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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

EXPERIMENTAL AND PREDICTED LONGITUDINAL RESPONSE 

CHARACTERISTICS OF A LARGE FLEXIBLE 350 SWEPT-

WING AIRPLANE AT AN ALTITUDE OF 35,000 FEET 

By Henry A. Cole, Jr., Stuart C. Brown, 
and Euclid C. Holleman 

SUMMARY 

T
he longitudinal frequency response of a large flexible swept-wing 

airplane as determined from transient flight data, excited by elevator 
pulses, is presented for flight conditions of 0.6 to 0.85 Mach number at 
an altitude of 35,000 feet for a range of center-of-gravity locations. 
T ese data cover a band of frequencies which include the short-period 
mode and two aeroelastic modes. Response quantities are presented for 
center-of-gravity, wing, and tail locations in order to define the mode 
shapes. 

Predicted transfer functions based on the two-degree-of-freedom 
longitudinal equations of motion, with coefficients modified to include 
flexibility effects, are compared with experimental transfer functions 
evaluated from the measured frequency responses. Comparisons are also 
made with transfer functions predicted for the rigid airplane in order 
to show the effects of flexibility. The results are presented in the 
form of transfer-function coefficients for the response of the center of 
gravity and show good agreement between predicted and experimental values, 
except at conditions where the airplane has a pitch-up tendency. For 
responses near the wing tip, this theory becomes inadequate for frequences 
near and above the wing first-bending mode frequency. 

A method for determining the aerodynamic lift and moment of a flex-
ible wing through use of aerodynamic and structural influence coefficients 
is presented.

INTRODUCTION 

The desire to increase the range and speed of large airplanes has 
recently led to configurations with sweptback wings of high aspect ratio, 
thin airfoils, and fuselages of high fineness ratio. All of these factors
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tend to increase the flexibility of the structure, and the associated 
aeroelastic effects are becoming of greater importance in problems of 
static and dynamic stability and control. The dynamic effects are espe-
cially important when the airplane is equipped with automatic control 
because structural modes may introduce system instabilities which would 
not be present in a rigid airplane. It is important to be able to pre-
dict these aeroelastic effects in order to insure that the basic handling 
qualities and loads requirements are satisfied, and to permit rational 
design of automatic control systems concurrently with the airplane. 

In view of the above problems, the NACA is currently flight testing 
a large flexible 350 swept-wing airplane over its entire operating range 
of Mach numbers and dynamic pressures. The aims of this program are to 
document and analyze the airplane response to control surface motions 
and, through comparisons between measured and predicted response charac-
teristics, to establish simple but adequate methods of prediction for 
flexible airplanes. The flight data considered in the present report 
consist of measurements of longitudinal response to elevator deflection 
at an altitude of 35,000 feet over a Mach number range of 0.6 to 0.85 
for several center-of-gravity positions. The measured response quanti-
ties (normal acceleration at several stations, pitching velocity at the 
center of gravity, and wing deflections) were suitable for frequency-
response analysis over a range of frequencies including the .short-period 
longitudinal mode and the first two aeroelastic modes of the airplane. 

With regard to test and analytical techniques, one convenient way 
to express response characteristics is in terms of frequency response. 
The longitudinal frequency response may be evaluated directly from flight 
by measuring the response quantities resulting from sinusoidal elevator 
motions of various frequencies. However, a considerable saving in flight 
time is realized if, instead, the airplane is excited by a pulse-type 
elevator motion and the measured transient time histories are transformed 
to frequency-response form by the Fourier integral, a technique described 
in references 1, 2, and 3. In the case of the test airplane, preliminary 
calculations indicated that pilot-applied pulses would provide adequate 
excitation over the range of frequencies of interest and, hence, this 
technique was used. Another application of this method to a relatively 
flexible airplane is reported in reference i-i-. 

