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ERJMURY 

The performance of two experimental annulaz  turbojet  combuetors w m  
invest igated at  operating  conditions  typical of high-alt i tude  supersonic 
f l i g h t .  Each cmbustor  consisted of a one-quarter sector of a single an- 
nular combustor designed t o  f i t  in a housing  with an outside diameter of 24 inches, an inside diameter of 1% inches, and a cmbustor  length of 5 

approximately 23 inches.   Liquid  fuel w a s  injected i n t o   t h e  combustion 
chamber from the  upstream face of t h e  combustor; in addition, a fuel- 
staging technique waa investigated.  - 

D 

Combustion e f f io ienc ies  near 100 percent w e r e  achieved i n  both ex- 
perimental  combustors  operating  with  combmtor reference ve loc i t ies  of 
200 feet  per  second a& greater a t  simulated supersonic  f l ight  conditions.  
These  high  efficlenoiee were maintained at the  highest  combustor-outlet 
temperatures  invmtigated, namel~, 180O0 F f o r  one  combustor and 2000° F 
f o r  the other.  Reasonably flat outlet-temperature  profilea w e r e  obtained 
a d  were considered  sat isfactory.  The maximum total-pressure  losses  were 
10.2 and 12.6 percent   for  the  two combustors at a velcuity  of 165 feet  
per  second and a tempera ture   ra t io  of  about 1.7. For  combustor  pressure 
loElses of t h i s  magnitude, calculat ions indicated that the increase i n  
engine spec i f ic - fue l  consumption r e su l t i ng  from combustor pressure l O E 8 e f l  
would be  no greater i n  the  engine for  supersonic  propulsion than in  OUT- 
rent turboje t  engines. These pressure  losses   therefore  appear accepta- 
ble for   the   supersonic  f l igh t  conditions.  Combustor-liner  durability a d  
carbon-deposition characteristics of the CCmbUEtOrE w e r e  not &aluated i n  
th is   inves t iga t ion .  

" J C T I O N  
I 

Research on compressor and turbine aerodynamics h m  indicated that 
increases in air flow pe r   un i t   f ron ta l  area of &8 much &8 30 percent axe 

* poss ib l e   fo r  these components of   the   tu rboje t  engine (refs. 1 to 4).  
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I n  addi t ion,   the  advancement of turbine-cooling  techniques  indicates that 
increases in operating  temperatures  of as much a8 500' F over current * 
prac t ice  are possible in future engines ( r e f s .  5 and 6) .  High  supersonic 
f l i g h t  speeda with   tu rboje t  engines can  be more w i l y  real ized with   the  
greater power resulting frm higher air flows and temperatures. The tu- - 
bo3et  combustor  designed f o r  use in an engine incorporating  these ad- 
vancements and powerin@; an aircraft a t  high  supersonic  speeds (Mach num- 
bers  of 2 .O t o  3 .O) will be requi red   to   opera te   wi th  much higher air flm 
and at higher  temperature levels. This meam higher  combustor  velocities, 
i f  the  C O I I ~ U ~ ~ O ~  f r o n t a l  area is n o t   t o  exceed. that of the   o the r  engine 
components.  The high air flows a lso   ind ica te   h igher  fuel flows and higher 
heat -releas e rates . 
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From t he  results of previara   invest igat ions  ( ref .  7),  increased cam- 
bustor  flow veloc i t ies  that a r e  des i rab le  in supersonic  propulsion would 
be expected. t o  r e s u l t  in decreased.  combustion  efficiency. The higher 
pressures and combustor-inlet  temperaturea  encountered a t  supersonic 
f l ight  conditions may, however, t e n d   t o  alleviate the  adverse e f f e c t  of 
veloci ty  on combustion  efficiency. The increased flow veloc l t iee  will W 

also increafle combustor pressure lose, which advereely  affecte engine f ie1  
consumption.  The  higher  conkustor-Inlet and -out le t   temperature   levels  
(of the order of 400' t o  500 F above current  combustors) w i l l  increase . 
the   durabi l i ty   problem  involved in t h e  combustor par t s .  

