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RESEARCH MEMORANDUM

WITH CONICAL AND CYLINDRICAL EJECTORS

By S. C. Huntley and Herbert Yanowitz

SUMMARY

An investigation was made of the performance of four divergent
ejector configurations having shroud-exit to primary-nozzle-exit
diameter ratios of 1.2 and 1.3 with minimum-shroud to primary-nozzle-
exit diameter ratios of 1.1 and 1.2, respectively. For both exit-
diameter ratios, spacing ratios of 0.87 and 1.6 were investigated.

A comparison of the performance of conical, cylindrical, and
divergent ejectors showed that on the basis of similar design variables
(exit-diameter ratio and spacing ratio) each configuration has merit.
At an exit-diameter ratio of 1.2 and spacing ratios of 0.9 and 1.6, the
divergent ejector had the highest thrust at zero secondary flow. With
corrected weight-flow ratios of 0.03 and 0.07, the divergent ejector
had the highest thrust at low primary pressure ratios, while the cylin-
drical ejector had the highest thrust at high primary pressure ratlos.
The range of primary pressure ratio over which the cylindrical ejector
was advantageous in thrust increased for both the higher corrected
weight-flow ratio and the larger spacing ratio. The conical e jector,
however, can pump a given corrected weight flow over a wider range of
primary pressure ratio but at the expense of a relatively low ejector
thrust. The divergent ejector had the smallest range of primary
pressure ratio for a given corrected weight-flow ratio.

The possibility of obtaining ejector thrust performance from a
simple one-dimensional equation and from a measurement of wall pres-
sure distribution was illustrated by the good agreement between
measured and calculated thrust.

INTRODUCTION

The jet ejector is a simple device that is being widely used to
pump cooling air. It has been shown (ref. 1) that when an ejector 1s
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used to pump cooling air through an annular passage surrounding an
afterburner, thrust increases over the basic engine with a simple
conical exhaust nozzle may be obtained. At the present, the NACA

is conducting & research program to investigate the performance of
model and full-scale jet ejectors. Previous reports have presented data
for model conical ejectors (refs. 2 to 5), cylindrical ejectors (refs.

6 and 7), and double-shroud ejectors (refs. 8 and 9).

It was shown (ref. 6) that ejector shape (conical versus cylin-
drical) has an effect on the pumping and thrust characteristics., As
part of a continuing program to investigate the performance of ejectors,
several divergent ejectors were tested at the NACA Lewis laboratory,
and the data obtained are presented herein. The divergent ejectors
differ from the conical and cylindrical in that mixing of the primary
and secondary streams occurs in a region of increasing area as opposed
to decreasing area for a conical ejector and constant area for a cylin-
drical ejector. This difference in available flow area may lead to
better pumping or thrust characteristics, or both. Also, the divergent
ejector results in small areas around the primary jet nozzle, which may
be desirable because of the increased velocity of cooling-air flow and
hence greater heat transfer from wall to cooling air. A small area
around the primary jet nozzle may, however, lead to a high pressure drop
if the passage contains nozzle actuators, for instance, instead of
being smooth.

Four divergent ejectors were investigated. The ejectors were
operated over a range of primary pressure ratio from 1.0 to 10 at zero
secondary flow and at constant values of secondary pressure ratio from
0.40 to 4.0. The temperature of both the primary and secondary air
streams was approximately 80C F. The pumping and thrust characteristics
are presented as a function of primary pressure ratio for several values
of corrected weight-flow ratio from zero to 0.10.

The pumping and thrust characteristics of the divergent ejectors
are compared with the conical and cylindrical ejectors on a basis of
similar design variables. The effect of wall pressure on the ejector
thrust is also discussed.

