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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

MEASURED AND ESTIMATED LATERAL STATIC AND ROTARY
DERIVATIVES OF A l/l2—SCALE MODEL OF A
HIGH-SPEED FIGHTER ATIRPLANE
WITH UNSWEPT WINGS

By James L. Williams
SUMMARY

A low-speed investigation was made in the Langley stability tunnel
in order to determine the lateral static and rotary derivatives of a
l/l2—scale model of a high-speed fighter airplane. The experimental
results obtained through the complete angle-of-attack range are pre-
sented primarily for reference purposes. However, a detailed compari-
son at three angles of attack of the lateral static and rotary deriva-
tives estimated by currently available methods with the experimental
lateral static and rotary derivatives is made. In general, the
vertical-tail contributions to the static and rotary derivatives could
be estimated with a good degree of accuracy. The estimated wing-
fuselage-combination derivatives, however, were not in good agreement
with the measured values. The lack of better agreement of the esti-
mated and measured derivatives of the wing-fuselage combination may be
caused by the interference of the thick wing roots at the wing-fuselage
Juncture which could not be accounted for by the methods employed and
the inability to calculate readily the fuselage-alone contribution to
certain of the stability derivatives.

INTRODUCTION

Several methods are available for estimating stability derivatives
of airplanes (for example, see ref. 1); however, these methods do not
account well for the effect of unusual airplane geometry on the sta-
bility derivatives. This deficiency often results in a poor predic-
tion of the dynamic stability characteristics of the airplane. A
similar situation appears to exist for the high-speed fighter air-
plane employed in this investigation since the damping of the lateral
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2 CONFIDENTTAL NACA RM L53K09

oscillation of this airplane could not be calculated in one investiga-
tion with the accuracy desired by using estimated stability derivatives
(ref. 2) although better agreement was obtained in another investigation
(ref. 3).

The purpose of the present investigation, which was made in the
Langley stability tunnel, was to obtain the low-speed lateral static
and rotary stability derivatives of a l/lZ—scale model of a high-speed
fighter airplane with unswept wings and to compare the experimental
stability derivatives with the derivatives estimated by current methods
for the wing-fuselage combination, the vertical- and horizontal-tail
combination, and the complete model. In addition, since a large dif-
ference existed between the static lateral stability derivatives pre-
sented herein and the unpublished derivatives obtained in previous
tests of a sting-supported model, a few tests were made to determine
the effects on the static lateral stability derivatives of a fuselage
modification similar to that necessitated for sting-mounting. This
modification consisted of an increase in the cross-sectional area of
the rear portion of the fuselage under the vertical tail.

SYMBOLS AND COEFFICIENTS

The data presented herein are in the form of standard NACA coeffi-
cients of forces and moments which are referred to the stability system
of axes (fig. 1) with the origin at the projection of the 0.23 point of
the wing mean aerodynamic chord on the plane of symmetry. The positive
directions of the forces, moments, and angular displacements are shown
in figure 1. The symbols and coefficients are defined as follows:

b span, ft

c wing chord, parallel to plane of symmetry, ft

b/2
mean aerodynamic chord, %\jﬁ cgdy, £t
0

&
y spanwise distance measured from and perpendicular to
plane of symmetry, ft
P rolling angular velocity, radians/sec
T yawing angular velocity, radians/sec
F 1.2
q dynamic pressure, =pV—, lb/sq ft

2
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S area, sq ft

v free-stream velocity, ft/sec

a angle of attack of fuselage referenée line (parallel
to wing line 0), deg

B angle of sideslip, deg

¥ angle of yaw, deg

0 mass density of air, slugs/cu ft

i 1ift, 1b

D drag, 1lb

¥ ilisitterail S toree,; I'b

M pitching moment, ft-1b

N yawing moment, ft-1b

L' rolling moment, ft-1b

1, 1ift coefficient, L/qSy

Cp drag coefficient, D/qSy

Cy lateral-force coefficient, Y/qSy

G pitching-moment coefficient, M/qSyCy

Cn yawing-moment coefficient, N/hswbw

Cy rolling-moment coefficient, L'/qSyby

e

oC
Cy, = 551
oC
CnB = SEQ
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&

B = 2

" S

1l I |
Q/ Q/ Q/
& oalE el & mT»/ci% m(ll'/vlg I
s <T;L< <T/GL S5kt Bl ©

[EICRSEY

)
=

Subscripts:

W wing

H horizontal tail
v vertical tail

Model components:

WF wing and fuselage
VH vertical and horizontal tails
WFVH wing, fuselage, and vertical and horizontal tails

(complete model)
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APPARATUS, MODEL, AND TESTS

The tests of the present investigation were made in the 6-foot-
diameter rolling-flow test section (ref. 4) and the 6- by 6-foot curved-
flow test section (ref. 5) of the Langley stability tunnel in which
rolling or yawing flight is simulated by rolling or curving the air-
stream about a stationary model.