The preliminary invest igat ions that are reported  herein are a part 
of a general research program a t  t h e  NACA Lewis laboratory  to   determine 
design criteria of combuetors for turbo j e t  engines  operating a t  high al- 
t i t udes  and supersonic  flight  speeds.  Performance  characteristics of 
two experhental  single-annulus  combustors w e r e  obtained at combustor- 
inlet-air conditions  approximating  those of an engine with advanoed de- 
sign components operating i n  the  range of a l t i t u d w  from 60,000 t o  80,OOO 
feet  and of f l i g h t  Mach numbers from 2.0 t o  3.0. One-quater   sectors  of 
the cmbustors  were invest igated in a direct-connect  system.  Pressure- 
a tomized  l iquid  fuel  w a a  used i n  both  combustors.  Hollow-cone spray 
nozzles  injected fuel axia l ly  from the  upstream face of t h e  combustors; 
i n  addition,  one  canbustor waa equipped with f lat  spray nozzles in jec t ing  
radially i n t o   t h e  combustor for the  purpose of fuel staging a t  high 
f low rates. 

The performance of each  combustor WBB evaluated a t  a single inlet-  
air temperature of 870' F, a range of inlet-air pressures from 10 t o  30 . 
pat& per  square  inch  absolute, and a range of canbustor   veloci t ies  f'rirm 
125  t o  225 feet per second.. Combustion eff ic iencies ,   pressure  losses ,  
and combustor-outlet-temperature  profiles w e r e  determined a t  these con- 
d i t ions .   Cmbustor - l iner   durabi l i ty  & carbon  deposition w e r e  n o t   e v a h -  
ated during t h i e  investigation. . 
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Two experimental annular combustors are here in   descr ibed~  ne i ther  
of these combuetors necessarily represents an optimum daign.  Since t h e  
air flow per  u n i t   f r o n t a l  area of the engine is very high i n  a turboje t  
engine for   supersonic   appl icat ion,  an annular configuration waa selected 
f o r   t h e  combustore i n  order t o  maintain as low a flow veloci ty  aa possible.  
Each  combustor consisted  of a one-quarter sec tor  of a single-anndm com- 
bustor  designed t o  f i t  i n t o  a housing  with a2 outside diameter of 2+ in- 

ches , an inside d€ameter of 1% inches , and a combustor length of approxi- 
mately 23 inches. The maximum combuetor cross-sectional area of t h e  sec- 
tor WBB 105 square  inches,  which  corresponde t o  420 square  inches  for   the 
complete  cmbuetor. I n  each of t h e  combustors t h e  primary air was ad- 
m i t t e d  gradually and t h e  secondary air, rapfdly  through large rectangular 
slots.  Three-quarber  cutaway  views  of  the assembled combustors are shown 
in  figure 1. The combustor longitudinal cross-sectional an5 air-entry 
hole geometries are shown in  f iguree 2 t o  4. 

5 

The geometric shape  of  cmbustor A ( f ig .   2 (a ) )  waa similar t o  that 
reported i n  reference 8 in  that t h e  combustor  occupied t h e  same volume 
and pos i t i on   w i th in   t he  housing. The primary  zone wae designed with a 
series of c i rcu lar   ho les   ( f ig .   3 (a) )  which allowed primary air t o  enter 
between the   fue l   nozz les ,   thus   es tab l i sh ing  alternate fuel- and a i r - r i c h  
zones.  Large  secondary slots ( f ig .   3 (a ) )  w e r e  used t o  provide  adequate 
penetration of the  secondary air and t o  minimize flow r e s t r i c t ions .  
Fuel was introduced  through five hollow-cane  spray  nozzles (10.5 gal/hrj 
60° spray angle) l o c a t e d  at t h e  upstream face of t h e  combustor. The 
design of canbustor A WBB t h e  result of the  reaearch  descr ibed in  re- 
f erence 8 aimed toward t h e   d e v e l o p e n t  of a high-performance  combustor 
for   high-al t i tude,   subsonic   f l ight   condi t ions.  