Although these frequency-response data completely define the longi-
tudinal response of the airplane, operational expressions relating the 
output response to an input disturbance, known as transfer functions, 
are a more useful form for detailed analysis or for the synthesis of 
automatic control systems. These transfer functions may be approximated 
from the measured frequency response by a curve-fitting procedure such 
as that described in reference 5 . Comparable predicted transfer func-
tions may be derived from the equations of motion including rigid body 
and structural modes.
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Simplifications in these transfer functions appeared justified for 
the range of flight conditions covered in this report. Consequently, 
theoretical transfer functions were derived from the longitudinal sta-
bility equations for two degrees of freedom, and first-order effects of 
flexibility were included by modifying the coefficients of these sim-
plified transfer functions. The coefficients were calculated for both 
the rigid and flexible airplane for comparison with coefficients 
evaluated from flight-test data. 

Data used in this report were obtained from flight tests conducted 
at the High-Speed Flight Research Station of the NACA and the analysis 
and reduction of data were a cooperative effort of HSFRS and Ames Aero-
nautical Laboratory.

NOTATION 

A	 amplitude 

CL	 lift coefficient 

Cm	 pitching-moment coefficient 

D	 differential operator, d 
dt 

I	 imaginary part 

Kn	 normal-acceleration gain 

pitching-velocity gain 

Ky	 radius of gyration about principal lateral axis, mean aero-
dynamic chords 

M	 Mach number 

R	 real part 

S	 wing area, sq ft 

Tn	 normal acceleration time constant, sec 

Té	 pitching velocity time constant, sec 

V	 velocity, ft/sec 

W	 weight, lb 

b	 wing span, ft
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c	 wing chord, ft 

e.g.	 center of gravit r, percent

pb/2 
wing mean aerodynamic chord, • j	 cdy 

g	 -	 acceleration due to gravity, 32.2 ft/sec2 

m	 mass, slugs 

n	 normal acceleration, positive downward, gravity units 

q	 dynamic pressure, lb/sq in. 

X( ) longitudinal distance from center of gravity to subscript 
quantity, positive when center of gravity is forward of 
subscript quantity, ft 

y	 spanwise coordinate perpendicular to plane of symmetry, ft 

z	 structural deflection, positive downward, in. 

a	 angle of attack, radians 

elevator control deflection, positive downward, radians, 
except where noted 

change in streamwise angle of attack due 'to wing distortion, 
radians 

damping ratio, dimensionless 

TI	 spanwise coordinate, fraction of wing semispan 

e	 pitch angle, radians 

P	 mass density of air, slugs/cu ft 

sec 
psv 

l

output\ phase angle of output quantity minus phase angle of input 

input)	 quantity 

frequency, radians/sec 

aNNEW
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Wn	 undamped natural frequency, radians/sec 

Subscripts 

t	 tail 

wt wing tip 

a 

a
( da /dt) 

e 

e	
(de/dt) 

(dO/dt)

TEST EQUIPMENT 

The test airplane wasa Boeing B-47A with General Electric J-7-GE-23 
turbojets and with wing vortex generators as shown in figure 1. The air-
plane was fitted with an external nose boom and an optigraph on the top 
of the fuselage which recorded the movement of 100-watt target lights 
located on both wing panels and on the tail (figs. 1 and 2). Elevator 
angle was measured by six NACA resistance-type control-position indicators 
located on the left and right elevators at the root, midsemispan, and tip. 
The outputs were recorded on Weston 12-channel and Consolidated 18-channel 
oscillographs. The pitching velocity at the center of gravity was meas-
ured by a magnetically damped NACA pitch turn meter, the acceleration at 
the center of gravity and tail by NACA air-damped accelerometers, and the 
acceleration at the wing tip by-Statham linear accelerometers. 

