https://ntrs.nasa.gov/search.jsp?R=19930087924 2020-06-17T11:44:46+00:00Z

RM E53118

NACA

RESEARCH MEMORANDUM

NACA RM E53118

ALTITUDE PERFORMANCE OF COMPRESSOR, TURBINE, AND

COMBUSTOR COMPONENTS OF 600-B9

TURBOJET ENGINE

By William R. Prince and Dorwin B. Wile

Lewis Flight Propulsion Laboratory Cleveland, Ohio

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON March 15, 1954 Declassified February 8, 1960 NACA RM E53118

V

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

ALTITUDE PERFORMANCE OF COMPRESSOR, TURBINE, AND COMBUSTOR

COMPONENTS OF 600-B9 TURBOJET ENGINE

By William R. Prince and Dorwin B. Wile

SUMMARY

The altitude performance of the 600-B9 compressor, turbine, and combustor components operating as integral parts of the engine was determined in the NACA Lewis altitude wind tunnel. The investigation was conducted over a range of simulated flight conditions corresponding to altitudes from 6000 to 45,000 feet and flight Mach numbers from 0.160 to 0.997 (corresponding to a Reynolds number index range from 0.795 to 0.164).

The compressor and turbine were matched in such a manner that at a Reynolds number index of 0.795 and the sea-level static military thrust condition the compressor operated at the design pressure ratio of 9.0 with a compressor efficiency of 0.845 and a corrected air flow of 167 pounds per second. The maximum compressor efficiency of 0.87 occurred at a corrected engine speed corresponding to approximately 92 percent of rated engine speed. Compressor operation at lower Reynolds number index resulted in decreased compressor efficiency and corrected air flow. Turbine operation at the military thrust condition for 0.795 compressorinlet Reynolds number index resulted in a turbine efficiency of 0.82 and a turbine pressure ratio of 3.6. Operation at minimum Reynolds number index resulted in decreased turbine efficiency and corrected gas flow. The combustion efficiency correlated with the combustion parameter PT/V (total pressure times total temperature/velocity, (lb/sq ft abs)(°R)/(ft/sec)). Combustion efficiency was not affected by changes in corrected engine speed, and variations in flight conditions corresponding to a reduction in Reynolds number index from 0.795 to 0.164 lowered combustion efficiency from about 0.99 to 0.94.

The total variation in component efficiency with change in altitude at a constant rlight Mach number resulted from both a change in corrected engine speed and in Reynolds number index. For the military thrust condition, an increase in altitude from sea level to 45,000 feet at a constant flight Mach number of 0.8 resulted in a decrease in compressor efficiency from 0.86 to 0.78; of this decrease, about two-thirds was due to the increase in corrected engine speed. For the same operating conditions, the turbine efficiency decreased approximately 2 percent, primarily as a result of the reduction in Reynolds number.

INTRODUCTION

An investigation to determine the altitude performance of the 600-B9 components operating as integral parts of the engine was conducted in the NACA Lewis altitude wind tunnel. This investigation was made in conjunction with the altitude-wind-tunnel investigation to determine over-all performance characteristics of this turbojet engine.

Sea-level performance investigations of the compressor and turbine have been conducted and are reported in references 1 and 2, respectively. Because of the nature of the rig tests, altitude effects on the compressor and turbine performance could not be determined; and, since the components were separately tested, the effect of flight condition on the operating points of the components could not be determined.

The purpose of this report is (1) to describe the performance of each component over a range of altitudes, (2) to show the effect of flight conditions on operating point of each component, and (3) to summarize briefly the effects of changes in component performance with flight condition on the over-all engine performance.

The data were obtained at five fixed settings of the variable-area exhaust nozzle over an engine-speed range restricted to that obtainable with the acceleration air-bleed ports closed. Simulated flight conditions were for a range of altitudes from 6000 to 45,000 feet and flight Mach numbers from 0.160 to 0.997 (corresponding to Reynolds number index range from 0.795 to 0.164). A tabulation of component performance data is presented in table I.

INSTALLATION AND INSTRUMENTATION

Installation

The installation of the engine in the altitude wind tunnel is shown in figure 1. Dry refrigerated air was supplied to the engine inlet through a duct from the tunnel make-up air system. In this system, air is throttled from approximately sea-level pressure to an engine-inlet stagnation pressure corresponding to the desired flight condition.

Instrumentation

Location of the instrumentation used to determine the component performance is shown in figure 2. The engine air flow was measured both at the engine-inlet annulus (station 1) and at a station in the inletair duct (not shown in fig. 2).

The temperatures measured at the exhaust-nozzle inlet (station 6) were used as the turbine-outlet temperatures, because the downstream station was less affected by turbine radiation and also provided a greater mixing length for the gas.

The pressures at stations 1, 5, and 6 were measured with alkazenefilled manometers; whereas those at stations 2, 3, and 4 were measured with mercury-filled manometers. All pressures were photographically recorded. The temperatures at station 1 were measured with ironconstantan thermocouples, and those at stations 2, 4, and 6 with chromel-alumel thermocouples; all temperatures were recorded by selfbalancing potentiometers.

APPARATUS

Engine

The 600-B9 turbojet engine with provision for afterburning has static sea-level ratings for the nonafterburning case as follows:

	Military	Normal
Engine speed, rpm	6100	6000
Thrust, 1b	9515 P	8208
Specific fuel consumption,		0200
lb/(hr)(lb thrust)	0.989	0.927

Compressor

Compressor description and significant design parameters. - The 16stage single-entry axial-flow compressor has a constant tip diameter of 33.5 inches. The rotor hub-tip radius ratios for the first and sixteenth stages are 0.550 and 0.891, respectively; rotor blade chords for these two stages are 2.25 and 0.75. Design air flow is 155 pounds per second, and specific air flow based on design flow is 25.4 pounds per second per square foot of frontal area (based on compressor tip diam.). The design tip Mach number is 0.72. The design compressor pressure ratio is is 9.0, and the average pressure ratio per stage is 1.147. Acceleration air bleed. - The use of bleed ports permits engine acceleration in the intermediate speed range (65 to 85 percent of rated) where, as a consequence of the compressor surge characteristics, the compressor operating line approaches the surge line (ref. 1). Air is bled from eight ports in the combustor-inlet section. The ports operate automatically and are normally scheduled to be open between 55 and 92 percent of rated engine speed.

Combustor

The combustor is of the annular type with ten through-flow inner liners. Each of the ten liners was supplied fuel through singleinlet duplex fuel nozzles. Ignition was provided by two spark plugs located in diametrically opposite liners. The approximate combustorinlet reference velocity based on full burner-section area at design sea-level conditions is 90 feet per second.

Turbine

The three-stage turbine rotor has a 33.5-inch constant tip diameter; the annular area increases through the turbine, the inner shroud having a cone half-angle of 11° . The rotor hub-tip radius ratios of the first, second, and third stages are 0.795, 0.746, and 0.697, respectively; and the design division of work is 38.5, 33, and 28.5 percent for the three stages. Rated turbine-inlet temperature is 2160° R. Design work and design rotational speed (both corrected to rated turbineinlet temperature) are 32.4 Btu per pound and 3028 rpm, respectively. Design weight flow based on design air flow (corrected to rated turbineinlet pressure and temperature) is 38.8 pounds per second.

PROCEDURE

Component performance data were obtained, in conjunction with engine operation (afterburner inoperative), over a range of simulated flight conditions for altitudes from 6000 to 45,000 feet, flight Mach numbers from 0.160 to 0.997, and engine speeds from 86 to 102 percent of rated speed. For all the data presented herein, the acceleration air-bleed ports were set to remain in the closed position. Compressor surge characteristics did not allow steady-state operation at engine speeds below 86 percent of rated with the bleed ports closed. The data were obtained with five fixed positions of the variable-area exhaust nozzle having projected areas of 2.54, 2.685, 2.86, 3.18, and 4.13 square feet.

Test-section static pressures were set to the desired altitude pressure. Engine-inlet stagnation pressures were set to correspond to the

NACA RM E53I18

desired flight conditions with 100-percent ram-pressure recovery assumed. Engine-inlet stagnation temperatures were set at NACA standard values for each flight condition, except that the minimum temperature obtained was about -20° F.

Fuel conforming to the specification MIL-F-5624A, grade JP-4, with a lower heating value of 18,700 Btu per pound and a hydrogen-carbon ratio of 0.171 was used throughout the investigation.

The symbols and the methods used in the calculation of the component performance are presented in appendixes A and B, respectively.

RESULTS AND DISCUSSION

The altitude performance of the compressor, the turbine, and the combustor of the 600-B9 engine, operating as isolated components, will be discussed first; and, second, the effect of flight condition on operating point and the trends of the performance of each component with variations in engine and flight conditions will be shown. The effects of changes in component performance with flight condition on the over-all engine performance will also be discussed.

Since the exhaust nozzle was choked for most of the data, the performance maps are presented in terms of conventional Reynolds number index (see appendix B). The variation of Reynolds number index with altitude and flight Mach number is shown in figure 3 for the values of Reynolds number index corresponding to the simulated flight conditions of this investigation. Actual altitude performance variations shown later were obtained by interpolating maps at various Reynolds number indices.

All data presented have been generalized to standard sea-level conditions. A tabulation of component performance data is presented in table I.

Compressor Performance

The over-all performance of the compressor as an isolated component is presented in terms of compressor pressure ratio and corrected air flow for lines of constant corrected engine speed and compressor efficiency.

Performance maps. - The compressor performance map for a Reynolds number index of 0.795 is shown in figure 4(a). At design compressor pressure ratio (9.0) and rated corrected engine speed (6100 rpm), the corrected air flow was approximately 167 pounds per second, and the compressor efficiency was 0.845. Compressor efficiency reached a maximum of 0.87 at a corrected engine speed of approximately 5600 rpm. At a given corrected engine speed, variation in compressor pressure ratio as limited by operation of the compressor and turbine as engine components caused variations in compressor efficiency on the order of 1 percent. The corrected air flow for the high corrected engine speeds was affected only slightly by variation in compressor pressure ratio.

The compressor performance map at a Reynolds number index of 0.164 is shown in figure 4(b). At the design compressor pressure ratio and rated corrected engine speed, corrected air flow and compressor efficiency had decreased approximately 1 percent as compared with the higher Reynolds number condition. The decrease in compressor performance results from change in Reynolds number, as will be discussed in the next section. Although the map is not complete, the data indicate that the maximum compressor efficiency was 2 percent lower than for the high Reynolds number and occurred at approximately the same corrected engine speed. Variations in compressor pressure ratio at a given corrected engine speed had a greater effect on efficiency at the low Reynolds number condition.

Effect of Reynolds number index. - Compressor efficiency and corrected air flow are shown in figure 5 as functions of Reynolds number index for given corrected engine speeds and compressor pressure ratios. Effect of Reynolds number index on efficiency was greater at the higher corrected engine speeds. Variation in Reynolds number had no significant effect on corrected air flow or efficiency for values of Reynolds number index greater than about 0.5.

Performance maps for compressor and turbine as engine components. -The following analysis is presented to establish the interaction between the compressor and turbine when operating as engine components. When critical flow exists in the turbine, the corrected mass flow through the turbine remains constant and proportional to the effective flow area of the turbine; hence

$$\frac{W_{g,t}\sqrt{T_3}}{P_3} = K_1 A_t$$
 (1)

(Symbols are defined in appendix A.)

If these quantities are generalized to engine-inlet conditions by the use of δ_1 and θ_1 , then (assuming that the ratio of air flow to gas flow is constant) the following equation is obtained:

$$\frac{\frac{W_{a,1}\sqrt{\theta_1}}{\delta_1}\sqrt{\frac{T_3}{T_1}}}{\frac{P_3}{P_1}} = K_2 A_t$$
(2)

7

If it is assumed that the pressure drop across the combustor is a constant percentage of the compressor-outlet pressure, equation (2) may be rewritten as follows:

$$\frac{\frac{W_{a,1}\sqrt{\theta_1}}{\delta_1}\sqrt{\frac{T_3}{T_1}}}{\frac{P_2}{P_1}} = K_3A_t$$
(3)

Thus, the operating point of a compressor functioning as an integral component of an engine is determined by the corrected engine speed (primary factor determining corrected air flow) and the turbine-inlet to engine-inlet temperature ratio, which, with effective area of the turbine, determines the compressor pressure ratio.