Combustor B w a s  spec i f i ca l ly  deeigned to  m e e t  the  requirements of 
high-altitude,  high Mach number f l i g h t  of an engine with advanced design 
components. Since a h igh   cmbuetor   ve lwi ty  is encountered a t  the  design 
fl ight  conditione,   maintaining a m i n i m u m  pressure lose in  combustor B was  
a primary  consideration. An attempt w a ~  made to   r educe   t he  annular loeses  
by designing combustor B with a samewhat smaller combustion  space  (fig. 
2 (b) ) . Making the  canbustion space small, however, also adversely affects 
combustion  efficiency,  particularly a t  low pressurea  (ref.  7 ) .  Analyti- 
cal studies of s e v e r a l   f l i g h t  missions of interest for  supersonic  turbo- 
jet  a i r c r a f t  have idicated that t h e  combustor pressure will be above 
about 1 atmosphere at a l l  f l i g h t  conditions  considered i n  t h e  analysis 

quiremente of providing  high  efficiencies a t  very low p r e ~ s ~ r e ~ ;  this 

- 
(unpublished  data). It will therefore   no t  be necessary t o  meet t h e  re-  
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makes possible  a compromise in cumbustor des ign   t o   ob ta in  lower pressure 
losses at t h e  expense of combustion  efficienoy a t  low  pressures. 

Primary air wa8 admitted i n t o  combustor B through a number of inverted .. 
louvers, as s h a m  in figure 2(b).  I n   d a i t i o n ,  a r e l a t i v e l y  large propor- 
t i o n  of the primary a i r  w&8 admitted in the  upetream half of combustor B 
( s e e   f i g .  4) which served to   fu r the r   dec reaee  the  pressure-loss  coef- 
f i c i e n t .  Provision was made for fuel staging i n  combustor B since t h i s  
technique waa indicated t o   b e   p a r t i c u l a r l y  advantage- a t  high  heat- 
release  conditio- (ref. 9) .  When t h e  combustor W&B operated without fuel 
staging, all t h e  Fuel waa injected through nine, hollaw-cone, swirl-type w 
nozzles (10.5 gal/hr; 60° spray angle) at the upatream end of t he  com- 
bustor  liner. During operation  with fuel- staging, two-thirds  of the f u e l  
w a ~  injected through eight fan-spray  injectors  -located. 6 inches dowmtream 
and spraying radially i n t o  the  combustor as shown in figure l ( b )  . 

rl 
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Combustor I n s t a l l a t i o n  

A schematic diagram of the combustor i n s t a l l a t i o n  is shown i n  figure 
5. Air of desired  quantity,   pressure,  and tenperature waa drawn from t h e  I 

laboratory  air-supply  system,  passed  through  the combustor, and exhausted 
in to   t he  altitude-exhaust system.  Combustor-inlet  temperatures were con- 
t r o l l e d  by use  of a gasoline-fired preheater which burned a port ion of t h e  
air upstream  of t he  combustor. The quant i ty  of air flawing through  the 
p rehea te r ,   t he   t o t a l  air flow, and t h e  combustion-chamber s t a t i o  preersure 
were regulated by three remote-control valves .  Tu0 observation windm 
w e r e  installed in  t h e  test sec t ion  i n  order t o  permit  visual  observation 
of the  combustim  process. 

Instrumentation 

Total  temperatures and pressures  were  measured a t  the  three s t a t ions  
i d i c a t e d  i n  figure 5. The pos i t ion  of t h e  instruments i n  each of the 
t h e e  planes is shown i n  figure 6. Cumbustor-inlet t o t a l  temperature8 were 
measured. with  three  bare-  junction,  unshielded,  iron-constantan  thermo- 
couples a t  s t a t i o n  1, a8 shown i n  figure 6(a) . Slightly  upstream were 
located 12  total-preesure  tubes,   three  tubes in each of four rakes as 
sham in figure 6(a).  Combustor-outlet total   temperatures  were measured 
with 30 bare-junction, unshielded, chromel-alumel thermocouples; five 
thermocouples in each of f ive   rakes  were located across the   duc t  at s t a t i o n  
2 ,  23 inches from the  upstream end of the  combustor ( f ig .   6 (b) ) .  A t  sta- 
t i o n  3 were located 15 to ta l -pressure   tubes   in  three rakes of f ive   p re s -  
sure tubes  each  (fig.   6(c)).  All instruments were located a t  approximate 
centers  of equal meas. S ta t ic -pressure   o r i f ices  were installed at  t h e  
w a l l ,  aa shown In f igure  6(c) .   Conatruct ion details of the   p ressure  and 6 

temperature  probes are s h a m  i n  figure 7. 
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Rotameters w e r e  used t o  m e a s u r e  t h e  fuel flow; MIL-B”5624A grade 
Jp-4 f u e l  was us& throughau-k the   inves t iga t ion .  