The model was mounted on a rigid single-strut support at the pro-
Jjection of the 0.23 point of the mean aerodynamic chord of the wing on
the plane of symmetry. The l/lE—scale fighter airplane model used in
the present tests was constructed of laminated mahogany with aluminum
inserts along the trailing edge of the wing. The model was designed to
permit tests of the wing-fuselage combination alone or with vertical
and horizontal tails. There was no air flow through the simulated Jjet
ducts in the wing roots. A sketch of the complete model is presented
in figure 2 and photographs of the model are presented as fiiguees 5., A
list of pertinent geometric characteristics is given in table T.

The forces and moments were measured by means of a six-component-
balance system through an angle-of-attack range of about -4° to 20°.
The test conditions are summarized in the following table:

pb rb Mach Reynolds
o A B, deg 2v 2V number number
Static 6
longitudinal g 4 - 0:37°" 110,73 % 10
Static 2ot 1o, O
lateral B ) B 5 =L 5715,
0]
+
Rolling 0 ;'gézg - 17 .73
t.0520
0
Yawing 0 =i M s
-.1002

The wing-fuselage combination and the complete model were tested
for each of the conditions listed in the preceding table.
also made at « = 0° and B = t5° and 0° with the wing-fuselage
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combination and complete model with the rear portion of the fuselage
under the vertical tail modified (fig. 4) to simulate the sting-supported
model employed in previous tests of this model.

CORRECTIONS

Approximate jet-boundary corrections as determined by the methods
of ‘reference 6 were applied to the angles of attack and drag coeffi-
cients. Horizontal-tail-on pitching moments were corrected for the
effects of jet boundary by the methods of reference 7. However, the
data have not been corrected for blockage effects which were considered
negligible.

The lateral-force coefficients have been corrected for the buoyancy
effect due to the static-pressure gradient across the curved-flow test
section (ref. 5), but the data have not been corrected for support-strut
tares which, with the exception of the drag tare, are believed to be
small. The absolute values of the drag coefficients therefore should
not be representative of the free-air values.

RESULTS AND DISCUSSION
Presentation of Data
The figures in which the data obtained from wind-tunnel tests made
to determine the low-speed lateral static and rotary derivatives of a

,l/l2—scale model of a high-speed fighter airplane with unswept wings
are summarized in the following table:

Data Figure
Cps» Cr, and Cp plotted against o . . . . « o o v 0 v v v 0 v 0 v v 5
CYB, an, and ClB DIDGERR T AEEASBE L vk o o s o o v ape e R
CYP’ Cnp, and CZP pPlottediaradist e wie . o o o e e o R SR

8

CYr, Cnr, and Czr pliotted fagadnsibie e o o o o o o R R

The experimentally determined derivatives for the l/lz—scale fighter
airplane model through the complete angle-of-attack range are presented
primarily for reference purposes; however, a detailed comparison at three
angles of attack of the lateral static and rotary derivatives estimated
by currently available methods with the experimental lateral static and
rotary derivatives is presented in figure 9.
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Effect of Fuselage Modification on Static Lateral Derivatives

A comparison of the static lateral stability derivatives obtained
in the present investigation (fig. 6) with some unpublished results
obtained at a Mach number of 0.4 indicates larger differences than would
be expected to be caused by Mach number effects alone. The model
employed in the tests at a Mach number of 0.4 was sting supported with
the sting entering the rear portion of the fuselage. This arrangement
necessitated a revision to the fuselage aftersection because of the
fuselage shape (see fig. 2). In order to determine the importance of
this modification on the static lateral characteristics, the fuselage
of the model used in the stability-tunnel investigation was modified
(see fig. 4) to simulate this sting-supported model. The derivatives
resulting from tests of this arrangement are presented in figure 6.

The values of the modified-fuselage derivatives are in good agreement
with the unpublished derivatives obtained at a Mach number of O.4. The
fuselage modification produced a large increase in CYBV and CnBV

(see fig. 6). These changes are believed to result from the increase
in end-plate effect and the induced sidewash of the fuselage on the
vertical tail as the fuselage size under the tail is increased. The
use of values of CYBV from the sting-supported-model tests in esti-

mating Can would give erroneous results, of course.