The locations of the optigraph targets and wing stations used in the 
present study are shown on figure 3. This figure also gives information 
on the distribution of wing weight which is used subsequently in the 
analysis.

ang
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MEASURED FREQUENCY RESPONSE 

Test Procedure 

The flight-test conditions covered Mach numbers from 0.6 to 0.85 at 
an altitude of 35,000 feet for a range of center-of-gravity locations 
from 12 to 30 percent of the mean aerodynamic chord and a gross weight 
from about 110,000 to 120,000 pounds. Table I lists the flight condi-
tions used in this report. 

Before each maneuver, the airplane was trimmed at the desired speed 
and altitude. Then the pilot' applied a quick elevator pulse and held 
the stick fixed until the transient motion damped out. It was found that 
the pilot was capable of consistently applying a 4 to 60 elevator pulse 
of approximately 0.5-second duration and returning (nearly) to the trim 
condition. All of these pulses produced about 1/4 g acceleration at the 
center of gravity. During these maneuvers records were taken of elevator 
angle, pitching velocity at the center of gravity, normal acceleration 
at the center of gravity, tail, and wing tips, and wing deflections. 
Typical time histories of the elevator control input and the measured 
output quantities are shown on figure I. 

The longitudinal moment of inertia was measured by ground oscilla-
tion tests in which the airplane was supported on knife edges and a 
spring.

Reduction of Data 

The transient data measured in flight represent the longitudinal 
dynamic response of the airplane to a particular elevator input, whereas 
for detailed analysis it is desirable to know the airplane response to 
an arbitrary input. As shown in references 1, 2, and 3, it is possible 
to transform the input and output response quantities into frequency-
response form. This defines the response of the airplane to sinusoidal 
elevator motion of various frequencies. Since the response to any arbi-
trary input may be obtained by applying an inverse transformation to the 
frequency response, the frequency response defines all of the basic 
characteristics of the airplane response independently of the particular 
input, and in itself provides a means for studying the nature of the 
response and the effect of variables. 

Method. - By means of the Fourier integral the transient function of 
the input or output, f(t), is for zero initial conditions transformed 

1 
Acknowledgement is given to Aeronautical Research Pilots 

Joseph A. Walker and Stanley P. Butchart.
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into the frequency function, g(i), as follows: 

g(iw) = r f(t)e- 
iWt

dt 
Jo 

Separating g(iw) into real and imaginary parts gives: 

R[(i)]=ff(t) cos wt dt 

I{(iw)}=_ff(t) sin wt dt 

The amplitude and phase angle obtained from the real and imaginary 
parts are:

A = A/R2 + 12 

q: = tan' 

The method used for evaluating the above integrals was similar to 
the one described in reference 6, in which ordinates of the time history 
are read at uniform intervals such that the time history is closely 
approximated by a series of parabolic arcs. (All traces were read at 
0.05-second intervals except for the pitching velocity and wing deflec-
tion which were read at 0.1-second intervals.) The integrals were 
determined by multiplying these ordinates by a set of coefficients for 
each frequency and then summing the products. Since the ordinates of 
the time history were read only until a steady-state value was reached, 
which usually differed from zero, an analytical expression was used for 
the remaining portion of the integral. These operations were calculated 
on card-programmed IBM digital computing equipment. Corrections were 
made in the data for the dynamic response of the instruments. 

Accuracy. - The accuracy with which the frequency response may be 
determined is dependent on the relative magnitudes of the transform of 
the transient quantities and the transform of errors arising from instru-
ment and reading inaccuracies. These errors in the time history were 
estimated to be of the order of 0.005 inch of film deflection. Therefore, 
for linear calibration curves, the transform of the errors consists of
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the Fourier transform of random errors up to about 0.007 inch over the 
length of the transient plus a step error of 0.005 inch in the analytical 
correction at the end of the record. This latter value is by far the 
largest and for practical purposes may be considered to be a measure of 
the maximum expected error. The data in this report were considered to 
be sufficiently accurate if the amplitude of the Fourier transform of a 
step of 0.005 inch of film deflection was less than 10 percent of the 
amplitude of the total transform. If the transform of the errors is out 
of phase with the transform of the transient, then the error in the 
amplitude will be less than the value above and the phase angle will be 
in error. However, this phase-angle error will be less than 60 if the 
amplitude of the error is less than 10 percent of that of the transient. 
For this reason, accuracy in the amplitude also insures accuracy in the 
phase angles. 

