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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

ALTITUDE INVESTIGATION OF 20-INCH-DIAMETER RAM-JET 

ENGINE WITH ANNULAR-PILOTED COMBUSTOR 

By James G. Henzel} Jr.} and Arthur M. Trout 

SUMMARY 

As part of a general research program on ram-jet combustors} an in­
vestigation of the performance of a 20-inch-diameter ram-jet engine having 
an annular-piloted combustor was conducted at zero angle of attack in a 
facility utilizing both the free-jet and direct-connect techniques. A 
comparison was also made with other combustors recently investigated. 
Data were obtained at a simUlated flight Mach number of 3 .0 over a range 
of combustor-exit total pressures from about 570 to 2400 pounds per square 
foot absol ute. 

A dual fuel-inj ection system provided high combustor efficiencies} 
generally above 0.80} over a range of fuel-air ratios from 0.015 to 0.08. 
Combustor efficiency decreased with pressure from 0.97 at 2370 pounds 
per square foot absolute to 0.76 at 570 pounds per square foot absolute. 
At 1/3 atmosphere} a combustor efficiency of 0.82 was obtained. Decreas­
i ng combustor length from 87 to 57 inches decreased combustor efficiency 
from 9 to 12 percentage points. 

The comparison of the annular-piloted combustor with two other com­
bustors of different design showed that all three combustors had about the 
same specific fuel consumption over the whole fuel-air-ratio range. The 
specific fuel consumption ot the annular-piloted combustor was slightly 
higher than the best configuration at fuel-air ratios from 0.015 to 0.050 
and slightly lower than the other configurations at fuel-air ratios 
greater than 0.050. 

INTRODUCTION 

As part of a research program being conductea at the NACA Lewis labo­
ratory to determine design criteria for ram-jet comb~stors suitable for 
long-range missiles } the performance of an annular-piloted combustor has 
been evaluated. The annular-piloted combustor is one of five combustors 
that have been studied in the 20-inch-diameter ram-jet engine program. 
The four other combustors investigated included an annular-gutter flame 
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holder with a low-heat-release central pilot) an annular-gutter and a 
sloping-gutter flame holder with a high-heat-release central pilot) and 
a can-type flame holder with a low-heat-release central pilot . Results 
of the investigations of these combustors are reported in references 1 to 
3, respectively. 

Reference 4 shows that an annular -piloted combustor gave combustion 
efficiences and combustor total-pressure ratios in excess of 0.90 at low 
fuel-air ratios in a 48-inch-diameter ram-jet engine . A similar combustor 
was accordingly built and investigated in the 20-inch-diameter ram-jet 
engine to provide performance and design data directly comparable to the 
four combustors previously subjected to extensive development in the 20-
inch ram-jet program. 

The combustor efficiency) combustor-inlet Mach number) and combustor 
total-pressure ratio of the annular -piloted combustor are presented herein. 
The effect of combustor-exit total pressure on combustor efficiency) the 
effect of decreasing combustor length on combustor efficiency) and a com­
parison of configurations on the basis of specific fuel consumption are 
also presented. 

APPARATUS 

Engine 

A schematic sketch of the 20-inch-diameter ram-jet engine is shown 
in figure 1. The supersonic diffuser is of the double-cone annular type 
utilizing two oblique shocks and one normal shock. The subsonic dif­
fuser was divided into three channels by the inner body supports. The 
combustion chamber) 87 inches in length for most of the investigation, was 
water-jacketed and had an inside diameter of 20 inches. For part of the 
investigation) the combustor length was shortened to 57 inches. The 
engine was equipped with a contoured water - jacketed convergent exhaust 
nozzle having a throat area equal to 55 percent of the combustion-chamber 
area. The fuel used in the engine and the preheater) which is subse­
quently discussed, was MIL-F-5624A grade JP-4. 

Combustor Configuration 

Flame holder. - The design of the annular-piloted combustor (fig. 2) 
was based on the results of references 4 and 5 . In cross section, the 
shape of the annular-piloted combustor was that of an asymmetric V. The 
outer surface, perforated by three rows of 1/2-inch-diameter holes, was 
extended downstream to act as a flow divider and to provide a protected 
combustion zone. The inner surface of the annular- piloted combustor was 
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cut longitudinally in 18 places) and the cuts wer e spread at the down­
stream end by formi ng the metal into V-shapes; the resulti ng openings 
provided additi ona l air entr y for pilot combust ion a nd permitted a gradua l 
mixing of the ma in-stream fuel-air mixture with the pilot combustion pro -
ducts . An a nnular-gutter) with a mean diameter of 7~ inches) was attachec 

32 
to the trailing edge of the inner surface of t he annular pi lot . A f uel -
mlxlng control s l eeve 15 . 1 inches in diameter was attached to t he leading 
edge of the a symmetric V t o provide two separate zones of fue l i n j ection 
and mi xing i n order to maintain locally a favor able fuel-ai r mi xture for 
combust ion at low over-all fuel - a i r ratios. 