The  combustor wa8 operated at conditions  considered to be  repre-  
sentative for an engine with a C O ~ ~ ~ B S O ~  r a t i o  of 7, flight Mach nun- 
bers  from 2 .O t o  3.0, and f l i g h t   a l t i t u d e s  from 60,000 t o  80,000 feet. 

F l i g h t  analyses such as s h m  i n  reference 10 indicated that t h e  
minimum C O M b U S t O r - i n l e t  pressures  encountered would be above 1 atmos- 
phere. The m i n i m u m  combustor-inlet  pressure w a s  18.4 pounds per  square 
inch   absolu te   for  a given  interceptor  flight plan  and w a s  therefore  
chosen as a standard  test   point.   Combustor-inlet   pressures of 10 and 30 
pounds per  square  inch  absolute were also included i n  the test schedule 
t o  show the e f f e c t  on performance of v a r i a t i o n s   i n  inlet pressure. Com- 
bus tor   re fe rence   ve loc i t ies   typ ica l  for these conditions of supersonic 
f l i g h t  ranged  from  approximately l50 t o  200 feet pe r  second. D a t a  w e r e  
obtained  over a range of veloci t ies   f rom 125 t o  225 feet per  second t o  
determine the e f f e c t  of var ia t ion  in veloc i ty  on performance. Minimum 
combustor-inlet  temperatures were determined t o  be about 870° F, 8nd 
therefore  this value w a s  chosen as a standard test parameter.  Turbine- 
i n l e t  temperatures of 200O0 F have  been shown (ref. 10) t o  be desirable 
for   ob ta in ing  the high t h rus t   necessa ry   fo r  high supersonic  speed. Be- 
came of instrumentat ion  l imftat ions,  average combustor-outlet  tempera- 
t u re s  were  maintained a t  1 W 0  F f o r  most of the rum; a eingle mz1 wa8 
made at a 2000° F outlet   temperature with combustor B. The test condi- 
t ions  a r e  shown in t a b u l a  form i n  the following table: 

~~ 

CGbustor- 

temperature, pressure, 
inlet total inlet t o t &  
C ombus tor - 

Lb/sq i n .  abs 9 

10 .o 

876 18.4 
870 18.4 
870 18.4 
870 18.4 
870 18.4 
8 70 30 .O 
870 

C ombue tor 
reference 
veloci ty ,  
f t / s ec  
( 4  

165 
165 
125 
165 
204 
225 
204 

C ombus t o r  - 
o u t l e t  
temperature, 

?F 

-~ ~ 

1800 
1800 
1800 
1800 
1800 
1800 
2000 

%med on maximum combustor cross-sect ional  area of 105 sq in. 
and combustor-inlet air density.  
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Combustion efficiency, outlet tempmature  profile,  and pressure 
losses were  evaluated  for  each  combustor. Combustion efficiency was can- 
put& as the   pe rcen twe   r a t io  of actual t o   t h e o r e t i c a l  increase i n  en- 
thalpy f r o m  the  combustor-inlet t o  t h e  combustor-outlet  imtnunentation 
planes by using t h e  method of reference ll. The arithmetic mean of the  
30 o u t l e t  thermocouple readings w w  used to   ob ta in   the   va lue  of t he  
combustor-outlet  enkhalpy. The accuracy  of t h e  combustion eff ic iency 
calculated from these readings was cormidered t o  be about ~3 percent. 
The radial out le t - temperature   dis t r ibut ion w a s  determined  for an average 
out le t  temperature of approximately B O O o  F. The temperature at each of 
f i v e  radial pos i t i om WE@ cmputed a8 t h e   a v e r w e  of six circumferential  
thermocouple  readings at each  position. The preesure l m s  was cmputed 
a0 the   percentage  ra t io  of pressure loes  th rough   t he   cmbus to r   t o   t he  
inlet  to ta l   p ressure .  

rl 
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The performance of' two experimental annular c ~ ~ ~ ~ b u s t o r s ,  over a 
l i m i t e d  range of   operat ing  codi t ions that are representative of super- 
sonic   f l igh t ,  are biscussed  subsequently. The performance criteria con- 
sidered include  combustion  efficiency,  combustor  pressure l o s s ,  and 
outlet  -temperature prof i le .  