In initial flight tests a number of pilot-applied elevator pulses 
of varying length were recorded and the amplitudes of their transforms 
were compared with the above accuracy criterion as shown on figure 5. 
The error boundary is the amplitude of the transform of a step of 0.60 
elevator deflection (which corresponds to 0.007 inch of film deflection 
multiplied by 10) and represents a boundary of amplitudes below which 
errors of greater than 10 percent can be expected. The frequency range 
was selected to include the first two longitudinal aeroelastic modes 
indicated by ground vibration tests in reference 7, and the natural fre-
quencies of these modes are marked on this figure. It may be seen that 
the transform of the longer pulse (run A) tends to go to zero near the 
frequency of the wing first-bending mode and falls below the accuracy 
boundary at regular intervals thereafter. Hence, the longer pulse does 
not provide adequate excitation for accurate evaluation of the frequency 
response at frequencies of the aeroelastic modes. The shorter pulse 
(run B), on the other hand, provides adequate excitation for frequencies 
from 1 to 20 radians per second which is the range of interest in this 
report. Hence, pulses with a time base of about 0.7 second, as in run 
B, were used to obtain the frequency-response data in this report. 

Frequency-response curves evaluated from transient data in which 
the airplane was excited by pulses of different lengths at the same 
flight condition are compared on figure 6. Also shown on this figure 
are boundaries below which errors of greater than 10 percent would be 
expected. This error boundary represents the value of 1e161 for which 
the sum of the separate errors of 161 and 161 is equal to 10 percent. 
It may be seen that the curves agree within 10 percent over the range 
where the accuracy criterion is satisfied. At frequencies below 1 radian 
per second, the frequency response obtained by the shorter pulse becomes 
inaccurate and the curves disagree. Also, at frequencies above 7 radians 
per second, the frequency response obtained by the longer pulse becomes 
inaccurate and it may be seen that the values become erratic. Also 
shown on this figure is a frequency response evaluated from transient 
data excited by a short pulse on another flight in which conditions were
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slightly different. This curve agrees well with the other frequency-
response curve obtained with a short pulse over the frequency range 
of 1 to 20 radians per second, except that it is displaced upward at-all 
frequencies. As will be shown later, this difference may be accounted 
for by the difference in the time parameter 7 for the two flights. 
Thus, the data of figure 6 show that with the short-pulse excitation, 
the frequency response can be evaluated with sufficient accuracy over 
the frequency range of 1 to 20 radians per second. 

Since the frequency-response technique is only valid for linear 
systems, frequency responses are questionable when obtained at flight 
conditions in which aerodynamic derivatives are believed to be nonlinear. 
This airplane appears to have a linear response at 0.72 Mach number and 

lift coefficient since the same frequency response was obtained 
with different degrees of excitation in figure 6. However, a study of 
wind-tunnel data indicated that for flight conditions above 0.8 Mach 
number and for lift coefficients above 0.6 at lower Mach numbers the 
stability derivatives become nonlinear. In view of this factor caution 
should be exercised in extrapolating the test results obtained at flight 
conditions close to these boundaries (see table I for flight conditions) 
to disturbances greater than those used in the flight tests, that is, 
max = l/4 g at the center of gravity. 

No corrections were made in the frequency responses for effects of 
fuel sloshing.