Fuel syst em. - The fue l f or t he annular-p i loted combustor was i n­
jected in thr ee l ocations) in the pilot) in the inner zone) and in t he 
outer zone . The pilot fuel system was located at the bas e of the asym­
metric V (fig . 2( a )) and contained five e~ually spaced spray ba r s. Each 
bar had two 0.040-inch-diameter holes' spraying downstream at an angle of 
45 0 to the combust or center line. The i nner - and outer-zone fuel syst ems 
(fig . 2(a) ) were l ocated 12. 1 and 7.7 i nches upstream of the annular pi l ot 
and contained 15 e~ually spaced spray bars having two 0.062-inch-diameter 
holes per bar) spraying per pendicular to the engine air flow. 

All fuel spray bars had an external metering orifice to prevent 
plugging of t he bars (fig . 2(a) ) . The metering orifices were 0.021, 
0 . 032) and 0 .040 i nch in diameter for the pilot, inner-zone, and outer­
zone f uel spray bars, respectively, and were relatively easy t o service. 

Test Facility 

The t est facility, which was operated both by the free-jet and direct­
connect techni~ues , is shown schematically in figure 3. The air, which 
enter ed the f acility through a combustion-type prehe~ter, was vitiated 
to a f ue l -air rati o of 0 . 009 or less. For free-jet operation, the air 
passed into a surge tank and was expanded through a convergent-divergent 
nozzle to a Mach number of 3.0. The engine inlet was submerged in the 
Mach number 3 .0 j et at zero angle of attack and the excess air spilled 
ar ound the inl et t hr ough the j et diffuser . The engine exhaust passed 
into a separate chamber which could be throttled for engine starts. A 
more detailed description of the free-jet facility and its operation i s 
given i n ref erence 6 . 

The method used to convert the facility to a direct-connect t ype i s 
illustrated schematically i n the .auxiliary view of figur e 3. Blank-off 
plates covered the jet diffuser so that the air was ducted subsonically 
t o the annulus formed by the engine cowl l ip and t he engine diffus er . 
The direct - connect facil i ty wa s the same a s that us ed i n ref erence 3 . 
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I nstrumentation 

The locations of temperature and pressure instrumentation at the 
various stations are shown in figures I and 3 . Wall static pressure was 
measured near the engine subsonic - diffuser exit (fig . 1, station 2) . A 
water- cooled rake (fig. 1, station 4) just upstream of the engine exhaust ­
nozzle inlet provided a total-pressure survey for use in air - flow and 
combustor - efficienr.y calculations. Engine fuel f l ow was measured ~y 
calibrated rotameters . The inlet total pressure and temperature were 
measured in the surge tank upstream of the s upersonic nozzle (fig . 3 , 
station 0) and were used to establish simulated engine flight conditions . 
Combustion could be viewed looking upstream through the engine exhaust 
nozzle by means of a periscope. 

PROCEDURE 

Simulated Flight Conditions 

The total temperature of the air entering the surge tank was rais ed 
to 11000 R by means of the combusti on- type preheater to simulate the 
standard total temperature for flight at Mach number 3 .0 above the tropo ­
pause . For free - jet operation, the total pressure in the surge tank was 
varied to provide a range of air flows from 10 . 11 to 3 .42 pounds per 
second per square foot of combustion- chamber cross - sectional area ( herein­
after referred to as unit air flow) . This range of unit air flows cor­
responds to simulated altitudes from 61,800 to 84 , 400 feet, respectively . 
The engine, because of its inlet and exit geometry, operated supercriti­
cally for all fuel -air ratios . Combustion-chamber pressures are there­
fore considerably lower for the simulated altitudes of this investigation 
than are obtainable with critical operation of the inlet. The per f orm­
ance is therefore presented both in terms of unit air flow and in terms 
of corresponding simulated altitudes . The direct - connect data were ob ­
tained at a unit air flow of 6 .88 . 