In order to show the performance of the compressor as an engine component, operating lines of constant turbine-inlet to engine-inlet temperature ratio are superimposed on the performance map of figure 4(a), and the resultant map is shown for the high Reynolds number condition in figure 6(a). At the military thrust condition where the turbineinlet to engine-inlet temperature ratio was 4.16 (NACA standard static sea-level temperature) and the corrected engine speed was 6100 rpm, the compressor operated at the design compressor pressure ratio of 9.0 at which the corrected air flow was 167 pounds per second and the compressor efficiency was 0.845. Operation of the compressor at the design pressure ratio for the military thrust and high Reynolds number condition indicates that the compressor was properly matched with the turbine at design operating conditions.

For the military thrust conditions (corrected engine speed 6100 rpm and turbine-inlet to engine-inlet temperature ratio 4.16), the compressor operating point for the low Reynolds number condition (fig. 6(b)) occurred at a compressor pressure ratio of 9.2 with a corrected air flow of 163 pounds per second and a compressor efficiency of 0.83. The shift to lower corrected air flow and compressor efficiency was similar to that noted for the case of the compressor operating as an isolated component and has been accounted for primarily from the effect of Reynolds number on the compressor. The higher compressor pressure ratio also tends to reduce the corrected air flow. The shift in compressor operating point to increased compressor pressure ratio with the decrease in Reynolds number index is associated with a change in the matched operation of the compressor and turbine, which primarily results from a decrease in turbine critical flow area, as will be shown in conjunction with the turbine performance.

By use of figure 7, which presents the effect of exhaust-nozzle area on compressor pressure ratio and turbine-inlet to engine-inlet temperature ratio for the high Reynolds number condition, and of the compressor map (fig. 6(a)), compressor performance (for this specific Reynolds number index) can be determined for any combination of exhaustnozzle area and corrected engine speed. Similar curves for other Reynolds number indices can be constructed from the data presented in table I.

Turbine Performance

Performance maps. - The over-all performance of the turbine is presented in terms of corrected turbine enthalpy drop and turbine weightflow parameter for lines of constant corrected turbine speed, pressure ratio, and efficiency. The performance maps for compressor-inlet Reynolds number indices of 0.795 and 0.164 are shown in figure 8. The limited range of turbine operation is characteristic of that obtainable from investigation of a turbine as an integral part of an engine.

The design turbine operating point is defined by the design corrected turbine speed of 3028 rpm (military thrust condition) and the design corrected turbine enthalpy drop of 32.4 Btu per pound. For the high Reynolds number condition the design operating point was at a turbine pressure ratio of 3.6, a turbine efficiency of 0.82, and a corrected turbine gas flow of approximately 40.8 pounds per second. Correctea turbine gas flow is obtained by dividing out the corrected turbine speed and the factor 60 from the weight-flow parameter. A decrease in Reynolds number caused the region of turbine operation to shift to lower values of weight-flow parameter. The design operating point for the low Reynolds number condition was at a turbine pressure ratio of 3.8, a turbine efficiency of approximately 0.79, and a corrected turbine gas flow of approximately 38.7 pounds per second.

The increase in turbine pressure ratio as Reynolds number decreased resulted from the reductions in both compressor and turbine efficiencies, which required greater expansion through the turbine to provide the component work. The decrease in turbine efficiency and corrected turbine gas flow is attributed primarily to the reduction in turbine Reynolds number, which will be discussed in the following section.

Turbine efficiency for both flight conditions increased slightly, either at a constant turbine pressure ratio with increase in corrected

NACA RM E53I18

V

turbine speed, or at a constant corrected turbine speed with decrease in turbine pressure ratio. The maximum turbine efficiency for the high Reynolds number condition was 0.83 compared with 0.79 for the low Reynolds number. Corrected turbine enthalpy drop decreased with reduction in Reynolds number index (at a constant corrected turbine speed and pressure ratio) as a result of the decrease in turbine efficiency.

Effect of Reynolds number index. - The effect of Reynolds number on turbine performance is shown in the plot (fig. 9) of turbine efficiency and corrected turbine gas flow as functions of turbine-inlet Reynolds number index for several constant values of corrected turbine speed and pressure ratio. Turbine efficiency and corrected turbine gas flow for conditions shown remained essentially unchanged for values of Reynolds number index of 1.0 and greater.

In general, a decrease in turbine efficiency and corrected gas flow accompanied a decrease in Reynolds number index below 1.0. Turbine efficiency for a corrected turbine speed of 3200 rpm and turbine pressure ratio of 4.3 decreased approximately 4 percent for a decrease in Reynolds number index from 1.4 to 0.25. The effect of Reynolds number on turbine efficiency was less at the lower corrected turbine speeds. For a Reynolds number index of 0.3, an increase in corrected turbine speed from 3000 to 3200 rpm resulted in a 2-percent decrease in turbine efficiency.

The corrected turbine gas flow for a corrected turbine speed of 3200 rpm and a pressure ratio of 4.3 decreased approximately 5 percent over the range of Reynolds number index shown. This reduction in corrected turbine gas flow (as mentioned under compressor performance) follows from the apparent decrease in turbine effective flow area, which, for the range of flight conditions investigated, amounted to approximately 5 percent. As would be expected from the earlier discussion of compressor and turbine matching, the observed reduction in corrected turbine gas flow was accompanied by a proportional increase in compressor pressure ratio. An increase in corrected turbine speed for a given low value of Reynolds number index resulted in slightly lower corrected turbine gas flows. The change in corrected turbine gas flow for different corrected turbine speeds is indicative of a choking condition downstream of the first stator. This condition was also indicated in the turbine rig investigation reported in reference 2.

Combustor Performance

The efficiency of a fixed combustor design is primarily a function of such variables as fuel-air ratio, fuel atomization, and combustorinlet pressure, temperature, and velocity. In evaluating the performance of a combustor as an integral part of an engine, it is impossible to control these variables independently; variations in engine speed, flight condition, and exhaust-nozzle area change in varying degrees these variables affecting combustion efficiency. Variation of combustion efficiency with combustion parameters PT/Vand $\overline{W_aT_6}$. The interaction of the primary combustion variables (pressure, temperature, and velocity) are combined into a parameter PT/Vthat has been found useful (ref. 3) in correlating combustion-efficiency data (fig. 10). By use of the parameter W_aT_6 (fig. 10), which is proportional to PT/V, it is possible to determine combustion efficiency when the engine operating and flight conditions are known.

The high pressures and temperatures inherent in the 600-B9 engine design result in PT/V values for the most part above 25,000, and combustion efficiencies below 0.90 were not encountered at any condition investigated. Combustion efficiency increased from approximately 0.93 at PT/V value of 25,000 to about 0.99 for PT/V values of 100,000 and above.

Effect of Reynolds number index on combustor total-pressure loss. -The total-pressure-loss ratio as a function of the square root of the combustor-outlet to combustor-inlet temperature ratio (fig. 11) decreased from 0.065 for a combustor temperature-ratio parameter of 1.26 to 0.055 at a temperature-ratio parameter of 1.52.

Performance of combustor as part of engine. - Primary combustion variables were not changed enough to affect efficiency appreciably through variations in exhaust-nozzle area. Consequently, the variation of combustion efficiency with corrected engine speed for each of the Reynolds number indices (fig. 12) is based on the average of data obtained over the range of exhaust-nozzle areas investigated. Combustion efficiency was not affected by changes in corrected engine speed, and variations in flight conditions corresponding to a reduction in Reynolds number index from 0.795 to 0.164 lowered combustion efficiency from about 0.99 to 0.94.

Engine Performance

Effect of flight condition on over-all component performance. - The effects of altitude on component performance for two engine thrust conditions (military and normal) are shown in figure 13(a) for a flight Mach number of 0.8. The variation in component performance is shown as a function of altitude, inasmuch as component efficiencies are directly a function of their environment pressure, which is changed to a greater extent by variation in altitude at a constant flight Mach number than by a Mach number variation at constant altitude.

An increase in altitude from sea level to 45,000 feet for the military thrust condition results in an increase in corrected engine speed from approximately 5750 to 6600 rpm and a decrease in Reynolds number index from 1.12 to 0.27. Both of the above variables affect compressor

NACA RM E53I18

efficiency. For an increase in altitude from sea level to 45,000 feet, compressor efficiency (fig. 13(a)) decreased from approximately 0.86 to 0.78. Of this decrease in efficiency, approximately two-thirds was due to the increase in corrected engine speed accompanying the increase in altitude, and the remaining portion resulted from the effect of Reynolds number. The curves level off at an altitude of 35,000 feet (approximately the tropopause), since corrected engine speed remained constant for a further increase in altitude. Compressor efficiency for the normal power setting showed a trend similar to the higher thrust condition for a variation in altitude.

Combustion efficiency decreased from approximately 0.99 at sea level to 0.95 at 45,000 feet. This reduction in efficiency was due to the reduction in pressure accompanying the increase in altitude; variation in corrected engine speed or thrust condition had no discernible effect on efficiency.

Turbine efficiency for both thrust conditions decreased approximately 2 percent as altitude was increased over the range shown. Inasmuch as turbine-inlet temperature was constant for a constant thrust condition, corrected turbine speed was fixed; therefore, the decrease in turbine efficiency results from a change in Reynolds number or turbine pressure ratio. The change in turbine pressure ratio was very small; consequently, the decrease in turbine efficiency resulted primarily from the reduction in Reynolds number.

For an increase in altitude from sea level to 45,000 feet, it would be predicted that the corrected air flow (excluding Reynolds number effects) for the military thrust condition would increase about 17 pounds per second as a result of the increase in corrected engine speed. However, actual corrected air flow (including the effect of Reynolds number) increased only approximately 15.5 pounds per second.

Effect of changes in component performance on engine performance. -The effects of altitude on corrected net thrust and corrected specific fuel consumption at the military thrust condition for actual altitude performance (including Reynolds number effect on component performance) and for predicted performance where Reynolds number effects have been excluded are shown in figure 13(b). For the actual condition, corrected net thrust increased approximately linearly as altitude was increased to 35,000 feet due to the increase in corrected air flow. An increase in altitude beyond 35,000 feet resulted in slightly lower corrected air flows with concomitant lower corrected net thrust. The corrected net thrust remained equal for altitudes up to approximately 25,000 feet for both performance conditions considered, which indicates no discernible Reynolds number effect on engine performance. Further increase in altitude to 35,000 feet resulted in slightly higher corrected net thrust for the condition excluding Reynolds number effect; theoretical corrected net thrust remained constant for increase in altitude beyond 35,000 feet, because corrected engine speed and corrected air flow remained fixed. At an altitude of 45,000 feet, an improvement in corrected net thrust of approximately 3 percent would be attained if there were no Reynolds number effect on the components.

An increase in the actual corrected specific fuel consumption (fig. 13(b)) of approximately 7 percent (compared with predicted) at an altitude of 45,000 feet followed from the decrease in component efficiencies.

The aforementioned apparent decrease in turbine effective flow area of approximately 5 percent accompanying a change in Reynolds number index from 0.795 to 0.164 has also been analytically determined to have a rather insignificant effect on engine thrust, which indicates that the component matching was not affected significantly by the change in turbine flow area.

CONCLUDING REMARKS

The results of the investigation show that the compressor and turbine were matched in such a manner that at a Reynolds number index of 0.795 and the sea-level static military thrust condition the compressor operated at the design pressure ratio of 9.0 with a compressor efficiency of 0.845 and a corrected air flow of 167 pounds per second. Maximum compressor efficiency of 0.87 occurred at a corrected engine speed corresponding to approximately 92 percent of rated engine speed. Operation at a lower Reynolds number index resulted in decreased compressor efficiency and corrected air flow. Turbine operation at the military thrust condition for 0.795 compressor-inlet Reynolds number index resulted in a turbine efficiency of 0.82 and a turbine pressure ratio of 3.6. Operation at minimum Reynolds number index resulted in decreased turbine efficiency and corrected gas flow. Combustion efficiency correlated with combustion parameter PT/V (total pressure times total temperature/velocity, (lb/sq ft abs)(^bR)/(ft/sec)). Combustion efficiency was not affected by changes in corrected engine speed, and variations in flight conditions corresponding to a reduction in Reynolds number index from 0.795 to 0.164 lowered combustion efficiency from about 0.99 to 0.94.

The total variation in component efficiency with change in altitude at a constant flight Mach number results from both a change in corrected engine speed and in Reynolds number index. For the military thrust condition, an increase in altitude from sea level to 45,000 feet at a constant flight Mach number of 0.8 resulted in a decrease in compressor efficiency from 0.86 to 0.78; of this decrease, about two-thirds was due to

NACA RM E53I18

the increase in corrected engine speed. For the same operating conditions, turbine efficiency decreased approximately 2 percent, primarily as a result of the reduction in Reynolds number index.

Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, September 22, 1953

APPENDIX A

SYMBOLS

The following s	symbols are used in this report:
А	cross-sectional area, sq ft
cp	specific heat at constant pressure, $Btu/(lb)(^{O}F)$
g	acceleration due to gravity, 32.2 ft/sec ²
Н	total enthalpy, Btu/lb
к ₁ , к ₂ , к ₃	constants
М	Mach number
N	engine speed, rpm
Р	total pressure, lb/sq ft abs
р	static pressure, lb/sq ft abs
R	gas constant, 53.4 ft-lb/(lb)(^O R)
Т	total temperature, ^O R
t	static temperature, ^O R
V	velocity, ft/sec
V _{cr}	critical velocity, $\sqrt{\frac{2\gamma}{\gamma+1}}$ gRT, ft/sec
Wa	air flow, lb/sec
W_{f}	fuel flow, lb/hr
Wg	gas flow, lb/sec
$\frac{W_{g,t}\sqrt{\theta_3}}{\delta_3}$ β	corrected turbine gas flow, lb/sec
$\frac{W_{g,t}\sqrt{\theta_3}}{\delta_3}\frac{N}{60\sqrt{\theta_3}}\beta$	turbine weight-flow parameter, $\frac{(lb)(rpm)}{sec^2}$

β

r

δ

η

θ

φ

function of r, $\frac{r_0}{r_3} \frac{\left(\frac{r_3+1}{2}\right)^{\frac{r_3}{r_3-1}}}{\frac{r_0}{r_0-1}}$ atio of specific heres

ratio of specific heats
pressure correction factor, P/2116 (total pressure divided by NACA standard sea-level pressure)
efficiency
temperature-correction factor, squared ratio of critical velocity to critical velocity at NACA
standard sea-level temperature (519° F), $\left(\frac{V_{cr}}{V_{cr,0}}\right)^2$

ratio of absolute viscosity at altitude to absolute viscosity at NACA standard sea-level conditions

Subscripts:

a	air
Ъ	combustor
c	compressor
e	engine
f	fuel
g	gas
i	indicated
m	manifold
t	turbine

0	NACA standard sea-level conditions
1	engine inlet
2	compressor outlet
3	turbine inlet
4	turbine outlet
5	diffuser outlet
6	exhaust-nozzle inlet

V

APPENDIX B

METHODS OF CALCULATION

Temperatures

Total temperatures were determined from indicated temperatures by the following equation:

where 0.85 is the impact recovery factor for the NACA thermocouple used.

Air Flow

Air flow was determined from pressure and temperature measurements at the engine inlet (station 1) and at a station in the inlet-air duct (not shown in fig. 2). Values for air flow obtained at these two stations showed good agreement and were obtained by the equation

$$V_{a} = pA \sqrt{\frac{2\gamma g}{(\gamma-1)RT} \left(\frac{P}{p}\right)^{\gamma} \left[\left(\frac{P}{p}\right)^{\gamma} - 1\right]}$$
(B2)

Gas Flow

The gas flow downstream of the combustor adjusted for engine leakage is

$$N_{\rm g} = W_{\rm a} + \frac{W_{\rm f}}{3600}$$
 (B3)

Reynolds Number Index

For a given compressor Mach number (corrected engine speed), Reynolds number index varies linearly with Reynolds number and is defined as the ratio of Reynolds number at altitude to Reynolds number at standard sealevel conditions:

Reynolds number index =
$$\frac{\delta}{\varphi \sqrt{\theta}}$$
 (B4)

Combustor-Inlet Velocity

With the use of combustor Mach number M_b , combustor-inlet velocity was determined from the following equation:

$$V_{b} = M_{b} \sqrt{\gamma_{2} g R t_{2}}$$
(B5)

where

$$t_{2} = \frac{T_{2}}{1 + \frac{\gamma_{2} - 1}{2} M_{b}^{2}}$$

Turbine-Inlet Total Temperature

Turbine-inlet total temperature was calculated on the assumption that the enthalpy drop across the turbine is equal to the enthalpy rise across the compressor. From this assumption, the temperature drop across the turbine, ΔT_t , may be computed from

$$\Delta T_{t} = \frac{W_{a,l}c_{p,a}\Delta T_{c}}{W_{g,3}c_{p,g}}$$
(B6)

where ΔT_{c} is the temperature rise across the compressor.

Since the turbine-outlet temperature T_4 is known,

$$T_3 = \Delta T_t + T_4 \tag{B7}$$

Compressor Efficiency

Compressor efficiency was calculated from the tables presented in reference 4 with water-vapor corrections neglected. With the known values of compressor pressure ratio and T_1 , π_1 and H_1 can be obtained from the tables (where π is the relative pressure function). From the relation

$$\pi_2 = \frac{P_2}{P_1} \pi_1$$

 π_2 and H_2 (isentropic) were found. From the measured value of T_2 , H_2 (actual) was obtained from the tables. Compressor efficiency was then calculated by

$$H_{c} = \frac{\Delta H_{isentropic}}{\Delta H_{actual}}$$

$$= \frac{H_{2,isentropic} - H_{1}}{H_{2,actual} - H_{1}}$$
(B8)

Combustion Efficiency

Combustion efficiency is defined as the ratio of the actual enthalpy rise of the gas while passing through the engine to the theoretical increase in enthalpy that would result from complete combustion of the fuel:

 $\eta_{b} = \frac{\text{actual enthalpy rise of gas across engine}}{\text{heat input}}$ $= \frac{3600 \left[W_{a,1}H_{a} \right]_{T_{1}}^{T_{6}} + \left[W_{f}H_{f} \right]_{T_{m}}^{T_{6}}}{18,700W_{f}}$

where 18,700 Btu per pound is the lower heating value of the fuel.

Turbine Efficiency

Turbine efficiency was obtained from the relation

(B9)

$\eta_t = \frac{\text{work done by turbine}}{\text{adiabatic ideal work of expansion}}$

$$= \frac{1 - \frac{T_4}{T_3}}{\frac{r_t - 1}{r_t}}$$
$$1 - \left(\frac{P_4}{P_3}\right)$$

(B10)

where γ_t is based on $\frac{T_3 + T_4}{2}$ and fuel-air ratio.

REFERENCES

- Medeiros, Arthur A., Benser, William A., and Hatch, James E.: Analysis of Off-Design Performance of a 16-Stage Axial-Flow Compressor with Various Blade Modifications. NACA RM E52L03, 1953.
- 2. Berkey, William E.: Over-All Performance of the J71 Three-Stage Turbine. NACA RM E52B29, 1952.
- Childs, J. Howard: Preliminary Correlation of Efficiency of Aircraft Gas-Turbine Combustors for Different Operating Conditions. NACA RM E50F15, 1950.
- 4. Amorosi, A.: Gas Turbine Gas Charts. Res. Memo. No. 6-44 (Navships 250-330-6), Res. Branch, Bur. Ships, Navy Dept., Dec. 1944.

TABLE I. - COMPONENT PERFORMANCE

Run	Tunnel	Flight	Reynolds	Engine	Engine	Exhaust-	Engin	e inlet	Compress	sor outlet	Turbin	e inlet	Turbin	e outlet	Exhaust-
	static	Mach number.	number index.	speed,	fuel flow.	nozzle- outlet	Total tempera-	Total pressure,	Total tempera-	Total pressure,	Total tempera-	pressure,	tempera-	pressure,	inlet
	pressure,	MO	$\delta_1 \sqrt{\theta_1}$	rpm	W _{f,e} ,	area,	ture,	P ₁ ,	ture,	P ₂ ,	ture, Tz,	P3,	ture, T,,	P ₄ , 1b	total tempera-
	sq ft abs		Φ1	1	lb/hr		OR	sq ft abs	oR	sq ft abs	oR	sq ft abs	°R	sq ft abs	ture, T _c ,
-															oR
	- 1. F	*								1	_			(a)	Altitude,
1	1687	0.184	0.789	5240	4450	2.54	525	1727	932	10,587	1788	9,968	1427 1466	3104 3268	1413 1452
23	1689 1692	.176	.790	5362	4920		525	1724	966	12,028	1892	11,333	1507	3445 3601	1492 1558
4 5	1689 1687	.169	.795	5606 5727	6625		526	1716	1002	13,315	2021	12,555	1628	3778	1598
6	1687	.164	.797	5849	7290		525	1719	1019	14,168	2078 2144	13,361	1684 1727	4005 4187	1652 1701
8	1688	.141	.789	5240	4120	2.69	525	1722	929	10,410	1723 1771	9,781 10,458	1361 1398	2930 3077	1353 1387
10	1687	.173	.789	5484	4950	-	525	1722	961	11,778	1818	11,080	1432	3222	1425
11	1687	.173	.791	5606	5540 6050		525 526	1722 1717	979 998	12,567 13,219	1879 1940	11,822 12,437	1484 1533	3400 3568	1469 1518
13	1687	.155	.795	5849	6535 7070		526 525	1715 1711	1014 1030	13,829 14,462	1997 2058	13,025	1573 1624	3724 3867	1561 1604
15	1687	.125	.796	6093	7528		525	1706	1045	14,980	2098	14,106	1660	4003	1645
16	1684	.125	.795	6215 5240	7867 3750	2.86	525 525	1703 1729	1056 924	15,392 10,322	2131 1647	14,498 9,680	1681	4081 2760	1674
18	1684	.180	.790	5362 5483	4105 4490		525 525	1722 1727	941 956	10,940 11,591	1699 1739	10,263	1320	3014	1318
20	1688	.155	.788	5606	5030		525	1716	975	12,346	1805	11,599	1400	5170	1395
21	1687 1687	.152	.790	5727 5849	5400 5890		527 527	1714	992 1010	12,903	1903	12,119	1455	3447	1468
23 24	1687 1686	.141	.797	5971 6093	6375 6770		526 526	1711 1710	1025	14,130	2013	13,821	1559	3690	1551
25	1683	.141	.798	6215	7220		523	1707	1051	15,104	1547	9 4 25	1181	2529	1186
26 27	1683 1685	.184	.803	5240 5484	3280 3960	3.18	524 524	1725	918	11,391	1637	10,667	1244	2748	1248
28 29	1687 1690	.160	.790	5606 5727	4340 4815		524 527	1718	988	12,647	1747	11,859	1334	2999	1328
30	1685	.147	.791	5849	5195		526	1711	1003	13,234	1808	12 943	1403	3217	1361
31 32	1686 1687	.147	.803	5971 6093	5585		527	1712	1018	14,328	1890	13,447	1441	3313 3390	1430 1453
33 34	1690 1690	.118	.812	6215 5240	2820	4.13	524	1734	910	9,870	1443	9,205	1078	2268 2456	1087 1149
35	1690	.164	. 789	5484	3510		503	1727	960	11,805	1580	11.034	1186	2570	1179
36	1686	.184	.790	5727	4115		527	1717	981	12,241	1633 1643	11,456	1230 1226	2641 2667	1219 1223
39	1690	.152	.790	5849	4480		528	1717	998	12,974	1680 1730	12,156	1259	2764 2858	1256 1280
40	1685	.155	.816	6093	5235 5570		527 522	1714 1705	1027 1034	14,012 14,354	1760 1817	13,125 13,446	1335 1370	2937 2999	1307 1348
1.	1 4000	1							-					(b)	Altitude,
1	1186	0.192	0.611	5606	4800	2.54	495	1217	959	9,825	1970 2033	9,297	1580 1636	2810 2928	1563 1617
3	1185	.188	.608	5727	5690		493	1213	990	10,786	2097	10,236	1685	3088 3172	1663 1709
5	1187	.173	.605	6093	6450		491	1213	1016	11,443	2200	10,885	1785	3251	1756
6	1185	.180	.595	5606	4340	2.69	496	1212 1213	955 971	9,597	1887 1943	9,057 9,550	1475 1521	2598 2735	1472 1517
8	1184	.175	.600	5849	5070		496	1214	986 1001	10,483	1993 2037	9,927 10,241	1562 1607	2823 2907	1559 1601
10	1184	.169	.598	6093	5705		499	1210	1018	11,081	2097	10,513	1660	2976	1647
11	1187	.164	.598	5606	3900 4215	2.86	495 495	1210 1210	947 963	9,412 9,852	1793 1840	8,862 9,291	1380 1420	2405 2501	1379 1418
13	1185	.169	.600	5849 5971	4530 4825		495 495	1209 1205	978 992	10,239 10,571	1887 1933	9,673	1457 1497	2593 2667	1457
15	1185	.164	.601	6093	5125		495	1204	1007	10,847	1990	10,267	1546	2755	1536
16	1184 1181	.152	.601	6093 6215	5150 5390		495	1207 1201	1008	10,873	2000	10,294	1551	2769	1546
18	1188 1186	.180	.600	5606 5727	3445 3715	3.18	495 495	1215 1212	942 957	9,461 9,623	1687	9,052	1320	2261	1308
20	1186	.164		5849	4520		494	1208	971	9,982	1169	9,404	1303	2330	1394
21	1185 1186	.155	.600	5971 6093	4220 4530	-	493 494	1206	985 999	10,300	1867	9,989	1429	2451	1416
23	1183 1186	.155	.603	6215 5606	4770 3055	4.13	494 488	1203 1215	1015 927	9,165	1930	8,590	1173	1957	1171
25	1189	.176	.618	5727	3330		489	1215	944	0.040	1677	9.244	1249	2068	1248
26 27	1188 1185	.180	.617	5848 5971	3525 3735		495	1215	976	10,123	1717	9,519	1281	2117 2135	1276 1274
28 29	1186 1188	.176	.603	5971 6093	3785 4030		488	1212	987	10,506	1763	9,890	1327	2193 2231	1315 1369
30	1190	.180	.611	6215	4275	+	490	1611	1005	10,000	1010	10,000			