Results and Discussion 

Frequency-response curves evaluated by the foregoing method are 
shown on figures 7 and 8 for the test range of Mach numbers at an alti-
tude of 35,000 feet; quantities measured at the wing tip and tail as 
well as at the center of gravity are included so that a fairly complete 
picture of the response of the airplane is presented. The frequency 
responses are shown for a forward center-of-gravity location in figure 7 
and for a rearward one in figure 8. In the following discussion on 
these frequency-response curves, the various longitudinal modes will be 
identified by comparing the accelerations at the center of gravity, wing 
tip, and tail, and wing deflections. Also, the frequencies at which 
these modes occur will be compared with those obtained by the ground-
vibration tests of reference 7. 

Short-period mode. - The first and largest peak in the amplitude 
ratio of all of the frequency-response curves is the short-period longi-
tudinal mode which occurs at frequencies from 1 to 3 radians per second. 
These values agree approximately with frequencies estimated from wind-
tunnel data. The accelerometer responses at wing tip., tail, and center 
of gravity, which are compared in figure 9, show that the accelerations
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at the three locations are essentially in phase, and that the amplitudes 
are larger at the wing tip and the tail. The acceleration response at 
these latter stations differs from that at the center of gravity because 
of the contributions of structural deflections and pitching acceleration, 
which will now be discussed. 

The wing-bending deflection response, as determined from optigraph 
records, is presented on figure 10. At the short-period frequency, all 
deflections are similarly phased and increase in amplitude toward the 
wing tip, representing a type of deflection similar to the wing first-
bending mode. Since for sinusoidal motion acceleration is equal to minus 
the frequency squared times the displacement, the contribution of the 
wing deflection to the amplitude ratio of the acceleration at the wing 
tip is of the order of -1 g per radian. By the same argument, the con-
tribution of tail deflection to the amplitude ratio of the acceleration 
at the tail was also found to be small. Hence, the contribution of 
deflections to accelerations at the wing tip and tail are small for fre-
quencies in the neighborhood of the short-period mode. 

The contribution of pitching acceleration to the acceleration ampli-
tude at the wing tip and tail may be simply calculated by multiplying 
the amplitude of the pitching acceleration (ed) by the distance to the 
center of gravity (fig. 2). This is permissible because the phase angles 
of the acceleration response at the center of gravity and the pitching 
acceleration response (phase angle of e/b equals phase angle of e/ 
plus 900) are similar at the frequency of 2 radians per second. The 
increment in acceleration response at the wing tip and tail, then, is 
about 3 and 5.5 g's per radian, respectively, which agrees with the added 
increments in the acceleration peak shown on figure 9 . Hence, the 
increase in the acceleration amplitude at the wing and tail is primarily 
caused by the airplane pitching acceleration. 

Comparison of the phase angles on figure 10 with those on figure 9 
shows that the wing deflections are in phase with the accelerations and, 
therefore, the wing tips deflect in proportion to and in the same direc-
tion as the airplane accelerates (sketch (a)). This sketch illustrates 

- 

Sketch (a).- Short-period mode. 
the relationship of the wing bending to the airplane center-of-gravity 
motion. Actually, as shown in the discussion of pitching acceleration, 
the wing tips travel farther in space than the center of gravity because 
of the pitching motion of the airplane.
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Wing first-bending mode.- The next peak in the frequency response, 
as seen on figures 7, 8, 9, and 10, occurs at frequencies of from 8 to 9 
radians per second, slightly higher than the wing first-bending frequency 
(6.9 radians per second) in ground-vibration tests. Calculations indi-
cate that the frequency of this mode is higher in flight than on the 
ground because of the additional spring force contributed by aerodynamic 
forces and the increased freedom of the body in pitch and translation. 
As seen on figures 7(a) through (c) and 8(a) through (c), the response 
peaks for locations on the fuselage are small for this mode as compared 
to those of the short-period mode, but at the wing tip (figs. 7(d) and 
8(d)) a very high peak occurs. Referring to figure 9, it is noted that 
the wing-tip acceleration undergoes a 180 0 phase shift at this peak. 
Also, according to figure 10, the amplitudes of the wing deflections 
increase toward the wing tip and are in phase with each other and 1800 
out of phase with the wing-tip acceleration which establishes this as 
the wing first-bending mode. The deflections are also in phase with the 
acceleration at the center of gravity, as was the case for the shOrt-
period mode. The main characteristic which distinguishes this mode from 
the short-period mode is that the wing deflections are the largest factor 
in the accelerations at the wing tips (sketch (b)), while in the short-
period mode the body translation is the largest factor. 