APPARATUS AND PROCEDURE

The nomenclature for the divergent-ejector investigation is
presented in figure 1, and a diagram of the model setup is schematically
shown in figure 2. The apparatus, instrumentation, and procedure are
the same as described in reference 4, except, of course, for the change
in ejector-shroud geometry. The secondary pressure and temperature-

measuring station for the divergent ejector was %% inches upstream
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of the prlmary-nozzle exit. The conical primary nozzle and shroud had
half-cone angles of 8° with 5- and 10-inch-inside-diameter approach
Pipes, respectively. The corrected weight-flow ratio and ejector thrust
ratio used to generalize the experimental data were based on experimen-
tally measured values of primary jet nozzle weight flow and thrust. The
discharge and thrust coefficients of the primary nozzle are presented
in figure 3 to indicate the correction necessary to obtain agreement
between measured and ideal values of primary-nozzle weight flow and
thrust.

Descriptive dimensions of the various divergent-ejector configu-
rations investigated are given in the following table:

Ejector | Minimum- Exite |Spacing|Divergence
diameter |diameter| ratio, angle,
ratio, | ratio, L/Dp da,
e
D /D De/Dp g
1 1.11 1.21 0.867 3.88
2 1.11 1.20 | 1.63 1.72
3 1.21 1.31 .874 3.82
4 1.20 1.31 1.83 1.95

The performance of each configuration was investigated over a
range of primary pressure ratio from 1.0 to approximately 10 at zero
secondary flow and at constant values of secondary pressure ratio from
0.40 to 4.0. The temperature of both the primary and secondary air
streams was approximately 80° F.

RESULTS AND DISCUSSION
Divergent-Ejector Performance

Pumping characteristics. - The experimental pumping characteristic
data of the four divergent ejectors are presented in figure 4 for
constant values of secondary pressure ratio from 0.40 to 4.0. Experi-
mental data for zero secondary flow and curves for corrected weight-
flow ratios from 0.0l to 0.10 (obtained from a cross plot of the data
shown in fig. 4) are presented in figure 5. The performence trends
shown are generally similar to the previously reported trends of the
conical and cylindrical ejectors. At zero secondary flow, the secondary
pressure ratio Ps/po decreased as the primary pressure ratio P /pO

increased, until a minimum value of P /p was reached. The value of
p/po at which the (Ps/po)min was obtalned indicates the point at
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which the shroud became "choked," and the ratio of Ps/po to Pp/po -
becomes constant (constant slope) with a further increase in Pp/po.

Similar trends are observed for various secondary flow rates; however,
the (PS/PO)min obtained at a given value of corrected welght-flow

ratio increased with increasing weight-flow ratio.

Inspection of the curves presented in figure S shows that the
value of Pp/po at which the (Ps/po)min was obtained differs consider-

2912

ably for the several configurations and also is dependent on the value
of corrected weight-flow ratio. In addition, at & constant value of
corrected weight-flow ratio, the PS/PO obtained at a given value of

Pp/po is dependent on the configuration. For the configurations tested,

the ejector having a smaller exit diameter and longer spacing (smaller
divergence angle) obtained the lowest P./py at low values of Pp/Po

for a given corrected weight-flow ratio, while the ejector with the
larger exit diameter and shorter spacing (larger divergence angle)
obtained the lowest Pg/py at high values of Pp/Po° Consequently, the

selection of & suitaeble ejector for a particular cooling requirement
will necessitate consideration of the effect of ejector configuration
and also of the primary pressure ratio range anticipated on the desired
pumping characteristics. .

Thrust characteristics. - The experimental thrust-characteristic
data of the four divergent ejectors are presented in figure 6 for zero
secondary flow and for constant values of Pq/po from 0.40 to 4.0.

Cross plots of the data of figure 6 are presented in figure T for cor-
rected weight-flow ratios from zero to 0.10. The thrust-performance
trends exhibited by the divergent ejectors are gimilar to those of the
conical and cylindrical ejectors previously reported (refs. 2 to 9).
Tn general, the minimum ejector thrust ratio occurred at the Pp/pO

corresponding to the point of (Ps/po)min' As Pp/po was increased

above that required for the (Ps/Po)min’ the ejector thrust ratio

increased rapidly up to primary pressure ratios of about 5 (at low
weight-flow retios), probably as the result of less overexpansion of
the primary and secondary streams within the shroud. At high primary
pressure ratios, the ejector thrust ratio increased at a much slower
rate, which indicates that perhaps the flow within the shroud was
becoming stabilized. The thrust ratio of the ejectors increased, of
course, with increasing secondary flow.