NACA RM E53I18

Combustion parameter, $\frac{P_2T_2}{2}$, Gompressor Corrected Turbine turbine gas flow, drop, $W_g \sqrt{\theta_3}$ $\Delta H/\theta_3$, Air flow, Cor-rected ompres Combus-Com-bustor-Turbine Turbine effi-ciency, Corrected turbine speed, $N/\sqrt{\theta_3}$, Combustion parameter, $W_{a,1}T_6$, rected pressure 'ratio, tor totalsor effi-Wa,1' engine air flow, effi-ciency ratio, P3/P4 P2/P1 speed, ciency ressur nt Wg Ve3 B. 1b/se 1 n_c $N/\sqrt{\theta_1}$ $W_a\sqrt{\theta_1}$ nb V_b (1b)(^OR) $\frac{P_2 - P_3}{P_2}$ rpm Btu/1b δ₃ lb/sec rpm (1b) (^OR) (sec) δ1 cu ft lb/sec 6000 feet 6.130 6.479 6.977 7.350 7.759 102.7 107.8 112.9 117.1 121.5 5210 5331 5453 5568 5689 0.8644 .8637 .8703 0.0585 0.8256 .8242 .8297 .8194 .8256 126.5 1.000 3.211 3.254 3.290 3.314 3.323 30.00 30.38 30.65 30.84 31.12 107,000 114,100 123,800 133,800 141,800 145.1×10³ 156.5 168.4 182.4 194.2 40.89 40.82 40.78 40.97 12345 2886 139.3 144.7 150.6 .9960 2909 .8645 .0570 .9818 .8653 2942 41.01 127.0 130.8 103.1 108.2 8.242 .0570 .0567 .0604 .0600 3.336 3.345 3.338 3.399 2964 2979 2906 2937 2965 40.95 40.91 41.00 40.85 30.82 31.41 30.80 31.19 31.28 5816 157.3 154,700 166,200 103,400 113,300 209,8 222.5 139.5 150.1 .8631 .9802 . 8093 67 .8095 .8189 .8182 .8181 .8128 8.679 6.045 6.450 162.7 .8633 .8622 .8659 .9842 1.005 1.000 5937 6.840 112.9 5453 139.6 .8697 .0593 .995 3.439 40.84 160.9 120,900 118.4 122.9 126.8 130.5 134.5 7.298 7.699 8.064 8.452 8.781 5574 .987 173.9 186.6 197.9 209.3 221.3 146.4 8705 0593 3.477 .8197 2981 3002 40.85 31.69 31.83 130,200 138,258 152.3 157.4 162.3 167.8 .8705 .8685 .8645 .8578 .8519 .0593 .0592 .0581 .5080 .0584 .9962 .9962 1.000 .9895 1.000 5689 5810 5937 6058 3.498 3.523 3.524 145,826 156,239 162,900 13 14 15 .8275 3021 3040 41.09 32.30 .8225 3073 41.35 32.55 9.038 5.970 6.353 6.712 7.195 168 8 127.9 133.8 143.4 147.1 135.0 .9870 1.005 1.010 1.025 .9955 6180 .0581 .0622 .0619 .0612 .0605 3.553 3.507 3.565 3.610 3.659 .8140 .8120 .8133 .8162 .8175 40.76 40.75 40.73 171,100 100,600 107,700 113,200 125,600 226.0 133.0 142.6 .8488 32.55 16 17 18 3110 103.9 108.2 116.4 118.6 5210 5331 5453 5574 2971 2996 3030 3041 32.55 31.86 32.17 32.33 32.66 .8651 .8663 .8682 156.7 19 20 40.81 .0608 .0599 .0593 .0594 .0596 5683 5805 .9959 1.008 1.004 .9893 21 7.947 8.258 8.593 126.8 130.7 133.6 135.7 .8665 .8569 .8537 .8394 157.8 162.6 166.2 169.0 3.715 3.725 3.746 3.758 40.71 33.55 33.59 .8217 .8302 .8300 3092 186.1 198.0 207.2 143,345 149,744 156,843 162,100 5931 6052 6191 3105 3136 3155 40.94 33.63 24 25 8.848 .8421 5.850 6.615 7.030 7.361 7.746 104.0 114.4 119.4 123.1 127.0 5215 5458 5579 5683 5810 128.3 .0650 .0636 .0629 .0623 .8618 3.727 3.882 3.936 3.954 40.51 40.63 40.53 40.60 40.57 33.15 33.99 34.40 34.58 35.05 95,000 111,000 118,700 127,528 134,620 123.2 142.8 152.5 163.5 170.9 1.000 .8085 26 27 28 3062 .8660 3120 3147 3151 141.3 1.017 .8057 .9951 .8165 29 30 .8613 .0616 4.005 .8313 8.053 8.369 8.607 130.8 5931 162.6 .8556 .8533 .8412 .8593 .8615 .0612 .0615 .0615 .0674 .0661 4.023 4.059 4.068 4.059 4.235 .8377 .8273 .8266 40.38 40.71 40.59 40.33 40.48 35.54 35.47 35.47 34.74 35.69 . 9598 3236 143,362 178.0 31 32 33 133.8 135.5 104.9 114.9 .9915 6047 6185 166.5 150,018 157,100 89,900 104,900 3233 3273 191.3 196.9 128.5 5.692 5220 5463 114.0 132.0 .9859 .8015 3170 3213 34 35 120.0 122.7 123.1 127.4 131.0 133.9 135.8 147.6 152.2 152.8 158.2 162.6 166.6 169.0 6.836 5585 5683 5683 5799 5926 .0653 .0641 .0638 .0631 .0633 .0633 .0633 4.293 4.338 4.328 4.398 4.445 4.445 4.469 4.483 .8635 40.41 40.41 40.23 40.22 40.16 40.45 35.81 36.35 36.42 36.30 37.09 37.40 37.14 141.5 149.6 150.6 160.0 167.7 175.0 .9940 .8078 3244 6.836 7.129 7.180 7.556 7.899 8.175 8.419 112,100 36 37 38 39 40 41 .9940 .9888 1.006 1.000 .9897 .9709 .9814 .8605 .8618 .8645 .8594 .8515 .8389 .8049 .8151 .8020 .8236 .8158 .8209 3262 3252 3284 3306 3348 3361 112,100 119,249 120,100 129,481 136,303 144,047 6047 6197 183.1 42 15,000 feet 0.0538 .0489 .0510 .0503 .0488 8.073 8.417 90.4 93.1 96.5 98.4 99.8 5741 5853 153.5 158.7 164.1 167.5 169.3 0.8597 .8514 .8477 0.9893 .9932 .9935 .9938 3.309 3.322 3.315 3.343 3.348 0.8121 .8068 .8244 .8155 104,100 109,500 118,100 125,100 129,200 141.3×10 150.5 160.5 168.2 175.2 40.75 40.81 39.95 40.84 40.87 30.50 30.95 32.53 31.09 12 2934 6001 6126 6264 8.892 1345 3025 2975 3003 .8429 9.434 31.15 .9882 .8046 7.918 8.326 8.635 8.898 9.158 90.4 93.7 96.0 97.7 98.5 5735 154.3 98,220 105,900 110,800 116,900 121,000 .8598 .0563 40.89 40.86 40.84 40.76 31.82 31.79 32.05 32.21 32.37 133.1 142.1 149.7 156.4 162.2 1.000 3.486 .8267 2976 2999 67 .9962 5859 5984 .8569 .0544 .8496 .8388 .8345 .8225 .8107 .8160 3026 3057 3073 163.7 3.516 3.523 6108 6215 166.5 .0519 .9966 9 10 40.67 7.779 .0584 .0570 .0553 .0539 .0535 1.004 1.004 .9960 .9923 .9927 3.685 3.715 3.730 3.750 3.757 .8258 .8208 .8180 .8212 .8232 40.73 40.76 40.66 32.88 33.20 33.17 33.33 33.49 95,900 101,300 106,000 112,100 115,800 90.6 5741 154.7 3050 3081 3104 3135 3153 124.9 132.9 139.7 .8614 11 12 13 160.0 164.0 167.3 169.4 8.142 5864 8565 8.469 8.773 9.009 95.9 97.5 98.7 .8565 .8492 .8435 .8315 5986 6114 6239 40.56 145.5 14 40.61 9.008 9.167 7.787 7.940 8.263 169.3 170.1 154.6 .0533 .0532 .0587 .0593 .0579 98.9 6239 6364 116,100 118,500 96,150 97,000 101,400 .9964 .9965 .9900 .9952 .9745 3.767 3.764 4.108 4.004 152.9 156.5 116.0 122.7 129.0 .8301 .8192 3145 40.68 33.30 16 17 18 19 20 98.8 .8161 .8727 .8546 .8199 .8053 .8166 3173 3142 3175 40.00 39.38 40.45 40.52 33.56 34.57 34.75 34.84 90.9 93.8 96.1 5864 5995 159.9 .8454 164.2 4.036 .8142 3206 .0507 6126 21 8.768 98.8 99.1 93.0 169.2 170.1 157.1 .8274 .8147 .8581 .0553 .0546 .0627 .9834 .9921 .9884 4.Q75 4.121 4.389 .8176 .8220 .7979 40.35 40.18 40.13 6245 35.03 35.02 35.96 139.9 144.9 108.9 3251 110,600 114,400 88,130 22 9.014 6370 5785 3254 24 95.6 5899 161.6 ------------------96.8 98.4 99.1 100.5 100.2 8.100 8.345 8.407 8.640 8.756 164.7 167.3 167.7 .8479 .8382 .8382 .0608 .0597 .0604 .9948 .9950 .9900 5989 4.470 .8049 3288 40.23 36.64 98.120 120.8 26 27 28 29 30 6126 6162 4.496 4.484 4.510 4.492 36.80 36.60 36.76 36.69 101,400 101,800 107,600 112,100 125.6 126.3 132.2 137.2 .8102 3318 3325 40.23 40.19 6288 6358 169.5 .8211 .9953 .8028 3344 40.10 .0587 .8148 3341

