$\begin{aligned} & 377- \\ & 404- \\ & 392+ \end{aligned}$	$\begin{array}{r} 0.154 \\ .165 \\ .160 \end{array}$	$\begin{aligned} & 3320-3 \\ & 3800-3 \\ & (3590+10)-3 \end{aligned}$	$\begin{aligned} & 3550- \\ & 3638 \\ & 3600 \end{aligned}$	$\begin{array}{r} -230 \\ +160 \\ -7 \end{array}$

Therefore, $\quad x=4.76, \quad f^{\prime}=0.160, \quad V=392, \quad \mathrm{~F}=3600$, from which $H=5770$.

This mixture now mixes further at a pressure assumed constant at 30 psi , with morefresh mixture entering as the piston recedes to six times the previous volume. The enthalpy of the resultant mixture then equals the sum of the His of the two componenta.

$$
6 \times 2260=13,560
$$

total volume of new mixture containing \mathcal{f} mol of burned gases, 4.76 mols of fresh charge, and x_{1} additional mols of fresh charge now entering. Ey this process, point (I) on the pry diagram of the cycle is reached. (Seefig. 10.) Theresultant enthalpy H_{1} is given by

$$
\begin{aligned}
& H_{1}\left(1+4.76+x_{1}\right)=5770(1+4.76)+2313 x_{1} \\
& V_{1}=\frac{13560}{1+4.76+x_{1}} \\
& f=\frac{1}{1+\left(4.76+x_{1}\right) 1.1}
\end{aligned}
$$

As before, x_{2} is obtained by trial and error.

$\begin{gathered} \text { As sumed } \\ x_{1} \end{gathered}$	$V_{1}=\frac{13560}{5.76+x_{1}}$	$f=\frac{1}{6.226+1.1 x_{1}}$	H corresp. to V and F at $P=30$		$\begin{aligned} & \text { Diff. } \\ & \text { in } \\ & H^{\prime} g \\ & \hline \end{aligned}$
45	267	0.01794	2910-6	2704	+200
48	252	. 0169	2620-6	2684	-70
47.3	255.5	.01716	2690-6	2688	-4

Therefore, $\quad x_{1}=47.3, \quad V_{1}=255.5, \quad f=0.0172$, and
$H_{1}=2688 . \quad$ The corresponding $\mathbb{H}_{1}=1280$.

Figure 10.- The supercharged Otto cycle.

The next step is compression to state 2, assumed isentropic. The volume correction on V_{1} is -0.16 (negligible). The entropy S_{1} is 3.37 and the entropy correction is -0.00013×30 (negligible). The isentropic compression is followed by measuring the horizontal distance from point P_{1}, ∇_{1} to the entropy-direction line for $F=1.2, f=0.017$, then moving the meesuring device upward with left end on the entropy-direction line until the right end is on the line $\nabla_{2}=255.3 / 6=42.6$. The correction on volume.in negligible. (As a check on the grephical procedure,
and

$$
s_{1}+\left(s_{\operatorname{mix}}-s_{a i r}\right)_{2}=3.37+0.38=3.75
$$

$$
\left.s_{a}+\left(s_{m i x}-s_{a i r}\right)_{z}=2.74+1.01=3.75\right)
$$

From figure 8 , the correction on S_{2} is negligible. At the new point, $P_{z}=321, T_{a}=1260$, and $\mathbb{F}_{z}=4735-0.08$ $\times 321=4710$. (Mote that the E-correction is the only one not negligible so far.)

The next step is a constant-volume combustion, assumed adiabatic and to thermodynamic equilibrium. The temperature reached is so high as to make the assumption of frozen chemical equilibrium on which the present chart is besed, no longer valid. On the other hand, the new high temperature makes allowance for gas imperfection unimportant. The set of thermodynamic-property charts presented in a previous report must be used at this point. As previously explained, the burned-mixture charts are of necessity on a different basis, since the number of mols associated with a given system changes along various thermodyamic paths and the basis must be one of mass rather than number of mols.