- 

Combustion Efficiency 

E f f e c t  of veloci ty .  - The e f f ec t  of cornbustor reference  velocity on 
combustion efficiency is shown in  figure 8 for each of the two combustors 
operating a t  a constant  value  of inlet-air temperature of 870° F, inlet- 
a i r  p re smre  of 18.4 p e s  per  square  inch absolute, and an average 
combustor-outlet  temperature of approximately 1800° F. Data are shown 
f o r  a range of reference ve loc i t ies  from 325 t o  225 feet  per second.. 
Combustor velocity,  as discussed herein, is based on the densi ty  of the 
combustor-inlet air and on t h e  maximum cross-sectional area of t he  com- 
bustor.  The  combustion eff ic iency of  combustor A wae-  essent ia l ly  100 
percent at a l l  velocit iee  investigated  except the lowest veloc i ty  (125 
f t / s ec )  where the  combustion  efficiency was 97 percent. For combustor 
B without  fuel staging t h e  combustion  efficiency  decreased from 100 per- 
cent at a reference  velocity of 165 feet per second t o  88 percent a t  
225 feet  per second ( f ig .  8) .  Fuel staging served t o  improve the   per -  
formance of combustor B a t  the  higher   veloci t ies .  At a reference velo- 
c i t y  of 225 feet per  second,  the  cambustion  efficiency of cambustor B 
with fuel staging vas 97 percent. A s ingle  data point was obtained for 
combustor B with fuel etaging at a higher  combustor-outlet  temperature 
(2000' I?) . This data point is included i n  figure 8 and s h m  that t h e  
combustion  efficiency remained high at thi#  higher  outlet  temperature. 
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The &ata presented i n  figure 8 indicate that high  ccmbwtion ef- 

that are ant ic ipa ted  i n  fu tu re   t u rbo je t  engine6 operating at high al- 
t i t udes  and supersonic  f lfght  speeds.  Moreover, the  high  combustion ef - 
s ign i f i can t ly  different design. 

. ficiency  can  be  obtained at the   h igh  combustor reference velocities 

T f ic ienc ies   can  be  obtained  with a t  leaat two experimental  C~mbustOrs  of 

W f e c t  of pressure. - The effect of  combustor-inlet  presaure on 
t h e  combustion eff ic iencies   of   each of t h e  two combustors is shown i n  
figure 9 f o r  a constant  combustor-inlet-air  temperature of 870' F, an 
average outlet   temperature of 1800' F, and a r e f e r c e  ve loc i ty  of 165 
f e e t - p e r  second. Above 18.4 pounde per square  inch  absolute ,   the  com- 
bust ion  eff ic iency was apprcrxlmately 100 percent for both  combustors; 
however, aa the   p ressure  was reduced t o  10 pound6 per square  inch 
absolute,   the  canbustion  efficiency of combustor A decreased to 82.5 
percent and that of combustor B, t o  62.5 percent. The marked effect of 
low preasure on the  canbust ion efficiency of cambustor B is t h e  result 
of the  design  cmprmisea  previously noted ( a n d l  cabus t ion   space  and 

f ic iency  of combustor A is par t ly  due t o  t h e  f&ct that t h i s  combustor 
configuration wa6 developed ( r d .  8) fo r   u se   w i th  a fuel  prevaporizer,  - 

below about.1  atmosphere would not  be encountered in t he   t u rbo je t -  
powered aircraf't capable of f l i g h t  a t  h igh   6~pers0ni0  Mach numbers which 
w e r e  considered i n  analytical studies conducted a t  th i s   l abora tory ;  a~ 
shown i n  figure 9, near 100-pmcent  combustion  efficiency wzm obtained 
with  both combmtors at these  conditions.  

L rapid  entry  of pr- a i r ) .  The effect of low preseurea on t h e  ef- 

- while i n  t h i s   i n v e s t i g a t i o n   l i q u i d   f u e l ,  WSB used. Combustor pressures 

The indicated combustion e f f i c i enc ie s  at pressures of 10 pounds 
per  square  inch  absolute may be low by  several  percentages became of 
oxygen d&ple tEn in t h e  inlet air due to the g a s - f i s  preheater . Oxygen 
depletion has been shown t o  have a more severe effect at low pressures  
( r e f .  12) . 