Method of Engine Operation 

With air flow and inlet temperature set, the exhaust -throttling 
valve (fig . 3) was partly closed to raise the pressure level and r educe 
the velocities in the combustor suffi ciently to ignite the pi l ot burner 
by means of a spark plug . Fuel flow to the inner zone was initiated, 
and a fuel - air ratio of about 0 .02 established . The exhaust - t hrottli ng 
valve was opened and the engine exhaust nozzle choked . The pilot -burner 
fuel flow was held constant at a fuel-ai r ratio of 0.005 or l e ss a s the 
inner-zone fuel flow was varied t o obta in the performanc e at the low f uel ­
a i r ratios (inner- zone operation). The i nner - zone and pilot burner f uel 
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value (maximum combustor efficiency) as fuel flow to the outer zone was 
varied to obtain the performance at the h i gh fue l-air ratios (outer-zone 
operation) • 

Calculations 

The engine fuel - air ratio was calculated as the ratio of engine fuel 
flow to the unburned air flow entering the engine . The combustor effi­
ciency was taken as the ratio of ideal to actual fuel -air ratio, where 
the ideal fuel-air ratio was that necessary to obtain, with an ideal com­
bustion process, the total pressure measured at the exit of the engine 
combustion chamber for the air flow under consideration . The specific 
fuel consumption was calculated as the ratio of the engine fuel flow in 
pounds per hour to the net thrust in pounds . 

The symbols are listed in appendix A. The methods used to calculate 
engine air flow, engine fuel - air ratio , combustor efficiency, combustor­
inlet Mach number, and specific fuel consumption are outlined in 
appendix B. 

RESULTS AND DISCUSSION 

Performance Characteristics 

Combustor efficiency . - Free - jet performance data obtained with the 
annular-piloted combustor are presented in f i gure 4 , wherein combustor 
efficiency, combustor - inlet Mach number, and combustor- exit total pres­
sure are plotted against engine fuel -air ratio . The data are presented 
for unit air flows of 10 . 11 , 6 .88, 5 . 48, 4 .11, and 3 . 42 (pounds per 
second per square foot of combustion- chamber cross - sectional area). In 
figure 4(a), it can be seen that, in general, for a given unit air flow, 
the combustor efficiency with inner - zone operation increased rapidly as 
fuel-air ratio increased, reached a maximum, and then diminished grad­
ually. As 'unit air f low decreased from 10 . 11 to 3 .42, the maximum com­
bustor efficiency decreased from 0 . 86 to 0.76 and simultaneously shifted 
to somewhat richer fuel - air ratios '. The shift in maximum combustor ef­
ficiency to richer fuel - air ratios was a result of the deterioration of 
the lean-stability limit with decreasing unit air flow . 

Similar to inner - zone operation, the combustor ef ficiency with outer ­
zone operation increased rapidly as fuel - air ratio increased, reached a 
maximum, and then diminished gradually . Maximum combustor efficiency 
decreased from 0 . 97 to 0 . 81 as unit air flow decreased from 10 . 11 to 3.42. 
The dual fuel-injection system provided good combustor efficiencies over 
a wide range of fuel - air ratiOs , generally 0 . 80 for fuel - air ratios from 
0.015 to 0.08. 
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A simultaneous variation in combustor - inlet Mach number with com­
bustor efficiency occurred as the fuel-air ratio varied. From figure 
4(b), it can be seen that combustor-inlet Mach number decreased from 
0.23 at a fuel -air r~tio of 0.015 to 0.15 at a fuel - air ratio of 0.08 
and was independent of unit air flow. 

At a given fuel -air ratio, variation in combustor effjciency with 
unit air flow was due largely to the variation in combustor - exit total 
pressure (fig . 4(c)). At lean fuel - air ratios (inner - zone operation), 
combustor- exit total pressure varied from about 1860 to 570 pounds per 
square foot absolute . At rich fuel - air ratios (outer - zone operation), 
combustor- exit total pressure varied from about 2400 to 750 pounds per 
square foot absolute. 