It appears, therefore, that in testing models similar to the model
of the present investigation an effort should be made to minimize fuse-
lage modifications. If the effect of fuselage modification on the test
results cannot be evaluated by experimental or theoretical methods, then
it may be necessary to mount the model on wing-tip stings which would
require, of course, the determination of tares.

Estimation of Derivatives and Comparison With Experiment

Wing-fuselage contribution.- The procedure employed for estimating
the wing-fuselage combination derivatives except as noted for Cnr

and Cnp was to estimate the wing and fuselage derivatives separately

and to add them algebraically. The derivatives of the basic wing plan
form and fuselage were obtained from the following sources:
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Component Derivative Reference
Wing CZB, CnB’ CYB’ Cips Cnys and Cy 8
Wing Clp 9
Wing Cyp and Cnp 10
Fuselage CYB and CnB Tl
Fuselage Cy, e
Fuselage CYP L5
Fuselage ClB, Czr, and CZP Assumed to be zero

The 1ift and drag data of the wing-fuselage combination (fig. 5)
were used with the methods of references 8 and 10 to estimate Cnr

and Cnp and no additional increments were added for the fuselage since

it is indirectly accounted for in this manner. The effect of wing dihe-
dral on CYP was determined from reference 1k and on CZB and C1,

from references 15 and 16, respectively. The effect of wing position on
the sideslip derivatives was determined from reference 17 assuming a
low-wing position. The mutual-interference effects of the wing-fuselage
combination have not been accounted for in these calculations since all
the currently available interference data have been determined for simple
bodies of revolution only (refs. 11, 12, and 18). There was no air flow
through the wing ducts. It is believed that for this case the flow
through the ducts has no appreciable effect on the stability derivatives.

In general the estimated derivatives of the wing-fuselage combination
are only in fair agreement with the measured derivatives (see fig. 9).
It appears that this lack of better agreement could be caused by a large
interference effect of the thick wing-roots at the wing-fuselage Jjuncture
which cannot be accounted for by the currently available methods, and the
inability to calculate readily an accurate fuselage-alone contribution to
some of the stability derivatives. Evidently, more information on the
mutual-interference effects for wing-fuselage combinations other than
simple bodies of revolution is needed.

Vertical-tail contribution.- The vertical-tail increments to the
stability derivatives were calculated by means of the equations given
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in reference 19. The lift-curve slope CL@V was determined from ref-

erence 20 for an effective aspect ratio determined from references 11
and 17. In the estimation of the yawing and rolling derivatives of the
vertical tail the effective aspect ratio was considered to be equal to
the geometric aspect ratio with no end-plate effect of the fuselage.

A comparison of the estimated and measured tail contribution to the
various derivatives is presented for three angles of attack in figure 9.
The estimated increments in the lateral static and rotary derivatives due
to the tail are generally in good agreement with the measured values. An
exception is noted for the vertical-tail contribution to the rolling
derivatives where, although the trend with angle of attack is estimated
accurately, the magnitude of these increments is in some cases of oppo-
site sign to the experimental increments. It is believed that the thick
wing roots at the wing-fuselage Jjuncture produced sidewash at the verti-
cal tail that cannot be accounted for by the methods employed in this
paper. Because of its location the horizontal tail was felt to have
little influence on the vertical tail; hence this effect was not accounted
for in this paper.

Complete model.- The estimated derivatives for the wing-fuselage
combination and tail group were summed to obtain the complete model
derivatives. The agreement between the estimated and measured deriva-
tives was generally good. The poor agreement between certain estimated
and measured complete-model derivatives is obtained as a direct conse-
quence of the inability to estimate the wing-fuselage contribution to
the derivatives.

CONCLUDING REMARKS

A low-speed investigation was made in the Langley stability tunnel

in order to determine the lateral static and rotary derivatives of a
l/lE-scale model of a high-speed fighter airplane with unswept wings.
The experimentally determined derivatives through the complete angle-of-
attack range are presented primarily for reference purposes. However, a
detailed comparison at three angles of attack of the lateral static and
rotrary derivatives estimated by currently available methods with the
experimental derivatives is presented.