Inspection of the curves presented in figure T shows that for a

given corrected weight-flow ratio the ejectors with shorter spacing
(larger divergence angle) generally had a higher thrust at any value of
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primary pressure ratio than those of the same exit-diameter ratio but
with longer spacing. On the other hand, the ejectors with a smaller
exit diameter had higher thrust at intermediate values of Pp/po

than those of the same spacing but with larger diameters, while the
ejectors with larger diameters had higher thrust at either low or high
P .
p/po
The ejector thrust retio is another factor to be considered in
the selection of a suitable ejector for a particular cooling require-
ment. A low Pg/py was not conducive to high thrust for any of the

configurations tested, except for the ejector with a large exit diameter
and short spacing. However, the low Ps/PO and high thrust for the

ejector with & large exit diameter and short spacing occurred at only
high values of Ps/po. Consequently, ejector thrust ratio, generally,

muist be compromised with the values of Ps/PO desired to pump a given

corrected weight-flow ratio; and, as in the consideration of pumping
cheracteristics, the choice of configuration may be governed to some
extent by the design range of primary pressure ratio.

Comparison of Ejectors

A compsrison of the performance of conical, cylindrical, and
divergent ejectors on & basis of similar design variables (exit~
diameter ratio De/Dp and spacing ratio L/Dp), wherein the merits of
each configuration will be governed meinly by internal-flow character-
istics, should give an indication of the influence of shroud geometry
on the mixing and expansion processes. The pumping characteristics of
cylindrical ejectors have been compared quantitatively with an idealized
flow, and good agreement between theory and experimental data was
obtained (ref. 7). A similar comparison between conical, cylindrical,
and divergent ejectors is not as simple because of the influence of wall
pressure on the conservation of momentum between the primary nozzle
(shroud inlet) and the shroud exit and the fact that a rational method
of deriving wall pressure distribution along the length of shrouds is
not presently available for all ejectors and operating conditions. A
qualitative comparison of idealized flows will be used, however, to
explain trends in the experimental data, and the effect of wall pressure
on ejector thrust will be discussed. The geometries of ejectors having
the same De/Dp and L/DP are compared in figure 8. The divergent

ejector has the smallest available flow area within the shroud, and the
conical ejector, the largest. Furthermore, the effects of an increase
in L/Dp on the ejector geometry are (1) to lengthen the cylindrical

ghroud, (2) to make the divergent ejector approach the cylindrical with
a slight decrease in available flow area, and (3) to make the conical
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ejector depart further from both the cylindrical and divergent ejectors,
with a relatively large increase in available flow area.

Pumping characteristics. - A comparison of the experimental
pumping characteristics of conical, cylindrical, and divergent ejectors
with a De/Dp of 1.2 is presented in figure 9 for L/Dp's of 0.9 and

1.6. Curves are presented for corrected weight-flow ratios of zero,
0.03, and 0.07. As expected from geometrical considerations, the diver-
gent ejector (having the smallest flow area available) had the lowest

value of Pp/po wherein e stabilized primary supersonic flow was first

obtained (as indicated by the asttaimment of a constant ratio of Ps/PO
to PP/po), and the conical ejector hed the highest value in all cases.

2912

At zero secondary flow and I./Dp of 0.9 (fig. 9(a)), the diver-
gent ejector had the lowest and the conical the highest Ps/pO over the
entire range of Pp/po. The divergent ejector generally should have the
highest Ps/po, because it allows the least amount of free expansion;

but, apparently, with this L/Dp the close proximity of the divergent

shroud to the expanding primary stream became a governing factor, and
large shear forces caused an increase in the extent of free expansion
with a subsequent decrease in Ps/po. An increase of L/Dp to 1.6

(fig. 9(b)), which decreased the Pp/po required for stabilized flow

(minimum Ps/p ) of both the cylindrical and divergent ejectors but had
no effect on the conical ejector, is indicative of the effect of Increased
L/Dp on the extent of primary stream expansion. The increased L/Dp
increased the Ps/po of the conical ejector, decreased that of the

divergent, but did not affect that of the cylindrical; these effects
resulted Iin more nearly equal values of (Ps/PO)min for the cylin-

drical and divergent ejectors than for the conical ejector. This is in

accord with the effect of &an increasing L/Dp on the flow area avail-
able in the shrouds. At the longer L/Dp, the decreased flow area

available was detrimental to the divergent ejector in attaining a rela-
tively low value of Ps/po, and, as & result, the cylindrical ejector

had the lowest Pg/p, at a P,/py s&bove about 2.