The constant-volume combustion process is one ot constant E. From eauation (1),
${ }^{E}$ burned chart $=\left(E-E^{0}{ }_{560}\right)_{m o d i f i e d ~ a i r ~ c h a r t ~} \times y$

$$
\begin{aligned}
& \quad+(1-f)\left(-\Delta E_{c, 560}\right)+f Q_{V} \\
& =(4710-390) 0.0353+0.983 \times(1299 \times 1.2)+0.017 \times 336 \\
& =152+1532+6=1690 B t u, E_{3}
\end{aligned}
$$

V_{3} per pound $a 1 r=42.6 y=42.6 \times 0.0253=1.504$ cubic feet

Prom the burnad chart for $T=1,2, T_{3}, P_{3}$, and S_{3} corrocponding to E_{3} apd V_{s} are $5230^{\circ} R\left(4770^{\circ} \mathrm{H}\right)$, 1482 psi, and 0.518. (It is to be understgod that the cycle has been caloulated assuming compression and combustion t. he adiabatic, and that the pressure and temperature are consequentiy high.)

The bext etep is isentropic expansion to $\nabla_{4}=6 \times 1.504$ $=9.02$. Reading from the burned chart, $P_{*}=160, \mathbb{1}_{4}=1085$. As the exhaust valve opens, the mixture at state 4 expands irreversibly through the valve, but that part remaining in the engine expands isentropically, doing work on the effluent gases. Expansion is to $P_{4}^{\prime}=10 p$ in, and from the chart $T_{4} \mathbb{1}^{-}=1900^{\circ} \mathrm{R}$ and $\mathrm{V}_{4}=79$. The fraction of the mixtufe staying in the cylinder is then $\nabla_{4} V_{4}^{\prime}=9,02 / 79=0.1 .142$, As the piston returis to top dead center, it expels fivesixths of this burned residue, leaving $0.1142 / 6=0.0190$ which is tho f, or unpurged fraction, for the cyclo. This does not agree exactly with the valuo 0.0172 greviously determifod in gteps 6-6 $6^{\prime}-1$ because the temperature of the clearance gases was assumed to be $2100^{\circ} \mathrm{R}$ against the value 1900 just determined. The cycle calculation using a clearance-gas temperature of $1900^{\circ} \mathrm{R}$ instead of $2100^{\circ} \mathrm{F}$ ceuld be repeated, but the result would be found to differ negligitly from those just obtained.

The work of the cycle may now be calculated. The basi is 1 mol of unpurged gas left in the engine at top dead cent tor. To this were added

$$
4.76+47.3=52.06 \mathrm{mols} \text { fresh charge }
$$

Fack mol of this contained $1 / 0.03531$ or 28.32 pounde fresh air. The work of the cycle, exclusive of the pumping loop, is

$$
\begin{aligned}
\left(\mathbb{E}_{3}-\mathbb{B}_{4}\right) & -\left(\mathbb{I}_{2}-\mathbb{I}_{1}\right) \\
& =(1690-1085) 52.06 \times 28.32-(4710-1280) 52.06 \\
& =892,500-178,500=714,000 \mathrm{Btu}
\end{aligned}
$$

The work of the pumping loop, positive in a supercharged engine,

$$
\begin{aligned}
& =\left(V_{1}-V_{3}\right)\left(P_{1}-P_{a t m}\right) \frac{144}{778} \\
& =(13,560-2260)(30-10) \frac{144}{778}=41,800 \mathrm{Btu}
\end{aligned}
$$

The work put into the supercharger (assumed mechanically geared to the engine) was found to be 1780 Btu per mol of air. Mols of air entering

$$
=\frac{52.06 \times 28.32}{28.95}=50.26
$$

Work into supercharger $=1780 \times 50.95=90,600$ Btu
Net work of cycle $=714,000+41,800-90,600=665,200$ Btu

Finally, the mols fuel entering, per mol air, $=0.017497$ (fromfig. 9); so

$$
\begin{aligned}
& \text { Mols fuel }=50.95 \times 0.01749 \times 1.2=1.069 \\
& \text { Pounds fuel }=1.069 \times 112.13=119.9
\end{aligned}
$$