Combustor-Outlet  Temperature P r o f i l e  

Typical  combustor-outlet  isothermal  contour  pattern6  for  co~nbustors 
A and B =e s h a m  in  figure 10, and t h e  radial outlet-temperature pro- 
fils in figure U. A maximum average  temperature  deviation from inner 
t o  outer w a l l  of 220° F wa6 obtained  with  combustor A and a m a x i m u m  de- 
viation  of 70' F obtained  with  cambustor B. Preliminary analysis 
hm indicated that uniform temperature   dis t r ibut ions  such as these  axe 
par t icu lar ly   appl icable  for cooled turbine  blades that may be used i n  
engines  for  high  supersonic  f l ight,  inasmuch aa t h e  preferred gae- 
temperature profile for   cooled   tu rb ine  blades i s  radially more uniform 
than f o r  uncooled turbines. Previous stqdies (ref. 13) describe methods 
of controll ing  outlet-temperature profiles. It is e c t e d  that no 

- 

- 
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s ign i f i can t   s ao r i f i ce  i n  other  performance  characterist ics would be re- 
quired  to   provide  temperature   prof i les  different frm those sham. i n  
figure 11. 

,Combustor E resu re   Losses  

The percent   total -pressure loss of each  of  the two combustors is 
s h a m  ae a funct ion of reference veloci ty  i n  figure 12. The pressure 
loss of  cambuetor A is approximately 20 percent as campay.ed with 15 per- 
cent for ombustor  B at a reference  veloci ty  of 204 feet  per  second 
a d  a tempera ture   ra t io   across   the  combustor of about 1.7. The lower 
pressure  losses  obtained with combustor B are t h e  result of the   fea turea  
( e m  combustion  space and rapid  entry of  primary a i r )  that were in- 
corporated in  t h e  design to  obtain  lower  pressure- loss   coeff ic ients .  
The pressure losses  represented  bg  the  curves of f igu re  U are not t o  
be  considered  the min imum required. for   high  eff ic iency at the  condi t ione 
inves t iga ted ,   s ince   the   des ign   var iab les  w e r e  i n v e s t i g a t e d   t o  a very  
l imi ted  extent. 

The speoif ic-fuel  consumption, ~EI a funct ion of t he   t o t a l -p re s su re  
loseerj, was calculated by us ing   the  method of reference 14 for a rep- 
redllentative  mbeonic and supersonic   f l ight   condi t ion.  The spec i f ic -  
fuel consumption is plotted. in  figure 13 ae t h e   r a t i o  of the  a c t u a l   t o  
the  ideal spec i f ic - fue l  consumption w i t h  no  pressure loss i n  t h e  
combustor assumed. A pressure loss of about  percent, which is ob- 

tained in  m ~ u l y  current  combustors  for  subsonic  flight  conditions, re- 
s i l ts  i n  an increase i n  spec i f ic - fue l  consumption  of  about 2 .3  percent 
i n  t h e  5:l pressure-rat io  engine, &B s h a m  in  f igu re  13. For t h i s  sane 
e f f e c t  on  specif ic-fuel  consumption, pressure losses  of 9.2 percent 
are permitted a t  the supersonic   f l ight   condi t ion in  a 7 : l  campressor 
pressure  engine;  therefore, it is evident that higher   presmre losses 
can be   to le ra ted  i n  t h e  engine for   supersonic  f l i g h t  than i n  current 
engines for S U ~ S O D ~ C  f l i g h t  while equivalent  performance  levels are 
maintained. Pressure 108s has a laser effect on specific-fuel  con- 
s m p t i o n  a t  the  supersonic  f l igh t  conditions  mainly  because  the ram- 
temperature-rise  ratios  encountered i n  supersonic f l igh t  me high (ref. 
14). I n  any application, however, it is obviously desfrable t o  design 
for a minimum value of pressure loss. 

Carbon and Durabi l i ty  

D u r i n g  t he   i nves t iga t ion  which included  operation at p r a s u r e s  as 
high aa 30 pounds per  square  inch  absolute, no casbon  deposits were 
evident; however, wlth  sustained  high-temperature  operation  over  several 
hours moderate t o  severe liner deter iorat ion  occurred.  
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CON(X.UDING EMARES 
* 