With secondary flow, mixing of the two streams and less primary
expansion resulted in & higher Ps/Po for all shrouds, and the relative
increase in Ps/pO at g given corrected weight-flow rdtio corresponded

to the relative amount of flow area available. The conical ejector with
the most flow area available generally had the lowest P /pO and
s
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consequently can pump a gilven corrected weight-flow ratio over a wider
range of Pp/po. The divergent ejector with the least flow area avail-

able and the lowest resultant extent of primary stream exparsion became
choked gt the lowest value of Pp/po for a given corrected weight-flow

ratio and subsequently had the least pumping ability. The effect of an
increase in corrected weight-flow ratio from 0.03 to 0.07, which resulted
in & decrease in primary stream expansion and a subsequent lower primary
Mach mumber for choked flow, decreased the pumping range of Pp/Po for

all ejectors. The conical ejector having the largest flow area sgvailable
was affected the least by an increase in corrected weight-flow ratio.

Increasing IL/D_ from 0.9 to 1.6 (figs. 9(c) to (f)) resulted in a
lower P_/p, for all ejectors at low values of Pp/po, while at high

values of Pp/po, there resulted no change In p_/py for the cylindrical

ejector, an increase in that for the divergent, and a decrease in that
for the conical. Again, the effect of an incresse in L/Dp is a result

of the change in flow area avallable for expansion of the primary stream.
As a result of the relatively large increase in flow area of the conical
ejector at the increased L/Dp, the cylindricael ejector had a lower

Ps/Pp at Pp/py less than 2.6 and a corrected weight-flow ratio of 0.03

(fig 9(d)). Evidently with a large flow area available, overexpansion of
the primary stream became a governing factor in the performance of the
conical ejector at the low corrected weight-flow ratio.

Thrust characteristics. - A comparison of the experimental thrust
characteristics of conical, cylindrical, and divergent ejectors with an
exit-diameter ratio of 1.2 is presented in figure 10 for spacing ratios
of 0.9 and 1.6 and corrected weight-flow ratios of zero, 0.03, and 0.07. At
zero secondary flow, the ejector thrust ratio of the divergent ejector
is highest and the ejector thrust ratio of the conical is lowest at
Pp/po above the minimum required for the expanding primary stream to

just £ill the shroud exit (figs. 10(a) and (d)). The difference in

efficiency of primsry stream expansion accounts for the difference in
ejector thrust ratio. Increasing the L/Dp from 0.9 to 1.6 on the

cylindrical ejector had little effect on ejector thrust ratio. The
divergent-ejector geometry approaches that of the cylindrical with the
increased L/Dp, and cousequently the increasse in the thrust ratio of

the divergent ejector over that of the cylindrical became less. Since
the conical ejector with a larger shroud is more overexpanded than the
cylindrical ejectors, the ejector thrust ratio decreased with the
increased L/Dp.

At the secondary flows considered herein, the primary stream is such
a large percentage of the total ejector flow that the trends in performance

CONFIDENTIAL
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at zero secondary flow would be expected to be reflected in the

thrust performance with secondary flow; subsequently, at a corrected
weight-flow ratio of 0.03 and an L/DP of 0.9, the cylindrical and

divergent ejectors generally have a higher ejector thrust ratio than
the conical ejector (fig. 10(b)). At Pp/pO gbove 8, the cylindrical

ejector, having slightly better secondary-air handling capacity (greater
range of Pp/po at a given corrected weight-flow ratio) than the di-