OF 600-B9 TURBOJET ENGINE

-									IF	TOTE T	•	011711	ueu.	COMP	ONENT
Run	Tunnel	Flight	Reynolds	Engine	Engine	Exhaust-	Engin	e inlet	Compres	sor outlet	Turbin	e inlet	Turbin	e outlet	Exhaust-
	pressure,	number,	index,	N,	flow,	outlet	Total tempera-	Total pressure,	Total tempera-	Total pressure,	Total tempera-	Total pressure,	Total tempera-	Total pressure.	inlet
	р ₀ , 1b	MO	$\frac{\delta_1 \sqrt{\theta_1}}{2}$	rpm	Wf,e'	sq ft	ture,	P ₁ ,	ture,	P2,	ture,	P3,	ture,	P4,	total tempera-
	sq ft abs		Φ1		10/11		oR	sq ft abs	oR	sq ft abs	oR	sq ft abs	o _R	sq ft abs	ture,
													-		oR
					1									(c)	Altitude,
12	767	0.188	0.425	5606	3560	2.54	462	786	929	6955	1997	6569	1634	1969	1577
3	766	.176	.424	5848	4055		463	783	961	7452	2100	7034	1734	2104	1673
5	765	.176	.424	5606	3235	2.69	464	782		6782		6394	1784	1817	1/1/
6	767	.176	.424	5727	3430		464	784	942	7064	1950	6660	1576	1890	1522
8	765	.160	.423	5849 5971	3640 3850		464 463	780 783	957 971	7298 7489	2000 2060	6880 7064	1619 1667	1945 1996	1565 1613
10	765	.173	.424	6093 5606	4080 2865	2.86	463 470	781 779	988 929	7636 6572	2120 1800	7202 6181	1729 1416	2031 1660	1668 1387
11	764	.152	.419	5727	3045		470	777	943	6809	1847	6407	1458	1711	1427
12	764 764	.152	.418	5849 5971	3285 3430		470 470	777 778	957 972	7070 7259	1897 1952	6632 6829	1503 1549	1759 1810	1464 1509
14 15	765 767	.141 .176	.419	6093 5606	3630 2490	3.18	470 469	776 784	988 920	7419 6449	2007 1685	6975 6055	1598 1279	1847 1494	1554 1274
16	765	.173	.420	5727	2655		469	781	935	6661	1737	6255	1323	1536	1310
17	766 765	.160	.417	5848 5971	2845		469 469	780 774	950 964	6904 7082	1785	6483 6655	1363	1581	1346 1385
19 20	765 765	.160	.421	6093 6215	3180 3375		469 469	779 773	980 997	7220 7396	1882 1947	6781 6942	1450 1505	1651 1681	1429 1481
21	767	.180	.437	5727	2360	4.13	459	785	916	6569	1623	6162	1216	1366	1201
22	767 766	.173	.431	5971 6093	2700 2855		459 460	783 782	945 962	6943 7085	1730	6517 6650	1308 1351	1435 1456	1279 1317
24	768	.160	.436	6215	3080	t I	457	782	976	7266	1840	6822	1402	1499	1373
-	180										1.000			(d)	Altitude,
2	479	.203	.273	5240 5484	1830 2240	2.54	461 461	493 495	881 915	3757 4243	1675	3549 3996	1521 1629	1075 1207	1487 1584
3 4	479 476	.203	.272	5606 5727	2410 2600		459 459	493 488	932 949	4263 4633	2043 2107	4015 4379	1685 1744	1265 1321	1632 1689
5	_ 478	.173	.273	5240	1660	2.69	462	488	876	3681	1593	3477	1427	1004	1405
6 7	478 479	.188	.270	5484 5606	2015		461 458	490 487	909 927	4136 4380	1690 1947	3893 4130	1518 1574	1113 1173	1489 1536
8 9	478 478	.147	.270	5727 5849	2350 2500		458 458	485 485	943 959	4553	2007	4292	1627	1218	1581
10	479	.155	.271	5971	2645	5.19	458	487	972	4808	2113	4531	1738	1293	1677
11	479 479	.203	.268	6093 5240	2810	2.86	458	493	988 871	4927	2173	4649	1796	1315	1727
13	479	.155	.268	5484	1803	1	460	487	903	4070	1790	3839	1412	1031	1393
15	479	.107	.270	5727	2110		459	483	937	4462	1910	4196	1511	1129	1483
16	479	.136	.269	5849	2275		458	485	952	4624	1957	4350	1565	1159	1525
18	478	.107	.269	6093	2545		459	484	984	4709	2020	4454	1678	1202	1629
50	479	.203	.271	5240	1277	3.18	458 460	493	862	4878 3519	1566	3301	1125	838	1200
21	479	.155	.271	5484	1574		461	487	898	3967	1690	3720	1293	924	1287
23	479	.147	.271	5727	1840		459	486	914 929	4192	1780	4051	1340	1002	1325
25	479	.147	.271	5849	2090		458 458	487	942 959	4479 4558	1820	4215 4286	1420	1035 1041	1391 1439
26	478	.147	.268	6093	2210		458	485	974	4639	1947	4363	1526	1063	1480
28	479	.203	.272	5240	1103	4.13	458	488	858	4/4/ 3453	1477	3234	1585	746	1542
30	479	.155	.269	5484 5606	1344 1475		459 458	490	907	4039	1563	3790	1209	813 848	1211
31	479	.118	.269	5727	1590		459	484	922	4213	1667	3954	1253	877	1247
32 33	477 479	.147	.269	5849 5971	1700		459 459	484 488	937 953	4335 4459	1723 1773	4067 4163	1293 1338	900 920	1288 1326
34 35	477 481	.155	.270	6093 6215	1935 2055		459 459	485 489	970 987	4549 4656	1847 1893	4270 4368	1392 1443	941 958	1378 1420
1	480	.642	.342	5240	2250	2.54	455	633	871	4880	1807	4610	1451	1375	1432
23	480 481	.647	.342 .347	5362 5484	2520 2770		455 453	636 636	888 902	5247 5560	1875 1933	4947 5233	1511 1566	1482 1568	1489 1538
4 5	479 477	.633	.360	5606 5727	2900 3125		466 465	627 624	934 950	5588 5806	2013 2077	5261 5480	1630 1687	1571 1630	1604 1653
6	477	.628	.358	5849	3350	1	465	622	966	6020	2130	5681	1741	1702	1702
78	481 480	.634	.342	5240 5362	2010 2240	2.69	454	630 625	864	4760 5031	1700	4480 4684	1350 1408	1272 1348	1330 1380
9 10	478 479	.634 .633	.341	5484 5606	2490 2620		454 463	626 627	898 926	5373 5509	1833 1903	4949 5190	1467 1512	1436 1466	1436 1494
11	479	.625	.343	5727	2800		464	623	942	5692	1970	5367	1565	1520	1546
12	479 480	.629	.357	5849 5971	3025 3215		463	625 625	958 974	5917 6073	2020	5584 5728	1620 1681	1574 1615	1591 1646
14	478 478	.629	.358	6093 5240	3400 1810	2.86	465	624 - 634	990 862	6187 4680	2143	5834 4418	1735	1641	1695
16	480	.640	.342	5362	2010		455	632	877	4987	1667	4674	1307	1248	1288
17	481 478	.645	.341	5484 5606	2260		455	636	893 920	5318	1737	4963	1367	1335	1338
19	478	.634	.342	5727	2525		463	626	933	5560	1850	5215	1444	1393	1430
21	478	.629	357	5971	2875	1	463	624	965	5881	1970	5539	1552	1466	1526
22	479	.629	.35?	6093	3045		463	625	980	6045	2023	5692 5768	1609	1504	1578
	TOT		.001	0010	0110	7	100	010	001	0120	2000	0100	1000	1020	LUCC