In using current methods to estimate the derivatives of the airplane
it was found that in general the tail contribution to the lateral static
and rotary derivatives could be estimated with a good degree of accuracy.
The estimated wing-fuselage-combination derivatives, however, were not in
good agreement with the measured values. This lack of better agreement
may be caused by the interference of the thick wing roots at the
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wing-fuselage juncture which could not be accounted for by the methods
employed, and the inability to calculate readily the fuselage-alone con-
tribution to certain of the stability derivatives.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., October 26, 1953.
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TABLE I.- DIMENSIONS AND CHARACTERISTICS OF MODEL

Wing:
Adrfoil section at fold (fold at 0.427 b/2) . . . . . . . NACA 651-212
Alrfeil eection ab theoretical tip .« « « ¢« « « « « « . - NACA 635-209

e T s PR R . O A S M T -
Gt e S ST P MR, S o S o < PR (S NSO T T
Mean serodynamic chord, &, ft SRR e el S O LB e L G
Root chord (trailing edge extended), ft g, e e I S
RIpYehordl, St « o o ¢ ' B e e s RS R (0. sl
Sweep of leadlng edge, deg ST R 8 T e e R R E N IO e o £ A (4)
ASpectiratit . « « o . . cralul Vet e sl NS ARCU I CRS R OIS e Salet s | s SRRE) MO
Incidence, deg

e TS PR S T R U R

DIRTLER e I0a] LID BHOTA. . . » o v« e s es s e e s e e =lf0

s R TG G PR R S e -

e e e R T I LR PR

Horizontal tail:
e ll—percent-thick NACA 65-series
B Tl D i i s es s e B R s v e et e e a o % s o nkBs

B I e o o e e hE ke e alad e e s e e st SEEH

B IR B o o vk T e ahim o w e e w e B e e e e DD
i chord, £t . . . . e A v e [ ol
Sweep, leading edge, deg S0 e e e A e SR & el e e e e RO
Area ratio, SH/SW O B e Te (e eT o i afian ok o in o ot s o MO SO

Vertical tail:
Airfoil section . . . . . . . . . . . . 1ll-percent-thick NACA 65-series
ool B SRS A SO PR Sl

L e I o)
U e T e A I o S S SRS ¢ 1 -

U e R PGP o F
Sweepback, leading edge, deg . . . . . . . . ... 00 0. ... 2450
Tail length, distance from center of gravity to %?, - ALY
Tail height, perpendicular distance from center of gravity

BRI o r s s L A s e e e 0000
Hei e o T N R PO SRR o i ) |

s eliinaeivlenath ol SIS, SRS R e . L S L e i e e 5205
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Front view

Figure 1.- System of stability axes. Arrows indicate positive direction
of forces, moments, and displacements.
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) Figure 2.- Model used in the investigation.
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L-79633

(a) View of complete model.

L-79634

(b) View of complete model with modified fuselage.

Figure 3.- Model used in tests.
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e

4.00
iR

Modified shape l/—

/18
Sec. at sta 3585

L3
Original shape
| }

4.00
+
Sta. 3585 uey 2+

LO0O
Sla, 2917 f"E 532

/Mod/f/ed shape
T Sec. at sta. 2917

// l
. —__—_—-]:7'(/74.00 >

Sfa. 26.38  Sta. 3690

Figure 4.- Details of modified fuselage. All dimensions are given in inches.
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Figure 5.- Variation of 1lift coefficient, drag coefficient, and pitching-

moment coefficient with angle of attack for wing-fuselage combination
and complete model.
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O WF
O wFVH
Flagged symbols for modified fuselage -(see figs. 3and 4)

0
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~0L2
)}
.002 - g B L P B B
: rF—;FF“ - 3 B
Cn 0 =0
e o—O0——b———00 o
-002
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¢ i : E.%h\
=002 \\E%:f
-004
-4 0 4 8 12 /6 20

Angle of attack, OC, deg

Figure 6.- Variation of static lateral stability derivatives with angle
of attack for wing-fuselage combination and complete model. With and
without rear fuselage modification.
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Figure 7.- Variation of rolling stability derivatives with angle of
attack for wing-fuselage combination and complete model.
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Figure 8.- Variation of yawing stability derivatives with angle of attack
for wing-fuselage combination and complete model.
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(a) Static derivatives.
Figure 9.~ Comparison of the estimated and measured lateral and rotary
derivatives for the wing-fuselage combination, vertical tail, and

complete model.
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(b) Rolling derivatives.

Figure 9.- Continued.
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(c) Yawing derivatives.

Figure 9.- Concluded.
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