vergent ejector, also has a slightly higher ejector thrust ratio.
Increasing the corrected weight-flow ratio to 0.07 resulted in a greater
increase in ejector thrust ratio for the cylindrical ejector than for
the divergent at Pp/pO above about 5 (fig. 10(c)). Increasing L/Dp

from 0.9 to 1.6, which also increased the difference in geometry between
the cylindrical and conical ejectors, resulted in a larger difference
in ejector thrust ratio between these two ejectors (figs. 10(c) and (f)).
The geometry of the cylindrical and divergent ejectors became relatively
closer together with the increased L/DP’ and consequently the higher

secondary-air handling capacity of the cylindrical ejector resulted in

the ejector thrust ratio being higher over a wider range of Pp/pO

than that obtained with the shorter ejectors.

In general, the divergent ejector had a higher ejector thrust
ratio at zero secondary flow, but the thrust advantage of the divergent
ejector was small at the longer L/Dp. With corrected weight-flow ratios

of 0.03 and 0.07, the divergent ejector had the highest ejector thrust ratio
at low Pp/po, while the cylindrical ejector was highest at high Pp/po,

The thrust advantage of the divergent ejector became smaller with
increased secondary flow at low Pp/po, while that of the cylindrical

became larger at high Pp/po. The cylindrical ejector became advan-~
tageous in ejector thrust ratio over a wider range of Pp/po with both

increased secondary flow and increased L/Dp. The conical ejector had the
lowest thrust at all conditions.

Effect of wall pressure on ejector thrust ratio. - The influence
of wall pressure distribution on the ejector thrust ratio may be seen by
consideration of a thrust equation based on the conservation of momentum
between the primary-nozzle exit and the shroud exit. Since gross thrust
is the difference between the total momentum of a stream and the force
exerted on the stream by ambient pressure, an equation for ejector thrust
ratio, with frictionless one-dimensional flow assumed, may be written

as
AS
F. + F_ - ( YdA
J s 7|, Py = Po
Fej 3]

F. : (1)
J ¥
CONFIDENTIAL
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where the gross thrust of the primary Fj and secondary streams TFgy may

be evaluated at the primary-nozzle exit with a knowledge of the pumping
A
s

characteristics and the ejector geometry. The term (py, - PoldA

Ae
represents the wall pressure force, and, as previously mentioned a
rational derivation of this term is not presently available. The
ejector thrust ratio, calculated from equation (1) by using the measured
wall préssure distribution along the length of shrouds, is presented in
figure 11 as & function of Pp/pO for conical, cylindrical, and diver-

gent ejectors at a secondary flow of zero and at constant secondary pres-
sure ratios of 1.0 and 3.0 for ejectors having an exit-diameter ratio

of 1.2 and a spacing ratio of 1.6. The ejector thrust ratio, which was
also calculated from equation (1) by neglecting the wall pressure ‘term,
is shown on figure 1l as a dashed curve. Also shown are experimentally
obtained values of thrust. A comparison of the dashed lines with the
solid lines illustrates the effect of wall pressure on ejector thrust
ratio. As expected, the effect of neglecting the wall pressure term was
negligible for the cylindrical ejector, had only a slight effect on the
divergent, but had an appreciably greater effect on the conical ejector,
which had & relatively large change in area from shroud inlet to exit.
The good agreement between measured thrust and that calculated from
equation (1) by using the wall pressure force term indicates that the
frictional forces were low and illustretes the possibility of obtaining

e jector thrust performance by using a measurement’ of wall pressure
distribution. Also indicated is the possibility of predicting the thrust
by & simple one-dimensional equation if a rational or empirical procedure
for predicting the wall pressure force term is available.

CONCLUDING REMARKS

An investigation was made of the performance of four divergent-
ejector configurations having exit-diameter ratios of 1.2 and 1.3, with
minimum-shroud diameter ratios of 1.1 and 1.2, respectively. For both
exit-diameter ratios, spacing ratios of 0.87 and 1.6 were investigated.