Conventionally, the enthalpy of the liquid fuel at a standard temperature is used in the denominator to express efficiency. The velues for ΔH and ΔE for combustion are given in the table below the nomenclature for the main chart. At $560^{\circ} \mathrm{R}$, $\Delta \mathrm{H}=2,148,000 \mathrm{Btu}$ per pound moI, from vaporized gasoline to water as vapor. The heat of vaporization of octene at $560^{\circ} \mathrm{R}$ is obtainable from the chart, inset figure 9 , by taking the difference betwen the enthalpies of the vapor and the liauid. It is 6100-(-10200), or 16,300 Btu per pound mol. Then, ΔH from liauid gasoline to combustion products (water as vapor) is $2,148,000-16,300=2,13$? $0.000(1904 \mathrm{Btu} / 1 \mathrm{~b})$.

Then, cycle efficiency (engine-supercherger combined)

$$
\begin{aligned}
& =\frac{6 E 5200}{119.9 \times 1904} \\
& =29.1 \text { percent }
\end{aligned}
$$

The obtaining of aisplacement volume per horsepower-hour is straightforward, and will not be included here.

Massachusetts Institute of Technology, Cambridge, Mass., April 1945.

APPENDIX

I. FUNDAMINTAI DATA

Constants used throughout these calculations are identical with those used in the previous paper. The only others involved are constants for the Beattiembidgeman equations of state used in this report; gee later.

Specific Eeat of Octene

Specific heats of hydrocarbon vapors may be calculated by a summation of a number of Einstein functions, each representing a bond energy in the molecule. (See feference 2.) Doiratz (reference 3) has improved the method of Bennewitz and Rossner by adaing allowance for molecular rotation. Values for the specific heat of propane have been plotted, from the papers of Bennewitz and Rossner, Dobratz, Fugassi and Rudy (reference 4), and Hamister (reference 5), for comparison with the experimental data of Konz and Brown (reference 6) and of Brown (reference 7). Dobratzimethod fits the experimental data more closely than the others (within f percent at $800^{\circ} \mathrm{K}$), and furthermore predicts a high-temperature variation much more in accord with expectations from theory than any straight-line extrapolation of the experimental data. Consequently, Dobratz' correction to the calculations of Bennewitz and Rossner has been accepted for the calculation of the speoific heat of octene.

$$
\begin{align*}
& \text { The formula for } 0_{p}^{\circ}(p=0) \text { given by Dobratz is } \\
& 0_{p}^{0}=4 R+a R / 2+\sum V_{1} P_{1}+\frac{3 n-6-\Sigma v_{1}-a}{\sum V_{1}} \sum v_{1} Q_{1} \tag{3}
\end{align*}
$$

where
a number of bonas permitting free rotation, o-o or
similar
V_{1} number of bonds of type 1
P_{1}, Q_{1} energy associated with each bond of type 1
$n \quad t o t a l ~ n u m b e r ~ o f ~ a t o m s ~ i n ~ m o l e c u l e ~$

If m m number of 0 atoms in the molecule, this becomes, for normal or branched olefines.

$$
C_{p}^{0}=(6+m) R / 2+(m-2) P_{1}+P_{2}+2 m P_{3}+\frac{5 m-3}{3 m-1}
$$

$$
\begin{equation*}
\left[(m-2) Q_{1}+Q_{2}+2 m Q_{3}\right] \tag{4}
\end{equation*}
$$

For octene, for which $m=8$,

$$
\begin{equation*}
O_{p}^{0}=7 R+6 P_{1}+P_{2}+16 P_{3}+\frac{37}{23}\left(6 Q_{1}+Q_{2}+16 Q_{3}\right) \tag{5}
\end{equation*}
$$

The 台instein function by which P_{1} and Q_{1} may be determined is

$$
\begin{equation*}
P \text { or } Q=H\left(x^{a} \frac{e^{x}}{\left(e^{x}-1\right)^{a}}\right) \tag{6}
\end{equation*}
$$

where
$x=h v / k T$
h Planck's constant
v characteristic frequency
k gas constant per molecule
T temperature, ${ }^{0} \mathrm{~K}$

$$
\begin{aligned}
h / k & =4.778 \times 10^{-11} \text { degree seconds } \\
v & =c / \lambda=2.99796(1 / \lambda) \times 10^{10} \mathrm{~cm} / \mathrm{sec} / \mathrm{cm} \\
\frac{h v}{k T} & =\frac{1.4324(1 / \lambda)}{T}
\end{aligned}
$$

Wave numbers $I / \lambda_{1}: I / \lambda_{2}$, and I / λ_{3} for P-energy are 990 , 1620, and 2990, and for Quenergy are 390, 845, and 1320. A table of einstein functions may be found in Physik.-Ohem. Tab., Jandolt-Byrnstein. 1927, p. TO2, fifth ed., first onlarged volume.