The effect of combustor - exit total pressure on maximum combustor 
efficiency is shown in figure 5, for both inner- and outer - zone operation. 
Decreasing combustor - exit total pressure from 1570 to 900 pounds per 
square foot absolute decreased the maximum combustor efficiency with 
inner-zone operation from about 0.86 to about 0 . 85 . As combustor-exit 
total pressure decreased further to 560 pounds per square foot absolute, 
however, the maximum combustor efficiency dropped rapidly to 0 . 76 . The 
maximum combustor efficiency with outer - zone operation decreased from 
0.97 to 0. 81 as combustor-exit total pressure decreased from 2370 to 780 
pounds per square foot absolute. At 1/3 atmosphere, a combustor effi­
ciency of 0 . 82 was obtained. 

Combustor total-pressure ratio . - The variation in combustor total­
pressure ratio with fuel - air ratio is presented in figure 6 for unit air 
flows of 10.11, 6.88, 5 .48, 4 .11, and 3.42 . It can be seen that the 
combustor total -pressure ratio is essentially independent of fuel-air 
ratio and unit air flow. The average combustor total-pressure ratio 
was about 0 . 95 . Reference 1 indicated that a V- gutter flame holder with 
a projected blockage of 55 percent had a combustor total-pressure ratio 
of 0.87 at a fuel - air ratio of 0.02 . Although the annular -piloted com­
bustor had a projected blockage of 48 percent, nearly as much as for the 
typical V- gutter flame holder) the annular-piloted- combustor total­
pressure ratio was considerably higher (0.95, compared with 0 .87 at a 
fuel - air ratio of 0.02). The superiority of the annular -piloted com­
bustor over that of the V- gutter flame holder of about the same projected 
blockage is attributable to the fact that the annular - piloted flame 
holder geometry is distributed axially rather than in a single plane . 

Effect of Length on Combustor Efficiency 

The effect of shortening the annular -piloted combustor configuration 
from 87 to 57 inches is shown in figure 7 . Combustor efficiency is 
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plotted against engine fuel -air ratio for a unit air flow of 6.88. The 
data for both lengths were obtained by the direct-connect technique. The 
maximum combustor efficiency with inner-zone operation was 0.85 for the 
87-inch combustor and decreased approximately 9 percentage points to 
0.76 for the 57-inch combustor . This decrease in maximum combustor ef­
ficiency with inner - zone operation is about the same as that for the 
V-gutter flame holder of reference 1 and slightly less than that for 
the can-type flame holder of reference 3 . A pronounced shift in the 
maximum combustor efficiency with outer- zone operation to a higher fuel­
air ratio occurred as combustor length was shortened . Although a similar 
effect was observed with the can- type flame holder (ref. 3)7 the reasons 
for this effect are not clearly understood . The maximum combustor ef­
ficiency with outer - zone operation was 0 . 90 for the 87 - inch combustor 
and decreased approximately 12 percentage points to 0 . 78 for the 57-
inch combustor. Thus the annular -piloted combustor configuration ex­
hibited about the same sensitivity to length as did the V- gutter and 
can-type flame holders of references i and 3 . 

It 'is interesting to note by comparing figure 7 with figure 4(a) 
that essentially the same combustor efficiencies were obtained by the 
free-jet and direct-connect testing techniques for the 87-inch combustor. 
Unpublished NACA data obtained in this facility (zero angle of attack and 
symmetrical engine inlet) have shown similar agreement for free-jet and 
direct-connect testing techniques . 

Comparison of Configurations on Basis of Specific Fuel Consumption 

Because the range of a ram- jet- powered aircraft is influenced by 
both the combustor efficiency and the combustor total-pressure ratio, 
the performance of the annular -piloted combustor 7 the can- type flame 
holder 7 and the V-gutter flame holder are compared in figure 8 on the 
basis of specific fuel consumption . Specific fuel consumption is plotted 
against net thrust per pound of air flow for a unit air flow of 6 .88. 
An over-all diffuser total -pressure recovery of 0 . 6 was assumed for the 
calculation . In addition7 a curve indicating the ideal combustor per­
formance (based on a combustor efficiency of 1 .0 and the appropriate 
pressure loss of heat addition) is also presented for comparison . For 
lean operation (fuel -air ratios lesD than 0 .03)7 the combustors had 
about the same performance . The can- type flame holder appeared best 
between fuel-air ratios 0.03 and 0 .045. For rich operation (fuel-
air ratios greater than 0.05)7 the annular -piloted combustor had a 
slight superiority . 

SUMMARY OF RESULTS 

An investigation of the performance of a 20 - inch- diameter ram-jet 
engine having an annular-piloted combustor was conducted at zero angle of 
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attack in a facility similating flight at Mach numoer 3 .0 . Data were 
ootained with a dual fuel - injection system over a range of fuel- air ratios 
from aoout 0 .005 to 0 .08 . 