A comparison of the performance of conical, cylindrical, and di-

_vergent ejectors showed that on the basis of similar design variables

(exit-diameter ratio and gpacing ratio) each configuration had merit.
In general, the divergent ejector had the highest ejector thrust ratilo at
zero secondary flow, but the thrust advantage of the divergent e jector

CONFIDENTIAL
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was small at the longer spacing ratio. With corrected weight-flow
regtios of 0.03 and 0.07, the divergent ejector had the highest ejector
thrust ratio at low primary pressure ratios, while the cylindrical
ejector was highest at high primary pressure ratios. The thrust advan-
tage of the divergent ejector became smaller with increased secondary
flow at low primary pressure ratios, while that of the cylindrical
ejector became larger at high primary pressure ratios. The cylindrical
ejector became advantageous in ejector thrust ratio over a wider range
of primary pressure ratio with both increased secondary flow &and
increased spacing ratio. The conical ejector, however, can pump & gilven
corrected weight flow over a wider range of primary pressure ratio at
the expense of a relatively low ejector thrust.  The divergent ejector
had the smallest range of primary pressure ratio for a given corrected
weight-flow ratio.

The possibility of obtaining ejector thrust performance from &
simple one-dimensional equation and from a measurement of wall pressure
distribution was illustrated by the good agreement between measured and
calculated thrust.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeromautics
Cleveland, Ohio, October 19, 1953
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PO

—. TS P \\7‘/41—1
-~ T, Py E oy D

Py

L
/Prima.ry nozzle exit

area, sq ft
shroud-exit area, sq ft
shroud-inlet area, sq ft

primery-nozzle discharge coefficient, ratio of measured
mass flow to ideal mass flow

primary-nozzle thrust coefficient, ratio of measured thrust
Freasured

[wV + Ale - 20)] 1gea1

to ideal thrust of convergent nozzle,

exit diameter of secondary shroud, ft

exit-diameter ratio

minimum diameter of secondary shroud, ft
minimum~diemeter ratio

exit diameter of primary nozzle, ft

ejector gross thrust, 1lb

ejector thrust ratio

gross thrust of primary nozzle without secondary shroud, 1b
gross thrust of secondary stream at primary-nozzle exit, 1b
spacing distance from primary exit to shroud exit, ft
spacing ratio

mass flow, slugs/sec

primary total pressure, 1b/sq ft

primary pressure ratio

secondary total pressure, 1b/sq ft

secondary pressure ratio

static pressure, 1b/sq £t

exhsust ambient pressure, 1b/sq £t

wall pressure, 1b/sq ft

primary total temperature, OR

secondary total temperature, °R

velocity, ft/sec

primary weight flow, 1lb/sec

secondary weight flow, 1b/sec

corrected weight-flow ratio

divergence angle, deg

Figure 1. - Nomenclature for ejector investigation.
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seal P nozzle
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Figure 2. - Schematic diagram of model setup for ejJector investigation.
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Primary pressure ratio, Pp/PO

(a) Minimum-diameter ratio, 1.11; exit-diameter ratio, 1.21; spacing ratio, 0.867.

Figure 4. - Pumping characteristics of divergent ejectors.
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Figure 6. - Continued. Thrust characteristics of divergent ejectors.
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formance of conical, cylindrical, and divergent
ejectors showed that on the basis of similar design
variables (exit-diameter ratio and spacing ratio) each
configuration has merit. At an exit-diameter ratio
of 1.2 and spacing ratios of 0.9 and 1.6, the divergent
ejéctor had the highest thrust at zero secondary flow.
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With corrected weight-flow ratios of 0.03 and 0.07,
the divergent ejector had the highest thrust at low
primary pressure ratios, while the cylindrical
ejector had the highest thrust at high primary pres-
sure ratios. The range of primary pressure ratio
over which the cylindrical ejector was advantageous
in thrust increased for both the higher corrected
weight-flow ratio and the larger spacing ratio. The
conical ejector, however, can pump a given cor-
rected weight flow over a wider range of primary
pressure ratio but at the expense of a relatively low
ejector thrust. The divergent ejector had the small-
est range of primary pressure ratio for a given cor-
rected weight-flow ratio. The possibility of obtain-
ing ejector thrust performance from a simple one-
dimensional equation by using a measurement of wall
pressure distribution was illustrated.
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