By applying these velues to the equation, the C_{p}^{0} of cotene at $210^{\circ} 230^{\circ}, 250^{\circ}$, .., $990^{\circ} \mathrm{K}$ is determined. Then

$$
H^{\circ} \text { above } 200^{\circ} K=20 . \sum C_{p}^{0}
$$

and

$$
s_{p}=20 \Sigma\left(C_{p}^{\circ} / T\right)
$$

Finally, \boldsymbol{F}°, (x change in internal energy aboye zero-base for E at $\left.200^{\circ} K\right)=\int_{a \subset C}^{T} C_{v} d T=H^{\circ}-R\left(T-T_{0}\right)$

Entropies and Internal Erergies of Other Gases
The previous report gives values of d and s above $300^{\circ} \mathrm{K} f \mathrm{ct}$ the various eerses invoived (tables II and III of that report). For the jresent purfose 土t is necessary orly to determine vaiues frum 300° down to 200°, end pat all values on a $n \in w$ base coriestronaing to 0-ralue at $200^{\circ} \mathrm{K}$ for all gases. The results are Eiven in tables I and II.

GRITIGAI GONSTANTS

For n-actane, the critical tempereture, Tc, is $29 \mathbf{T}_{\mathrm{o}}^{\circ} \mathrm{C}$ ${ }^{\prime}\left(569^{\circ} \mathrm{K}\right)$; the critical pressure, P_{c}, is 24.6 atm. (Seereference 8.) From ethylene-ethane and propylena-propane critical-constant reletions (temperzture down 22.40 and 5:10 C, respectively; pressure up l.9 and 3.0 atm, respectively), assume that octene has Tc ard Ic which are 5° G lower and 2 atm higher, respectively, thar octgne. Then

$$
T_{c, \text { octene }}=564^{\circ} \mathrm{K} ; \quad P_{\text {c,octene }}=26.6 \mathrm{~atm}
$$

Considering the fact that gascifne is a mixture, the above procedure for determining critical constants is entirely adequatefor estimating corrections due to gas imperfections, which in any cane are small.

For water,

$$
T_{\mathrm{c}}=374.0^{\circ} \mathrm{C}\left(64 \mathrm{~T}^{20} \mathrm{~K}\right)
$$

and

$$
F_{c}=217.7 \mathrm{~atm}
$$

SUMMARY OF BEATTIF-BRIDGEMAN CONSTANTS POR GASBS

Gas	Octene ${ }^{\text {a }}$	$\begin{gathered} \left(\operatorname{Air}_{\mathrm{N}} \mathrm{~N}_{3}\right) \\ (\text { reference } 9) \end{gathered}$	$\begin{gathered} \mathrm{CO}_{2} \\ (\text { reference } 10) \end{gathered}$	$\begin{gathered} \mathrm{H}_{3} \mathrm{O} \\ (\text { reference } 11) \end{gathered}$
$\frac{B_{o} F_{c}}{R T_{c}}$	0.1620			0.1384
$\frac{A_{0} P_{c}}{R^{2} T^{2}}$. 4253			. 3140
$\frac{C P_{c}}{R T_{c}^{4}}$. 0667			. 1438
${ }^{\text {b }}$ 。	0.2819	0.04070	0.10476	0.03377
${ }_{0}$	34.248	1.0763	5.0065	4.0686
0	2.082×10^{7}	12×10^{4}	66×10^{4}	951×10^{4}