A dual fuel - inj ection system provided comoustor efficienc ies gener­
ally 'aoove 0 .80 over a range of fuel - air ratios Trom 0.015 to 0 .08 . 
Comous t or efficiency decreased with pressure from 0 . 97 at 2370 pounds 
per square foot aosolute to 0 . 76 at 570 pounds per square foot aosolute . 
At 1/3 atmosphere, a comoustor efficiency of 0 . 82 was ootained . Decreas­
ing comoustor length from 87 to 57 inches decreased comoustor efficiency 
from 9 to 12 percentage points . 

The comparison of the annular - piloted comoustor with t wo other com­
oustors of different design showed that all three comoustors had aoout the 
same specific fuel consumption over the whole fuel -air- ratio range . The 
specific fue l consumption of the annular -piloted comoustor was slightly 
higher than the oest configuration at fuel - air ratios from 0 .015 to 0 .050 
and slightly lower than the other configurations at fuel - air ratios 
greater than 0 .050 . 

Lewis Flight Propulsion Laooratory 
Nat i onal Advisory Committee for Aeronautics 

Cleveland, Ohio, July 9 , 1954 
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APPENDIX A 

SYMBOLS 

The following symbols are used in this report: 

A area, sq ft 

a local speed of sound, ft/sec 

B ratio of engine inlet air flow to supersonic nozzle air flow 

Cd discharge coefficient of exhaust nozzle 

Cv velocity coefficient of exhaust nozzle 

Fn net thrust, Ib 

f/a 

(f/a) , 

(f/a)p 

(f/a)s 

g 

M 

P 

p 

R 

sfc 

T 

t 

v 

w 

-

engine fuel-air ratio 

ideal fuel-air ratio 

preheater fuel-air ratio 

stoichiometric fuel-air ratio 

acceleration due to gravity, 32 . 2 ft/sec 2 

Mach number 

total pressure, Ib/sq ft abs 

static pressure, Ib/sq ft abs 

gas constant, (ft)(lb)/(lb) (OR) 

specific fuel consumption 

total temperature, oR 

static temperature , oR 

velocity, ft/sec 

Ib fuel/hr 
lb net thrust 

engine - inlet air flow (containing preheater products of com­
bustion), lb/sec 
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preheater air flow, lb/sec 

fuel flow to engine (including pi~ot fuel flow), lb/sec 

fuel flow to preheater, lb/sec 

unburned air flow entering engine, lb/sec 

y ratio of- specific heats-

combustor efficiency 

p density, lb/cu ft 

Subscripts: 

c cold (engine not burning) 

h hot (engine burning) 

o free stream 

2 subsonic diffuser exit 

3 conditions at station 2 adjusted to combustion-chamber area 

4 exhaust-nozzle inlet 

5 exhaust-nozzle minimum area 

6 station downstream of exhaust-nozzle exit 
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APPENDIX B 

METHODS OF CALCULATION 

Engine air flow. - The engine exhaust nozzle serve~ as a convenient 
metering orifice for determining the rate of air flow through the engine 
for nonburning conditions. The engine air flow was calculated from the 
mass-flow equation 

W 

which was expressed as 

Yc+l 

2(Yc- l ) 

( 1) 

(2) 

VRT5
,c 

where P5 c and T5 c were assumed equal to P4 c and TO' respective­
ly. The ~xhaust nozile was choked and its dischafge coefficient Cd

l
c 

was assumed to be 0.985. Leakage through ~he engine flanges was assumed 
to be negligible . 

Engine fuel-air ratio. - The engine fuel-air ratio was defined as 
the ratio of the engine fuel flow to the unburned air flowing into the 
combustor . Leaving the preheater was a gas which had a fuel-air ratio 
of 

where Wa is the preheater air flow measured by an A.S.M.E. flat-p l ate 
orifice. It was f ound that the preheater combustion efficiency was 
nearly 100 percent. The ratio B of the engine inlet air flow to the 
supersonic nozzle air flow was constant. The unburned air passing into 
the engine was then 

W 
u 

BW a (4) 

This is different from W which contains preheater products of combus­
tion. The engine fuel -air ratio was then 
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(5) 

Because it was more convenient to measure the engine inlet air flow W 
than BWa } use wa$ made of the following relation: 

(6 ) 

Rearranging gives 

W (7) 

Substitution of equation (7) in equation (5) gives 

_ Wf }e [1 + (f/a)p] 
fla - W (f/a)p 

1 
(f/a)s 

(8) 

Combustor efficiency . - The combustor efficiency ~ was defined as 

(f/a) , 

(f/a) 
(9) 

where fla is given by equation (8) and (f/a) , is the ideal fuel -air 
ratio which would have produced the same combustor - exit total pressure 
P4 as was measured for the burning conditions under consideration . Thus) 
the efficiency was related only to combustor - exit total pressure} obviat ­
ing the direct measurement of the high combustion- chamber temperatures. 