MADT CONTRACT

NACA RM E53I18

PERFORMANCE OF 600-B9 TURBOJET ENGINE

Compress pressur ratio, P ₂ /P ₁	or Air flow Wa,1 1b/s	, Cor- recte engin speed N/ $\sqrt{\theta}$ rpm	d Cor- rected air flow, $W_a\sqrt{\theta}$ δ_1 lb/sec	Compre sor effi- ciency n _c	s- Combus tor total- pressur loss ratio, $P_2 - P_3$ P_2	- Com- bustor effi- ciency η _b	Turbine pressu ratio P ₃ /P ₄	e Turbin effi- ciency η_t	e Correct turbir , speed, $N/\sqrt{\theta_3}$, rpm	$\begin{array}{c} \text{Correcte}\\ \text{turbing}\\ \text{gas flow}\\ \frac{W_{g}\sqrt{\theta_{3}}}{\delta_{3}} \\ \text{lb/sec} \end{array}$	d Turbine enthalp; $\Delta H/\theta_3$, Btu/lb	Combustion parameter, $\frac{P_2T_2}{v_b}$, (1b)(O_R)(sec cu ft	$\begin{array}{c} \text{Combustin}\\ \text{parameter}\\ W_{a,1}T_{6},\\ \underline{(1b)(^{O}R)}\\ \text{sec} \end{array}$	on Run
25,000 fe	eet								1	-		-	1	-
8.849 9.209 9.517 9.828 8.673	63. 64. 65. 66. 62.	1 5942 6065 6194 6329 7 5931	160.2 164.1 167.2 170.0 160.5	0.8462 .8400 .8295 .8165	0.0555 .0567 .0561 .0557 .0572	0.9798 .9776 .9755 .9735	3.336 3.326 3.343 3.352 3.519	0.8254 .8140 .8045 .8065	2890 2925 2950 2964	40.42 40.62 40.77 40.77	31.20 30.73 30.70 30.96	35,040 78,600 81,750 86,090	99.5×10 ³ 104.7 109.6 113.8	5 1 2 3 4 5
9.010 9.356 9.564 9.777 8.436	64.5 65.7 66.4 62.1	6059 6188 6323 6452 5892	164.7 168.5 168.9 169.9 160.6	.8385 .8318 .8151 .7984 .8498	.0572 .0573 .0568 .0568 .0595	.9786 .9863 .9837 .9784 .9630	3.524 3.537 3.539 3.546 3.723	.8243 .8195 .8207 .8100 .8185	2992 3021 3037 3059 3045	39.66 39.84 39.96 40.40 40.38	32.27 32.21 32.37 32.24 33.08	75,450 79,910 82,630 84,960 67,400	98.2 102.8 106.8 110.8 86.1	6 7 8 9 10
8.763	63.4	6019	164.3	.8439	.0590	.9722	3.745	.8121	3072	40.41	33.10	71,540	90.5	11
9.099	64.4	6147	167.0	.8376	.0620	.9625	3.770	.8154	3098	40.33	33.08	76,100	94.3	12
9.330	65.4	6276	169.3	.8244	.0592	.9747	3.773	.8160	3118	40.48	33.29	78,730	98.7	13
9.561	65.8	6404	170.8	.8108	.0599	.9724	3.776	.8139	3140	40.46	33.45	81,140	102.3	14
8.226	62.5	5898	160.4	.8489	.0611	.9761	4.053	.8130	3144	39.49	34.92	64,800	79.6	15
8.529	64.0	6025	164.7	.8406	.0610	.9772	4.072	.8199	3166	39.79	35.14	67,410	83.8	16
8.851	65.0	6153	167.6	.8328	.0610	.9739	4.101	.8197	3189	39.67	35.11	71,630	87.5	17
9.150	65.5	6281	170.2	.8251	.0603	.9710	4.095	.8167	3221	39.58	35.17	74,030	90.7	18
9.268	65.9	6410	170.2	.8050	.0608	.9724	4.107	.8132	3239	39.85	35.06	77,330	94.2	19
9.568	65.7	6538	171.1	.7935	.0614	.9740	4.130	.8047	3251	39.76	35.00	81,270	97.3	20
8.368 8.867 9.060 9.292 35.000 fe	66.2 66.5 66.7 67.2	6088 6347 6471 6625	165.3 169.0 169.9 170.7	.8300 .8073 .7939 .7722	.0620 .0614 .0614 .0611	.9843 .9812 .9690 .9710	4.511 4.541 4.567 4.551	.8097 .8178 .8126 .8037	3270 3306 3330 3343	39.83 40.58 40.31 42.02	37.16 37.09 37.40 36.69	64,770 70,700 72,740 76,420	79.5 85.1 87.8 92.3	21 22 23 24
7.621	35.0	5560	141.6	0.8553	0.0554	0.9567	3,301	0.7867	2737	1 41 00	28.10	70.100	50 0.253	
8.572 8.647 9.494 7.543	38.2 39.5 40.3 34.7	5819 5965 6088 5554	154.0 159.4 164.3 142.1	.8518 .8138 .8350 .8641	.0582 .0582 .0548 .0554	.9452 .9534 .9529 .9643	3.311 3.174 3.315 3.463	.8019 .8239 .7917 .7883	2849 2866 2883 2863	40.14 42.07 40.35 39.60	30.21 30.04 30.16 30.46	39,460 45,440 45,288 51,388 38,550	52.0×10° 60.5 64.5 68.1 48.8	1 2 3 4 5
8.441	38.0	5819	154.6	.8553	.0588	.9466	3.498	.7959	2911	39.96	30.96	44,130	56.6	6
8.994	39.5	5965	161.1	.8424	.0571	.9394	3.521	.7945	2932	39.25	31.19	47,206	60.7	7
9.388	40.4	6094	165.7	.8359	.0573	.9511	3.524	.8036	2952	39.63	31.60	49,481	63.9	8
9.709	41.1	6223	168.4	.8248	.0576	.9534	3.514	.7997	2971	39.81	31.23	52,505	67.1	9
9.873	41.5	6353	169.3	.8117	.0576	.9496	3.504	.7923	3000	40.20	31.36	53,978	69.6	10
9.994	42.1	6483	169.9	.7933	.0564	.9517	3.535	.7866	3022	41.27	31.49	55,779	72.7	11
7.392	35.0	5554	142.6	.8625	.0583	.9688	3.664	.7866	2935	39.51	31.68	36,590	46.1	12
8.357	38.4	5824	157.1	.8582	.0568	.9676	3.724	.7896	2989	39.79	32.07	41,840	53.5	13
8.708	39.8	5976	161.3	.8396	.0588	.9654	3.654	.8156	3007	40.14	32.52	44,983	57.0	14
9.238	40.3	6088	165.9	.8428	.0596	.9567	3.717	.8072	3025	38.92	32.62	48,345	59.8	15
9.534	41.2	6223	169.0	.8297	.0593	.9486	3.753	.7971	3053	39.32	32.69	50,500	62.8	16
9.729	41.3	6347	169.7	.8154	.0584	.9479	3.726	.7982	3070	39.39	32.74	51,876	65.2	17
9.942	41.4	6483	170.9	.7972	.0576	.9444	3.757	.7959	3084	39.83	32.53	54,137	67.4	18
10.120	41.5	6613	171.2	.7813	.0580	.9377	3.754	.7993	3115	40.01	32.98	55,571	69.1	19
7.138	35.3	5565	142.8	.8558	.0620	.9738	3.939	.7840	3046	39.59	33.40	34,210	42.4	20
8.146	38.4	5819	157.2	.8557	.0623	.9631	4.026	.7993	3072	39.77	33.88	40,000	49.4	21
8.626	39.8	5959	163.0	.8492	.0604	.9609	4.057	.7946	3099	39.17	33.92	43,352	52.7	22
8.868	40.5	6094	165.5	.8326	.0601	.9582	4.043	.8059	3128	39.68	34.32	44,938	54.9	23
9.197	41.2	6223	168.2	.8278	.0594	.9444	4.071	.7968	3164	39.91	34.48	47,832	57.3	24
9.379	41.4	6353	169.2	.8091	.0597	.9474	4.117	.8018	3172	40.21	34.39	49,097	59.6	25
9.565	41.5	6483	170.2	.7941	.0595	.9466	4.104	.7988	3186	40.34	34.47	50,383	61.4	26
9.727	41.9	6613	170.8	.7731	.0596	.9525	4.095	.8038	3199	40.10	34.69	52,946	64.6	27
7.033	35.6	5565	144.5	.8565	.0634	.9878	4.335	.7845	3134	39.47	35.06	32,960	39.4	28
7.896	38.6	5829	156.9	.8510	.0651	.9727	4.449	.7811	3192	39.45	35.83	38,180	45.2	29
8.328	39.5	5965	161.9	.8408	.0617	.9643	4.469	.7831	3211	38.24	35.74	40,279	47.8	30
8.705	40.4	6088	166.0	.8394	.0615	.9519	4.509	.7892	3228	38.24	35.95	43,055	50.4	31
8.957	41.0	6217	168.4	.8264	.0618	.9589	4.519	.7943	3246	38.47	36.01	44,661	52.8	32
9.137	41.5	6347	169.1	.8088	.0664	.9609	4.525	.7953	3267	38.50	36.24	47,090	55.0	33
9.379	41.5	6477	170.5	.7944	.0613	.9551	4.538	.8055	3270	38.27	35.98	48,479	57.2	34
9.521	41.8	6607	170.1	.7754	.0619	.9535	4.559	.7966	3296	37.97	36.24	50,908	59.4	35
7.709	46.5	5596	145.5	.8588	.0553	.9805	3.353	.7972	2844	40.28	29.91	50,140	66.6	12345
8.250	48.9	5727	152.4	.8625	.0572	.9852	3.338	.7981	2856	40.03	30.05	55,320	72.8	
8.742	51.0	5873	158.4	.8574	.0588	.9825	3.337	.7969	2877	40.37	30.05	59,110	78.4	
8.912	50.1	5914	160.4	.8545	.0585	.9738	3.349	.7975	2886	39.88	30.47	60,435	80.4	
9.304	51.2	6048	164.2	.8444	.0562	.9721	3.362	.8033	2903	40.41	30.35	64,466	84.6	
9.678	52.0	6177	167.5	.8355	.0563	.9580	3.338	.7991	2927	40.51	30.61	67,385	88,5	
7.556	46.3	5596	145.5	.8634	.0588	.9696	3.522	.7974	2927	39.95	31.26	47,870	61.6	6
8.050	48.1	5727	152.5	.8631	.0690	.9633	3.475	.8081	2948	40.51	31.30	51,090	66.4	7
8.583	50.2	5862	158.6	.8585	.0789	.9618	3.446	.8100	2953	40.84	31.33	56,010	72.1	8
8.786	50.7	5937	161.7	.8512	.0579	.9752	3.540	.8010	2967	39.59	31.59	58,341	75.7	9
9.136 9.467 9.717 9.915 7.382	51.6 52.4 52.8 53.0 46.8	6059 6194 6317 6434 5596	165.6 167.7 196.0 170.3 146.3	.8454 .8318 .8207 .8094 .8555	.0571 .0563 .0568 .0571 .0560	.9828 .9623 .9658 .9566 .9706	3.531 3.548 3.547 3.555 3.750	.8084 .8003 .8055 .7963 .7987	2978 3007 3018 3041 3001	39.69 39.74 40.04 40.47 39.85	31.66 31.92 31.67 31.92 32.78	61,837 64,812 68,272 70,146 45,500	79.8 83.4 86.9 89.8 58.2	11 12 13 14
7.891 8.362 8.594 8.882	48.7 50.9 50.7 51.7	5727 5857 5937 6065 6194	152.7 158.6 162.1 165.1	.8608 .8585 .8509 .8437	.0628 .0668 .0588 .0621 .0588	.9724 .9615 .9693 .9614	3.745 3.718 3.764 3.744	.7973 .8151 .8052 .8110	3024 3031 3043 3074	39.86 40.17 39.62 40.24	32.72 32.98 33.04 33.07	49,720 54,400 55,759 58,103	62.7 68.1 70.6 73.9	16 17 18 19 20
9.425	52.7	6323	168.9	.8186	.0582	,9583	3.778	.8090	3105	40.47	33.21	64,674	80.4	21
9.672	53.2	6452	170.0	.8057	.0584	,9665	3.785	.7951	3129	40.39	32.98	66,977	83.9	22
9.784	53.3	6582	170.3	.7899	.0583	,9612	3.775	.8056	3145	40.55	33.04	68,338	86.5	23