For octene, the bottom half of the table was obtained from the top half and from the previously given critical data, as follows:

$$
\begin{aligned}
B_{0} & =\left(\frac{B_{0} P_{c}}{R T_{c}}\right) \times \frac{0.08206 \times 564}{26.6}=0.2819 \text { Iiters } / \mathrm{gm} \mathrm{~mol} \\
A_{0} & =\left(\frac{A_{0} P_{c}}{R^{2} \mathbb{T}_{c}^{q}}\right) \times \frac{(0.08206 \times 564)^{2}}{26.6}=34.248(1 \pm t e r \mathrm{~s} / \mathrm{gm} \mathrm{~mol})^{2}(\mathrm{~atm}) \\
0 & \left.\left.=\left(\frac{0 P_{c}}{R_{c}^{4}}\right) \times \frac{0.08206 \times 564^{4}}{26.6}=2.082 \times 10^{7}(1 i t e r s / \mathrm{gIImol})\right)^{0} \mathrm{~K}\right)^{3}
\end{aligned}
$$

The Beattie-Bridgeman constants for water vapor were obtained in like manner.

It was assumed that all diatomic species (CO, $\mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{OH}$, NO), because of the minute quantity present, had the same B.B. constants as Air- N_{z}.
II. CALOUJATION OF TEMPERATURA AT WHICH H = O ON BURNTD-MIXTURA CHARTS
$\underline{F}=0.8$ Composition of gas is from page 55 of M,I.T. filer notes.

	Composition	$\begin{gathered} \left(\Delta \mathrm{F}, 200 \mathrm{to} 300^{\circ} \mathrm{K}\right) / 100 \\ (\mathrm{cal} / \mathrm{gm} \mathrm{~mol}) \end{gathered}$	$\mathrm{N} \cdot \mathrm{MO}$
Na	2	4.95	4.9500
HO	. 00119	5.21	. 0062
O_{2}	. 05248	5.02	. 2635
CO_{2}	.14176	6,40	. 9080
Ha_{2}	.14154	6.00	. 8500
CO	. 00001	4.97	---
Hz	---	4.78	---
OH	. 00045	5.21	. 0027
	$\Sigma N=1.33743$		$\Sigma \mathrm{NMO}_{\mathrm{V}}=6.9804$

$$
\begin{aligned}
-M R T & =\sum N M C_{V}\left(T-T_{0}\right) \\
-1.33743 \times 1.987 \times T & =6.9804(T-560)=6.9804 T-3910
\end{aligned}
$$

$$
T=\frac{3910}{6.9804+2.655}=406^{\circ} \mathrm{R}
$$

$F=1.5$

	Composition	MC_{V}	N. MC_{V}
N_{2}	1.0	4,95	4.9500
CO_{3}	.09667	6.40	. 6185
$\mathrm{H}_{2} \mathrm{O}$.16897	6.00	1.0140
00	.16900	4.97	. 8400
H_{3}	. 09669	4.78	. 4625
H	. 00002	3.00	. 0001
	$\Sigma N=1.53134$		$\Sigma N M C_{V}=\overline{7.8851}$

$$
\begin{aligned}
-1.53134 \times 1.987 \times T & =7.8851(T-560) \\
-3.04 T & =7.8851 T-4415 \\
T=\frac{4415}{10.925} & =404^{\circ} \mathrm{T}
\end{aligned}
$$

Spread of but 2^{0} F between the two extremes of composition suggests an average $T=405^{\circ} R$ at which $H=0$. This produces a maximum error in H of about 7 Btu per mol, or about 0.25 Btu per pound, which on the burned charts is onethirtieth of one small division on the H-scale. A heavy ifne has been drawn on the $H-s c a l e$ of the Modified Air chart at $T=405^{\circ} \mathrm{R}$.