The determination of (f/a) , was implemented in the following way: 
Because the engine-inlet diffuser operated supercritically at all times} 
the entering air flow at a given pressure was the same for the nonburning 
and burning conditions and could be expressed as 

(10 ) 
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By use of the equation of state ) converting static pressure and tempera­
ture to total values) converting velocity to Mach number) and rearranging 
equation (10)) the following expressions may be written : 

W(l + Wf~e) 
Yh + 1 

RhT5 h ~ + 
Y - 1 2) 2(Yb - 1) h 

P5 h 
) . 

M5)h ) 

Cd h~M5 h yhg 2 
) ) 

and Y c + 1 

2) 2(Yc 
- 1) 

RcTS,c ~ Y - 1 W c 
P5 )c + l%) c 

Cd cA5~ c Yc g 2 
) ) 

Dividing equation (11) by equation (12)) assuming that 

P 4 ) c 

P5 h = P4 h 
) ) 

and noting that 

M5 )c 

yields the following equation : 

~O 

1 
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(15 ) 
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The pressure ratio P4)h/ p4)C was then evaluated for vari ous ideal fuel ­

air ratios by using theoretical combustion charts) which included the 
effects of dissociation) to find T4 )h . These data were then plotted as 
(f/a) ' against P4)h/p4 )C. By referring to this plot ) the theoretic~l 
fuel - air ratio (f/a) ' could b e obtained for each value of P4)h/ p4)C 

measured in the engine combustion chamber. 

The combustor efficiency as defined herein is not a chemical c om­
bustion efficiency such as a heat -balance or enthalpy- r i se method would 
indicate . The combustor efficiency based on total -pressure measurement 
is more representative of over -all engine performance) as it indicates 
how effectively the fue l is being used to provide thrust potential rather 
than how completely the fuel is being burned . 

Combustor - inlet Mach number . - The combustor - inlet Mach number was 
calculated using the engine inlet air flow W) the static pressure 
measured at station 2 P2) the ambient total temperature TO) and the 
ma ximum area of the combustion chamber (314.2 s ~ in.) . 

Specific fuel consumption. - The specific fuel consumption was cal­
culated as the ratio of the engine fuel flow in pounds per hour to the 
net thrust . Thus 

sfc (20 ) 

where the net thrust Fn is given by 

Fn = ~ V6Cv (1 + ~) + A6(P6 - PO) - i Vo (21) 

By substituting e~uation (21) into e~uation (20) and rearranging) e~­
uation (20) can be expressed as 

sfc 
(

Wf e,\ 
--t-) g 3600 

(22) 

For this expression wf)e/w was considered e~uivalent to f/a of e~­

uation (8 ) . The exhaust ga ses were assumed to be completely expanded t o 
at mospheric pressure. Therefore) the ~uantity (A6/W)g(P6 - PO) is 

zero; Cv was taken as 0. 95 . 
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The velocity V6 was determined as follows: 

(23) 

(24) 

(25) 

The quantity M6 was determined by the exhaust-nozzle pressure ratio 

P4 /PO as follows: 

(26) 

where P2/PO was assumed to be 0.60 (readily obtained in practice) for 

all the data and P4/P2 was combustor total-pressure ratio. The ratio 

PO/PO was 36.7 (a constant corresponding to flight at a Mach number of 

3.0) . 

15 

The temperature T6 was determined from TO' the combustor efficien­
cy, engine fuel-air ratio, and a curve of temperature rise against theo­
retical fuel-air ratio. Thus, all the quantities in equation (25) are 
determined. 
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Section A-A 
Inner- zone fuel system 
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Section B- B 
Outer- zone fuel system 

(a) Schematic diagram. (All dimensions in i nche s. ) 

Figure 2. - Annular-pil oted combustor. 
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