TABLE I. - Concluded. COMPONENT

	Run	Tunnel	Flight	Reynolds	Engine	Engine	Exhaust-	Engin	e inlet	Compres	sor outlet	Turbin	e inlet	Turbine	e outlet	Exnaust-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		static pressure.	Mach number.	number index.	speed, N.	fuel flow.	nozzle- outlet	Total	Total	Total	Total	Total	Total	Total	Total	nozzle- inlet
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		P0,	MO	$\delta_1 \sqrt{\theta_1}$	rpm	W _{f,e'}	area,	ture,	P ₁ ,	ture,	P ₂ ,	ture,	P ₃ ,	ture,	P ₄ ,	total
Image: Part Cost Image: Part Cost<	1	lb sq ft abs		φ1		lb/hr	BYIC	T1, OR	1b	T2, OR	1b	T ₃ , o _R	1b	T ₄ , O _R	1b	ture,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1.20						sq It abs		sq it abs		sq ft aos	A	sq it abs	oR ^T 6'
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-						-							(d) Cor	cluded.	Altitude.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24	481	0.645	0.342	5240	1575	3.18	455	857	636	4594	1507	4317	1144	1056	1144
$ \begin{array}{c} 22 & 427 & \\ 447 & \\ 448 &$	25	480	.638	.341	5484	1925		456	889	631 911	5082 5281	1620	4694	1234	1165	1225
$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	27	482	.627	.345	5727	2195		462	628	926	5436	1737	5113	1322	1241	1315
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	20	4/9	.042	.344	5043	2550		402	032	940	5572	1755	5235	1367	1200	1555
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	478	.632	.344	6093	2665		462	625	957	5785	1917	5455	1405	1316	1404 1455
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	31	479 479	.627	.357	6215 5362	2845 1505	4.13	463 457	624 868	991 636	6037 4736	1967 1467	5672 4463	1520	1374 977	1500 1088
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	33	477	.645	.340	5484	1755		456	884	631	4975	1523	4647	1133	1025	1130
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34 35	479 479	.647	.339	5606 5727	1800 1950		461 459	634 626	904 918	5143 5345	1577 1627	4825 5009	1168 1216	1057 1099	1173 1210
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36	477	.630	.340	5849 5971	2070	1 100	459 459	623 623	933 947	5441 5609	1680 1730	5114 5261	1282	1119	1252
$ \begin{bmatrix} 3 & 71 & 1.02 & 1.01 & 0.12 & 0.10 & 0.10 & 0.10 & 0.10 & 0.10 & 0.00 & 0.01 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.01 & 0.00 & 0.00 & 0.01 & 0.00 & 0.$	38	479	.631	.357	6093	2360		459	626	963	5734	1790	5379	1357	1179	1338
$ \begin{array}{c} 2 \\ 3 \\ 477 \\ 477 \\ 477 \\ 488 \\ 486 \\ 488 \\ 486 \\ 488 \\ 486 \\ 488 \\ 486 \\ 488 \\ 486 \\ 488 \\ 48$	33	470	.001	.001	E240	2820	2.54	474	907	984	6507	1747	6133	1405	1007	1272
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	470	1.001	.483	5484	3605	2.54	473	906	920	7485	1907	7061	1545	2111	1575
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	476	.995	.482	5606	4190	- x - 1	468	891	935 946	8101	5050	7639	1610	2195	1605
$ \begin{array}{c} 6 & 479 & -922 & -483 & 931 & 4756 & + & 470 & 986 & 977 & 6854 & 1240 & 1746 & 1240 \\ 9 & 440 & 1.900 & -446 & 5240 & 550 & - & 647 & 910 & 917 & 6854 & 1245 & 1245 & 2480 & 1700 \\ 9 & 440 & 1.997 & -486 & 5566 & 5500 & - & 476 & 910 & 977 & 968 & 477 & 910 & 1157 & 7229 & 1476 & 20031 & 1446 \\ 1447 & -937 & -486 & 5727 & 572 & 4760 & 900 & 974 & 9855 & 20030 & 1700 & 7406 & 1570 & 2168 & 1594 \\ 114 & 441 & -994 & -489 & 5849 & 4005 & - & 470 & 900 & 974 & 9855 & 20051 & 1475 & 2228 & 1594 \\ 113 & 476 & -1262 & -447 & 5540 & 4285 & 2.56 & 471 & 900 & 977 & 6675 & 1507 & 6884 & 1007 & 2561 & 1291 \\ 134 & 476 & -1262 & -442 & 5540 & 4285 & 2.56 & 471 & 900 & 977 & 6675 & 1157 & 6884 & 1007 & 2561 & 1291 \\ 1477 & -886 & -440 & 5544 & 2580 & - & 468 & 906 & 913 & 7521 & 1107 & 7685 & 1163 & 1511 & 1351 \\ 154 & 477 & -886 & -460 & 5649 & 5800 & - & 468 & 906 & 913 & 772 & 1167 & 7685 & 1160 & 1558 & 1552 \\ 154 & 477 & -886 & -460 & 5649 & 5800 & - & 468 & 896 & 944 & 7753 & 1107 & 7685 & 1163 & 1577 & 1365 & 1771 & 1352 \\ 156 & 476 & -1005 & -460 & 5439 & 5800 & - & 468 & 696 & 934 & 7756 & 1107 & 7685 & 1163 & 11076 & 1468 & 1076 & 1468 & 1076 & 1458 & 1076 & 1458 & 1076 & 1458 & 1076 & 1458 & 1076 & 1458 & 1076 & 1586 & 1197 & 1466 & 1076 & 1586 & 1197 & 1466 & 1076 & 1586 & 1197 & 1466 & 1076 & 1458 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1115 & 1586 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1685 & 1107 & 1686 & 1140 & 1586 & 1107 & 1686 & 1140 & 1586 & 1107 & 1686 & 1108 & 1107 & 1186 & 1107 & 1186 & 1107 & 1186 & 1107 & 1186 & 1108 & 11$	5	475	.996	.483	5849	4505		469	898	962	8447	2087	7971	1692	2372	1654
0 476 1.000 +486 584 3260 472 911 912 7315 11977 5884 1130 11945 13945 10 477 -997 +486 5767 3757 11977 5884 1200 1446 111 461 -994 -489 5849 0.000 944 999 993 7806 1177 7450 1577 21857 2007 1446 112 477 -996 5449 0.000 947 9453 9303 7746 1577 1577 1577 1577 1577 1577 1577 1577 1577 1577 1577 1577 1577 1580 1466 1991 1771 1352 1161 1771 1352 1161 1771 1357 1161 1771 1357 1161 1161 1771 1357 1161 1161 1771 1357 1161 1161 1771 1357 1161 1161 1161 1161 1161 1161 1161 1161 1161 1161	67	479 474	.992	.483	5971 5240	4755 2570	2.69	470 472	896 906	978 878	863 4 6433	2130 1663	8145 6053	1745 1301	2420 1701	1700 1290
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	476	1.010	.486	5484	3260		472	911	912	7315	1797	6884 7229	1430	1945	1398
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	477	.997	.483	5727	3735		469	899	939	7906	1917	7450	1525	2091	1493
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	481	.994	.489	5849	4005		470	904	954	8285	1970	7806	1570	2188	1540
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	478 479	.996	.487	5971 6093	4265 4520		470 470	900	971 987	8435 8674	2030	7946 8182	1623	2228	1594 1640
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14 15	476 477	1.002	.482	5240 5484	2285 2865	2.86	471 471	903 904	872 907	6277 7139	1577	5894 6706	1209 1332	1561 1771	1210 1312
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	478	1.000	.490	5606	3140		468	904	919	7521	1763	7071	1369	1863	1352
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17	477	.987	.480	5727	3360		468	889	934	7745	1810	7285	1418	1911	1395
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19	479	.998	.490	5971	3865 .		468	904	964	8304	1925	7816	1514	2058	1485
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	479	.988	.481	6095	4030		469	894	981	0505			1564	2010	1536
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	478 475	.991	.481 .483	6215 5240	4255 2010	3.18	469 469	895 904	996 866	8585 6210	2040 1480	8082 5815	1606	2114 1411	1580
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	475 478	1.005	.480	5484 5606	2500 2710		,468	904 903	897 913	6959 7295	1590	6523 6848	1209 1238	1582 1654	1197 1245
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	478	.991	.484	5727	2920		469	895	927	7576	1697	7116	1280	1706	1282
$ \begin{array}{c} \frac{56}{56} & \frac{477}{1} & -\frac{366}{56} & -\frac{432}{165} & \frac{2363}{562} & \frac{4352}{1665} & \frac{469}{169} & \frac{3674}{169} & \frac{1356}{1666} & \frac{13456}{16026} & \frac{13456}{1145} & \frac{1362}{5627} & \frac{1324}{1038} & \frac{1342}{1240} & \frac{1343}{1045} \\ \frac{37}{2} & \frac{479}{199} & \frac{478}{147} & \frac{5240}{1585} & \frac{1345}{1461} & \frac{469}{168} & \frac{898}{991} & \frac{91}{8416} & \frac{1350}{1557} & \frac{7991}{6704} & \frac{1147}{11477} & \frac{1385}{1185} & \frac{1461}{1185} \\ \frac{37}{2} & \frac{479}{1991} & \frac{991}{483} & \frac{5727}{5220} & \frac{2600}{468} & \frac{468}{896} & \frac{911}{901} & \frac{992}{907} & \frac{6889}{1557} & \frac{1557}{6704} & \frac{6704}{1159} & \frac{1159}{11471} & \frac{1152}{1156} \\ \frac{477}{1000} & \frac{482}{483} & \frac{5777}{572} & \frac{2600}{144} & \frac{471}{71} & \frac{903}{937} & \frac{3377}{7683} & \frac{1597}{11407} & \frac{6914}{1194} & \frac{1136}{1159} & \frac{1373}{1126} & \frac{1226}{1135} \\ \frac{37}{477} & \frac{995}{925} & \frac{4495}{495} & \frac{5973}{2967} & \frac{2967}{477} & \frac{477}{897} & \frac{897}{911} & \frac{971}{1107} & \frac{7634}{7634} & \frac{1135}{1351} & \frac{1636}{1657} & \frac{1537}{1259} \\ \frac{1}{2} & \frac{286}{141} & \frac{167}{5240} & \frac{5240}{1070} & \frac{2.69}{2.69} & \frac{456}{452} & \frac{292}{896} & \frac{866}{2285} & \frac{2226}{1925} & \frac{2234}{1667} & \frac{1592}{661} & \frac{670}{621} & \frac{1423}{1425} \\ \frac{1}{2} & \frac{286}{289} & \frac{116}{1167} & \frac{5240}{560} & \frac{1195}{2.69} & \frac{454}{454} & \frac{291}{29} & \frac{866}{292} & \frac{2285}{1935} & \frac{1925}{2260} & \frac{274}{136} & \frac{1667}{1647} & \frac{621}{621} & \frac{1425}{1423} \\ \frac{1}{2} & \frac{286}{289} & \frac{116}{1167} & \frac{566}{5240} & \frac{1485}{125} & \frac{459}{454} & \frac{291}{29} & \frac{866}{2326} & \frac{2226}{120} & \frac{2257}{1646} & \frac{166}{167} & \frac{621}{621} & \frac{1425}{1425} \\ \frac{1}{2} & \frac{286}{116} & \frac{166}{167} & \frac{5240}{1167} & \frac{1}{2} & \frac{1}{$	26	477	.997	.482	5849	3120		468	899	943	7788	1755	7312	1329	1755	1323
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	479	.988	.490	6093	3525	1	469	890	974	8156	1863	7659	1422	1834	1410
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29 30	477 478	.996	.492	6215 5240	3780 1745	4.13	469 468	898	991 861	8416 6026	1930	5627	1477 1038	1895 1240	1461 1045
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	475	1.012	.479	5484	2230		468	911	892	6889	1515	6452	1126	1423	1123
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32 33	479 479	.995	.478	5606 5727	2435 2600		467 468	901 896	907 920	7158 7378	1557 1597	6704 6914	1159 1194	1471 1509	1152 1186
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	34 35	477 479	1.000	.482	5849 5971	2810 2965		471	903 897	937 954	7683	1647 1710	7199 7318	1238 1286	1573 × 1593	1226
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	36	478	.995	.495	6093	3170		473	899 897	971	7994	1767	7503 7634	1335	1636 1667	1314
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					0010	0000		1			1 0100	12000	1.000		(e) A]	titude.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	287	0.141	0.167	5240	1195	2.54	454	291	886	2326	1925	2234	1592	670	1543
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3	288	.141	.167	5240	1070	2.69	456	292	880	2283	1803	2146	1467	621	1423
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	284	.160	.167	5484	1320		454	289	913	2551	1947	2374	1580	691	1540
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	267	.118	.166	5606	1450		454	290	952	2032	2010	2931	1041	700	1530
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	67	289 288	.199	.167	5606 5727	1465		459 458	297	942 956	2713 2822	2030	2661	1646 1698	728	1616
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 9	289 287	.118	.169	5240 5362	970 1060	2.86	454 454	292 290	875 892	2253 2346	1733 1798	2132 2237	1385 1431	583 608	1351 1403
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	289	.173	.169	5484	1195		454	295	910	2554	1860	2424	1486	656	1453
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	289 287	.184	.169	5606 5727	1310 1400		453 455	296 295	927 945	2658	1928	2518 2622	1537 1597	683 707	1507 1565
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	290	.184	.167	5849	1535		454	297	959	2909	2047	2748	1648	744	1609
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	287	.210	.167	6093	1725		454	296	991	3038	2150	2881	1748	775	1695
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	288	.173	.160	5362	941	3.18	458	294	888	2328	1700	2190	1316	549	1306
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 18	289	.173	.160	5484 5606	1028		457	295	903	2465	1800	2441	1356	575 606	1339
21 289 .155 .160 5971 1404 456 294 968 2887 1984 2712 1553 668 1531 22 288 .173 .161 5093 1502 456 294 965 2964 2044 2782 1598 664 1577	19 20	290	.174	.160	5727 5849	1225 1316		456 457	296 295	935 953	2718 2811	1860 1925	2553 2643	1443 1502	631 648	1429 1484
22 288 173 161 6093 1502 456 294 985 2964 2044 2782 1598 684 1577	21	289	.155	.160	5971	1404		456	294	968	2887	1984	2712	1553	668	1531
23 288 141 159 6215 1582 456 292 1000 3023 2094 2835 1655 692 1623	22	288	.173	.161	6093	1502		456	294	985	2964	2044	2782	1598	684 692	1577
24 288 -255 -160 5484 894 4,13 400 560 899 2366 1650 2216 1249 560 1220	24	288	.252	.160	5484	894	4.13	460	301	899	2366	1630	2216	1245	500	1232
25 23 .1/3 .161 500 384 458 237 913 2551 1680 2372 1283 526 1267	25	591	.1/3	.161	5606	984		458	297		2551	1080	2512	1205	526	1201
126 288 1.173 1.160 5727 1057 459 224 930 2598 1730 2436 1322 540 1304 27 288 1.84 .159 5649 1147 259 2514 559	26 27	288 288	.173	.160	5727 5849	1057 1147		459	294 295	930	2598 2714	1730	2436 2542	1322	540 559	1304
128 289 1.155	28 29	289 289	.155	.160	5849 5971	1144		458 458	294 295	946 960	2707 2805	1790	2540	1370	559 573	1349 1387
30 289 .173 .168 6093 1292 457 295 976 2872 1894 2689 1454 587 1434 31 289 .155 .170 6215 1365 457 294 992 2933 1950 2748 1499 599 1476	30 31	289 289	.173 .155	.168	6093 6215	1292 1365	1	457 457	295 294	976 992	2872 2933	1894 1950	2689 2748	1454 1499	587 599	1434 1476