REFERENCES

1. Mccann, H. J.: Thermodynamic Charte for Internal Combustion tingine Fluids. NACA RB No. 3G28, 1943.

2, Bennewitz, K., and Rossner, W.: The Molal Heat of Organic Vapors. Z. Phigik. Ohem., vol. B39. 1938, pp. 128-144.
3. Dobratz, C. J.: Heat Capacities of Orgapic Vapors. Ind. Eng. Ohem., vol. 33. 1941, p. 759.
4. Fugassi, P., and Rudy, Q. T., Jr,; Specific Heats of Organic Vapors. Ind. Eng. Chem., voi. 30, 1938, pp. 1029-1030.
6. Bdmister, W. C.: Thermodynamic Properties of Hydrocarbons. Ind. Eng. Chem., vol. 30, 1938, pp. 352-358.
6. Konz, P.R., and Brown, G. G.: Thermal Properties of Pentane. Ind. Png. Chem., vol. 33, 1941, pp. 617-623.
7. Holcomb, D. E., and Brown, G. G.: Thermodynamic Properties of Light Hydrocarbons. Ind. Eng. Chem., vol. 34, 1942, pp. 590-601.
8. Washburn, Idward W., Ed. In Chief: International Critical Tables of Numericel Data, Phyeics, Chemistry, and Technology, vol. III, MoGraw-Hill Book Co., Inc., 1928. ․ 248.
9. Beattie, J. A.: The Heat Capacities of Real Gasen and Mixtures of Real Gases. Fhys. Rev., vol. 34, 1929, p. 1615.
10. Beatife, J. A., and Bridgeman, O. O.: A New Equation of State for Fluids. Proc. Am. Acad. Arts, Sci., vol. 63, 1928. pp. 229-308.
11. Beattie, J. A., and Stockmayer, W. H.: Equations of State. Phys. Soc. Rep. Progress Physics, vol. 7, 1940, pp. 195229.

(cal/gman)

$\left(\frac{T}{T_{\mathrm{K}}}\right)$	${ }_{\text {Alir }}$	Octene	$\mathrm{AlF}^{-\mathrm{H}_{2}}$	0_{3}	$\cdot \mathrm{CO}_{3}$	$\mathrm{H}_{3} \mathrm{O}$	H_{2}	60	no	OH	0, H
200	0	0	0	0	0	0	0	0	0	0	0
250	248	1,295	248	249	307	299	235	248	263	262	149
300	496	2,830	495	502	640	600	478	497	521	521	298
400	997	6,748	992	1014	1,385	1221	974	997	1047	1032	596
600	2026	17,876	2006	2103	3,118	2508	1975	2025	2101	2046	1192
800	3118	32.563	3075	3282	5.090	3907	2986	3118	3237	3067	1788
1000	4275	49,864	4207	4529	7,229	5428	4017	4279	4439	4116	2384
1200	5483		5394	5819	9,485	7071	5083	5495	5691	5198	2980
1400	6733		6624	7144	12,825	8816	6188	6751	6979	6338	3576

$$
\left(\varepsilon_{31} / \mathrm{gn} \text { mol }{ }^{\circ \mathrm{K}} \text { or } \text { Btu/ } \mathrm{lb} \text { mol }{ }^{\circ} \mathrm{R}\right. \text {) }
$$

[zero value assigned at $200^{\circ} \mathrm{K}$]

$\stackrel{m}{\left(0_{\mathbb{K}}\right)}$	Air	Octene	$\mathrm{A}_{1} \mathrm{I}-\mathrm{IN}_{2}$	02	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$	H_{2}	co	so	OH	O,H
200	0	0	0	0	0	0	0	0	0	0	0
250	2.544	6.176	1.542	1.553	1.809	1.773	2.495	1.553	1.615	1.609	1.11
300	2.815	12.141	2.812	2.826	3.384	3.230	2.742	2.821	2.921	2.913	2.02
400	4.824	23.905	4.812	4.869	6.090	5.556	4.739	4.829	4.978	4.98	3.45
600	7.714	46.987	7.671	7.876	10.389	8.959	7.573	7.717	7.937	7.84	5.46
800	9.854	68.579	9.778	10.141	13.790	21.531	9.594	9.859	10.136	9.88	6.89
1000	11.585	88.277	11.482	11.972	16.617	13.657	11.190	11.596	11.921	11.49	8.00
1200	13.049		12.927	13.510	19.034	15.508	12.523	13.065	13.39	12.64	8.90
1400	14.319		14.181	14.837	21.143	17.161	13.680	14.339	14.69	14.01	9.67

化

 P

華

艺

 3 ， \＃

 य，य，

 य य 4 ，

technical note no. 1026

VOLUME CORRECTION FOR MIXTURE