The performance r e s u l t s  presented indica te  that combustion e f f i c i en -  
cies over 95 percent and sat isfactory  out le t - temperature   prof i les   can  be 

conditions  with  combustor  velocities aa high BB 225 feet per  second. 
These  high efficiencies were maintained to   the  highest   combustor-oat le t  
temperatures  investigated, 1800° F for one  combustor and 2000° F f o r   t h e  

w e r e  acceptable by present standards, since calculat ions  indicated that 
the   increase  in engine  specific-fuel consumption r e su l t i ng  from combustor 
pressure  losses  would not  be significantly greater i n  the  engine  for 
supersonic  propulsion than i n  current turbojet  engines.  These pressure 
losses ,   therefore ,  appeas acceptable   for   the  supersonic   fxight   condi t ione.  
Further engine performance  gain  could  be real ized,  however, i f  the   l o s ses  
could  be  reduced.  Liner  durability may w e l l  prove t o  be  one of t h e  
la rges t   p roblem  fac ing   the  combustor designer for combustor appl ica t iom 
involving  temperature  levels of i n t e r e e t  for high  supereonic  f l ight.  

. obtained i n  annular combustors  operating at simulated supersonic   f l ight  

04 other.  The to ta l -pressure  losses of t h e  two experimental  canbustors 
8 
e\, 

tu & -  
Lewis Fl igh t  Propulsion Laboratory . National  Advisory Committee for Aeronautics 

Cleveland,  Ohio, Januarg 18, 1954 

1. Lieblein,  Seymour, Laris ,  George W., Jr., and Sandercock,  Donald M. : 
Ekperimental  Investigation of an Axial-Flow  Compressor Inlet Stage 
Operating at Transonic  Relative Inlet Mach Numbers. I - Over-All 
Performance of Stage  with  Tramionic  Rotor ELnd Subsonic  Stators up 
to   Rotor   Rela t ive  Inlet  Mach  Number of 1.1. RACA RM E52824, 1952. 

2 .  Serovy,  George K., Robbins, William H., and G l a s e r ,  Frederick W. : 
Experimental   Invedigation of a 0.4 Hub-Tip D i a m e t e r  Rat io  Axial- 
Flow C o m p r e s s o r  Inlet Stage at Transonic Inlet  Rela t ive  Mach N m -  
bers .  I - Rotor Design and Over-All Pmfomance at T i p  Speed8 from 
60 t o  100 P s c e n t  of Design. NACA RM F,53Ill, 1953. 

3. Voit, C k l e s  H. : Inves t iga t ion  of a High-Pressure-Ratio  EightStage 
Axial-Tlow Research  Cmpressor  with Two Transonio Inlet Stages.  
I - Aerodynamic D e s i g n .  NACA RM 35334, 1953. 

4. Geye, Richard  P . , Budinger, R a y  E., and Voit, C h a r l e ~  H. : Inves t i -  - gat ion of a High-Pres6ure-Ratio  Eight-Stage  Axial-Flow  Research 
Compressor with Two Transonic Inlet  Stages. lI - Preliminary Andy- 
sis of Over-All  Performance. NACA RM E53J06, 1953. - 



10 0 NACA RM E 5 a 5  

5. Schramm, Wilson B., Nachtigall,  Alfred. J ., and Arne, Vernon L. : 
Analytical  Camparison  of  Turbine-Blade  Cooling System Designed 
f o r  s Turbojet Engine Operating a t  Supersonic  Speed and High Al- 
t i t ude .  l - Liquid-Cooling System5. NACA RM E52J29, 1953. . 

6. Schramm, Wilson B . , Arne, Vernon L . , and N a c h t i g d ,  Alfred J . : 
Aaalytical Cmparison of Turbine-Blade  Cooling  Systans  Designed 
f o r  a Turbojet  Engine  Operating at Supersonic  Speed and High Al- 
t i t ude .  II - Air-Cooling Systems. XACA RM E52J30, 1953. 

7. Childs, J. Howard, McCafferty,  Richard J . , & Swine, Oakley W. : 

r l  
0 
63 m 

Effect  of Combustor-Inlet Conditione  on  Performance of an ArauiLm 
Turbojet Combustor. NACA Rep. 881, 1947.  (Superaedes NACA ?N 1357. ) 

8. Norgren, C a r l  T., and Childs, J. Howard: Performance  of an Annular 
Turbojet Combustor  Having  Reduced Pressure Losses and U s i n g  Propane 
Fuel. NACA RM E53G24, 1953. 

9. Ze t t l e ,  Eugene V., and Mark, Herman: Effect  of Axially Staged Fuel  
Introduct ion on Performance of One-&uarter Sector of Annular Turbo- 
je t  Cabus to r .  nACA RM E5W8, 1953. 