NACA RM E53I18

PERFORMANCE OF 600-B9 TURBOJET ENGINE

	Compressor pressure ratio, P ₂ /P ₁	or Air flow, Wa,1' lb/se	Cor- recte engin speed N/ $\sqrt{\theta}$ rpm	$\begin{array}{c} Cor-recte \\ air \\ flow \\ W_a \sqrt{\theta} \\ \hline \delta_1 \\ 1b/se \end{array}$	d compression sor effi- ciency n _c c	$\begin{array}{c} combus \\ tor \\ total-\\ pressur \\ loss \\ ratio, \\ P_2 - P_3 \\ \hline P_2 \end{array}$	s- Com busto eff: ce-cienc η _b	- Turbir pressuration ration P ₃ /P ₄	ne Turbin effi- ciency η _t	te Correct turbin speed, $N/\sqrt{\theta_2}$ rpm	ted Correct turbin gas flu $W_g \sqrt{\theta_3}$ δ_3 1b/sec	ted Turbine enthalp ow, ΔΗ/θ ₃ , β, Btu/1b	$\frac{\begin{array}{c} \text{Combustion} \\ \text{parameter} \\ \frac{P_2 T_2}{V_b}, \\ \underline{(1b)(^{\circ}R)(sa)} \\ \text{cu ft} \end{array}$	$\frac{1}{2} \frac{\begin{array}{c} \text{Combust} \\ \text{paramet} \\ \text{Wa,1}^{T_6} \\ \underline{(1b)(^{\circ})} \\ \text{sec} \end{array}}$	ion Run er, <u>R</u>)
	35,000 fe	et	-						1	1.8.	S. 8.			-	_
	7.223 8.054 8:409 8.656 8.816	47.3 50.5 51.3 52.1 52.8	5596 5851 5942 6071 6200	147.9 158.7 163.2 165.9 166.9	5 0.8538 .8502 .8528 .8399 .8238	3 0.0603 .0764 .0606 .0594 .0598	3 0.977 970 978 978 978 976 976 986	73 4.088 90 4.029 95 4.131 44 4.120 88 4.132	0.7847 .8113 .8002 .8068 .8122	3104 3137 3145 3168 3182	39.72 40.51 39.19 39.23 39.54	34.34 35.02 34.56 34.82 34.98	43,820 50,150 52,787 54,786 57,513	54.1×10 61.9 65.5 68.5 71.5	0 ³ 24 25 26 27 28
	9.238 9.406 9.675 7.447 7.884	53.4 53.2 53.4 49.1 50.7	6329 6459 6582 5716 5851	170.2 170.1 171.0 153.2 159.4	2 .8183 .7989 .7888 .8550 .8493	.0602 .0604 .0605 .0577 .0659	971 .973 .957 .957 .981 .928	$\begin{array}{c ccccc} 8 & 4.130 \\ 0 & 4.107 \\ 3 & 4.128 \\ 4 & 4.568 \\ 2 & 4.534 \end{array}$.8045 .8169 .8110 .7885 .7961	3205 3212 3244 3217 3230	39.47 39.65 39.69 39.25 39.81	34.98 34.98 34.94 36.33 36.45	61,207 63,851 67,289 44,760 47,460	75.0 77.4 80.1 53.4 57.3	29 30 31 32 33
	8.112 8.538 8.734 9.003 9.160 9.398	51.6 52.2 52.7 53.0 53.3 53.5	5948 6088 6217 6347 6477 6607	162.3 166.1 168.5 169.3 169.6 170.2	.8434 .8362 .8214 .8123 .7946 .7794	.0618 .0629 .0501 .0621 .0619 .0632	.973 .962 .969 .951 .951 .957	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.7903 .7952 .7925 .7941 .7955 .7957	3248 3268 3286 3308 3321 3332	39.24 39.56 39.94 39.90 40.12 40.09	36.61 36.48 36.60 36.43 36.53 36.53	50,371 53,619 55,023 58,090 59,909 63,009	60.5 63.2 66.0 68.4 71.3 74.2	34 35 36 37 38 39
	7.174 8.262 8.756 9.041 9.406	63.4 69.6 71.8 73.8 75.1	5481 5742 5903 6031 6153	141.5 155.2 161.9 165.5 168.2	.8668 .8670 .8545 .8481 .8428	.0575 .0567 .0567 .0570 .0570	.9829 .9817 .9897 .9933 .9942	9 3.357 7 3.345 7 3.356 3 356 3 356 3 356 3 360	.8166 .8135 .8109 .8040 .8176	2888 2899 2909 2944 2957	40.57 40.52 41.03 41.41 41.31	30.71 30.71 30.70 30.89 30.93	65,100 79,000 82,920 86,710 92,700	87.1 104.9 112.7 118.4 124.2	123.45
	5.656 7.100 8.030 8.477 8.794	75.6 63.8 70.0 72.4 73.8	5497 5753 5898 6025	169.9 142.1 155.1 160.9 165.1	.8306 .8646 .8638 .8575 .8490	.0566 .0591 .0589 .0578 .0577	.9760 .9765 .9755 .9921 .9925	3.366 3.558 3.539 3.566 3.563	.7964 .8385 .8171 .8151 .8208	2988 2957 2982 2999 3020	41.05 40.23 40.52 40.54 40.72	30.86 32.21 32.24 32.07 32.20	95,600 63,100 74,300 79,780 82,930	128.5 82.3 97.9 104.7 110.2	6 7 8 9 10
	9.165 9.372 9.627 6.951 7.897	75.7 76.1 76.5 64.3 69.7	6147 6276 6404 5502 5758	168.7 170.2 171.1 143.5 155.5	.8467 .8289 .8153 .8619 .8598	.0578 .0580 .0567 .0610 .0607	.9964 .9932 .9840 1.0000 .9862	3.568 3.567 3.574 3.776 3.787	.8146 .8075 .8166 .8019 .8085	3040 3061 3078 3038 3058	40.57 40.61 40.64 40.47 40.26	32.17 32.31 32.37 33.23 33.25	89,010 91,450 96,480 60,400 71,200	116.6 121.3 125.5 77.8 90.5	11 12 13 14 15
	8.320 8.712 8.979 9.186	72.8 73.5 74.6 76.5 76.0	5903 6031 6159 6287 6410	161.9 166.1 168.7 170.0 171.1	.8527 .8496 .8402 .8239	.0598 .0594 .0592 .0588	.9912 .9834 .9921 .9887	3.795 3.812 3.808 3.798	.8150 .8046 .8076 .8135	3074 3102 3119 3142	40.43 40.64 40.63 40.99	33.41 33.43 33.32 33.46	75,480 79,640 82,610 88,240	98.4 102.5 107.4 113.6	16 17 18 19 20
	9.592 6.869 7.698 8.079 8.465	76.5 65.0 70.5 72.7 73.9	6538 5512 5775 5898 6025	172.0 144.7 156.7 162.0 166.0	.7969 .8603 .8555 .8540 .8521	.0586 .0636 .0627 .0613 .0607	.9864 .9877 .9840 1.0000 .9904	3.823 4.121 4.123 4.140 4.171	.8097 .7983 .8068 .7898 .8007	3177 3130 3166 3186 3202	40.65 40.13 40.27 39.90 39.94	33.72 34.99 35.29 34.56 35.01	94,290 57,700 66,800 71,820 76,380	120.9 72.5 84.4 90.5 94.7	21 22 23 24 25
	8.663 8.953 9.164 9.372 6.733	75.4 75.7 75.8 76.8 64.8	6159 6287 6410 6538 5518	168.6 170.4 171.3 171.9 145.4	.8307 .8238 .8091 .7926 .8558	.0611 .0607 .0609 .0612 .0662	1.000 .9847 .9878 .9846 110140	4.166 4.172 4.176 4.169 4.538	.8139 .8079 .8112 .8168 .7931	3217 3243 3255 3265 3200	40.26 39.98 40.05 40.27 40.30	35.41 35.11 35.40 35.28 36.15	79,180 81,890 85,680 89,190 54,200	99.8 103.0 106.9 122.0 67.7	26 27 28 29 30
45	7.562 7.945 6.234 8.508 8.692 8.892 9.070	71.5 73.3 74.0 75.7 75.6 76.1 76.2	5775 5909 6031 6141 6264 6379 6507	157.8 163.3 166.0 169.0 170.0 170.9 171.6	.8558 .8488 .8466 .8434 .8272 .8131 .7966	.0634 .0634 .0629 .0630 .0614 .0614 .0617	.9939 .9773 .9730 .9745 .9760 .9772 .9784	4.534 4.557 4.582 4.577 4.594 4.586 4.586 4.579.	.7946 .8023 .7925 .7943 .8009 .8013 .8003	3241 3267 3297 3319 3325 3340 3355	40.23 40.20 39.99 39.45 39.99 40.01 40.27	36.63 36.71 36.83 37.00 36.92 36.68 36.74	65,000 68,080 71,810 76,640 78,450 82,470 84,650	80.3 84.4 87.8 92.8 95.9 100.0 103.6	31 32 33 34 35 36 37
4:	7,000 feet													-	
	7.818 8.273 8.827 9.283	20.8 20.8 21.8 22.6 23.5	5602 5591 5743 5862 5993	141.5 141.0 147.2 154.9 160.2	0.8448 .8528 .8396 .8443 .8351	0.0396 .0600 .0677 .0694 .0724	0.9340 .9151 .9172 .9126 .9169	3.334 3.456 3.424 3.436 3.435	0.7754 .7922 .8002 .7989 .7885	2755 2847 2859 2868 2888	38.51 38.68 39.41 39.70 39.85	29.37 30.69 30.73 30.70 30.47	25,380 24,380 26,140 28,270 30,120	32.1×10 ³ 29.6 32.3 34.8 37.6	1 2 3 4 5
	9.631 7.716 8.090 8.658	23.9 20.9 21.7 23.0	5959 6094 5602 5732 5862	156.5 161.9 141.8 148.1 154.6	.8282 .8295 .8476 .8385 .8413	.0575 .0571 .0537 .0465 .0509	.9124 .9408 .9306 .9419 .9451	3.512 3.548 3.657 3.679 3.695	.7771 .7739 .7877 .7906 .7893	2873 2894 2901 2915 2934	38.32 39.09 38.32 38.67 38.56	30.73 30.87 31.52 31.66 31.72	30,520 32,570 23,580 24,790 27,250	37.8 39.8 28.2 30.4 33.4	6 7 8 9 10
1	9.332 9.795 9.936 0.26	23.7 24.2 24.9 25.3 25.3	6004 6116 6253 6395 6513	158.3 162.6 165.1 167.9 169.4	.8249 .8199 .8155 .7940 .7883	.0527 .0476 .0554 .0493 .0517	.9349 .9475 .9292 .9294 .9136	3.683 3.709 3.694 3.719 3.717	.7968 .7790 .7865 .7804 .8138	2945 2964 2986 3007 3037	38.97 38.89 38.71 39,08 38.64	32.08 31.85 31.79 32.15 32.31	29,160 30,500 33,010 33,880 35,710	35.7 37.9 40.1 42.0 42.9	11 12 13 14 15
	9.182 9.529	21.9 22.8 24.0 24.5 25.0	5705 5846 5976 5111 5235	148.0 153.4 159.7 164.3 168.0	.8510 .8471 .8376 .8329 .8229	.0593 .0601 .0615 .0607 .0598	.9513 .9451 .9478 .9470 .9498	3.989 4.030 4.028 4.046 4.079	.7831 .7782 .7834 .7892 .7811	2995 3029 3045 3061 3077	38.65 38.56 39.17 39.00 39.09	33.11 32.98 33.33 33.75 33.43	24,130 26,210 27,460 29,410 30,720	28.6 30.5 33.2 35.0 37.1	16 17 18 19 20
1010	.820 .08 .35 .860 .522	25.1 6 5.3 6 5.3 6 23.1 5 23.8 5	371 501 631 824 965	169.5 170.7 171.7 152.6 159.2	.8101 .7961 .7852 .8333 .8412	.0606 .0614 .0622 .0634 .0628	.9458 .9359 .9245 .9559 .9315	4.060 4.067 4.097 4.432 4.510	.7864 .7909 .7798 .7689 .7713	3093 3113 3139 3128 3149	38.95 38.90 38.62 39.33 38.52	33.88 33.91 33.88 35.08 35.05	32,360 33,500 35,070 23,500 26,170	38.4 39.9 41.1 28.5 30.2	21 22 23 24 25
899999	.837 2 .200 - .207 2 .508 2 .736 2 .976 2	4.1 6 4.9 6 5.1 6 5.3 6 5.5 6	088 223 1 353 1 495 1 625 1	163.2 168.6 169.4 170.6 171.6	.8326 .8216 .8136 .7960 .7837	.0624 .0634 .0617 .0635 .0637 .0631	.9224 .9419 .9258 .9331 .9326	4.511 4.547 4.544 4.585 4.581 4.588	.7767 .7783 .7781 .7851 .7769	3170 3188 3210 3230 3247	38.61 39.03 38.62 38.63 38.59	35.30 35.37 35.20 35.36 35.52	27,560 28,980 30,770 31,750 32,710	31.4 33.6 34.8 36.3 37.6	26 27 28 29 30 31

Figure 1. - Installation of 600-B9 engine in altitude wind tunnel.

.

.

^aApproximately 43 inches upstream of station 1 in make-up air pipe.

CD-3030

Figure 2. - Cross section of 600-B9 turbojet-engine installation showing stations at which instrumentation was installed.

.

Figure 4. - Concluded. Compressor performance map.

(a) Reynolds number index, 0.795.

(b) Reynolds number index, 0.164.

Figure 6. - Concluded. Compressor performance map showing lines of constant turbine-inlet to engine-inlet temperature ratio.

.

*

NACA RM E53118

Figure 8. - Turbine performance maps.

Figure 9. - Effect of Reynolds number index on turbine performance.

.

Figure 10. - Variation of combustion efficiency with combustion parameters.

Combustor total-pressure-loss ratio, P2 - P3

Figure 11. - Variation of combustor total-pressure-loss ratio with combustor temperature-ratio parameter.

4

.

.

.

Figure 12. - Effect of Reynolds number index and corrected engine speed on combustion efficiency.

.

.

(a) Compressor, combustor, and turbine efficiencies and corrected air flow for two thrust conditions.

Figure 13. - Effects of altitude on engine performance. Flight Mach number, 0.80.

(b) Corrected net thrust and corrected specific fuel consumption at military thrust condition. Rated engine speed, 6100 rpm; rated turbine-inlet temperature, 2160° R.

Figure 13. - Concluded. Effects of altitude on engine performance. Flight Mach number, 0.80.