10. Gabriel,  David S., IQebs, Richard P., Wilcox, E .  Clinton, and Kaztz ,  
Stanleg L.: Analysis of the  Turbojet  Engine for Propulsion  of 
Supersonio  Fighter  Airplanes. MACA RM E52F17, 1953. 

11. Turner, L. Richard, and Bogart, Donald: Constant-Pressure  Cmbuetion 
C h a r t s  Including E f f e t e  of Diluent  Addition. NACA Rep. 937, 1949. 
(Supersedes RACA TN's 1086 and 1655.) 

1 2 .  Graves,  Charlee C .  : Effec t  of Oxygen Concentration of t h e  Inlet 
Owgen-Nitrogen Mixture on t h e  Combustion Efficiency of a Single  
333 Turbojet Combuetor. NACA RM E52313, 1952. - ". . " . .. . .. . .. " . . 

" - -  " .  " 

13. Mwk, Herman, and Zet t l e ,  Eugene V. : Effect of A i r  Dls t r ibu t ion  on 
R a d i a l  Temperature  Dietribution i n  One-Sixth  Sector of Annular 
Turbo j e t  Combustor. NACA RM E922, 1950. 

14. P inkel, Benjamin, and Karp, Irving M. : A Thermodynamic Study of t h e  
Turbojet m i n e .  NACA Rep. 891, 1947. (Supersedes ITACA WR E-241.) 



. .  . . .. 

C I. 

. . . ... . 

CL-2 ,back 

. . . . .  

'IOZE ' 1. 

P 
P 

.. . . 



. . .  ~ .. . . . . - .. . . 



.. . 

I 3201' c 

I 'I: i 
I 

10.75 



. .. 

U UJ 
I U 

I 

1 

. . .. . TOBE 



?XACA RM E54A15 15 

1 

a- L1 
(a) Canbustor A. 

(b) Combustor B. 

F ure 3. - Liner air-entry hole patterns of erprimental annular  tUrbojet combustors. 
i$Dimensicns are in inohes. ) 
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Exploeion door 7 
Tnstrwmnt 

I 
Combustor l- Combustor 
out l e t  inlet [EG i -E ]  

Figure 5. - h t a l l a t l o n  of experimental annular turbojet canbustore. 



(a) L n h t  thennocoqples (iron-ccmtantan) 
and inlet total-pressure &a in plane 
at station 1. 

(b) O u t l e t  thermocouples ( c b r c s n e l - a b l )  
In plane at s t a t i m  2. 
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. 
(a) Outlet total-pressure rake. 

(c) Inlet thermocouple. 

(a) Static-preseurel 
mif ice . 

(b)  Outlet thermxcruple rake. 

(e) Jhbt total-pressure rake. 

-1 

Figure 7. - Details of inetrwentatian in annular turbo jet cambusttars. 
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5 10 15 20 25 30 
Inlet  total presmre, lb/q in. abs 

Figure 9. - Effect of pressure on cambustion  efficiency of ex- 
perimental annular turbodet  cambustors.  Reference  velocity, 
165 feet per second;  inlet-air teqerature, 8700 F; average 
outlet  temperature, 1800° F. 
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( a )  Ccaabudor A. 

Figure 10. - Isothermal contour gatterns at combustar outlet of erperhsntal 
aMuztar turbojet ccmdustors. Reference velwlty,  165 feet per sea&; i n l e t -  
air preasuxe, 18.4 pouds par SQ- inah absolute; in le t -aFr  temperature, 
870° F; average outlet temperature, apprarimately 18500 F. 
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(b) Combuetor B. 

Ftgme 10. - C o n c l u d e d .  Isothermal cmtour patterns at cmibuatar outlet  of 
experfmdcal anuulm turbojet combustors. Reference velocity, 165 feet per 
second; inlet-air pressure, 18.4 pounds per square lnch absolute; inlet& 
temperature, 8700 FJ average out le t  t e w t u r e ,  approximately 1850° F. 
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mlal aistance, in. 
Blgure ll. - Radial tempratme profile at canbustor  outlet of experimental 
aDnular turbojet  co3nbuatcxl.s. Reference velocity, 165 feet per second; i n l e t -  
air p a s u r e ,  18.4 pounde per square Fnah absolute; inlet-air temperature, 
870° F; average out le t  tempamrimre, apprar3matel.y 1850° F. 
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