-	 -o------- .-. - 

loll
N

Sketch (b).- Wing first-bending mode. 

Other modes.- Several small peaks appear at frequencies from 14
to 16 radians per second, but these are not well defined because the. 
frequency response is in a region of low accuracy. These peaks are most 
prominent on the wing-tip acceleration responses (figs. 7(d) and 8(d)). 
The wing-deflection response on figure 10 indicates an upward trend in 
the mid-semispan-deflection amplitude ratio as compared to that of the 
wing tip. This would indicate a mode of the wing second-bending type 
involving body translation and pitch. Some calculations were made on 
the modes of vibration of the B-47 with body translation and pitch 
included; these indicated a mode of the type shown in sketch (c) at 16.7 

Sketch (c).- Wing second-bending mode coupled
with body translation and pitch 
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radians per second. This agrees qualitatively with the acceleration 
frequency responses (figs. 7(b), (d) and 8(b), (d)), which show that the 
accelerations of the wing tip and the center of gravity tend to become 
more closely phased when the mode becomes prominent at the high Mach 
numbers. Another possible mode of vibration in this frequency range 
involves bending of the inboard nacelle supporting structure which, as 
indicated by ground-vibration tests in reference 7, excites considerable 
wing motion at 16.4 radians per second. This mode is probably closely 
coupled with the mode mentioned above, which would explain the appear-
ance of the two closely spaced peaks in this frequency region. 

Effect of Mach number and dynamic pressure. - Since Mach number and 
dynamic-pressure effects cannot be separated when, as in the present 
case, data are available for only one altitude, they will be considered 
together with Mach number arbitrarily selected as the independent vari-
able. From figures 7 and 8 it may be seen that there is a gradual 
increase in the amplitude of the short-period mode peak for the response 
quantities up to about a Mach number of 0.81, after which the trend 
reverses, probably because of critical Mach number effects. The general 
level of the response quantities also follows this trend at the higher 
frequencies, although the acceleration at the wing tip seems to be rela-
tively insensitive to Mach number changes. At these higher Mach numbers 
the frequency response is somewhat dependent on the magnitude of the 
elevator pulse input because of a nonlinear effect mentioned previously. 

The frequency of the amplitude peak of the short-period mode also 
increases up to a Mach number of 0.81 above which it decreases. The 
frequencies of the peaks of the higher modes are relatively constant over 
this range of Mach numbers and dynamic pressures, although the same trend 
may be noted. 

Effect of center-of-gravity location. - From figure 11(a) it is seen 
that the effect of moving the center of gravity from 12.6 to 29.7 has 
little effect on the frequency response of pitching velocity, although 
the peaks of the short-period mode occur at lower frequencies as the 
center of gravity is moved back. The effect of center-of-gravity move-
ment is more apparent on the acceleration response (fig. 11(b)), which 
shows a definite trend of the short-period mode to higher peaks and 
lower frequencies as the center of gravity is moved back. 

For the rearward center-of-gravity location there are from 3,000 
to 4,000 pounds of additional fuel in the aft main tank (fig. 2) as com-
pared-with the forward center-of-gravity location. However, there 
appears to be no significant change in the high-frequency portion (5 to 
15 radians per second) of these responses. This might be expected, 
since the fuselage vertical-bending mode occurs at a much higher fre-
quency (29 radians per second).
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EXPERIMENTAL AND PREDICTED TRANSFER FUNCTIONS 

Although frequency-response plots completely defined the response 
characteristics over the frequency range of interest, analytical expres-
sions for the response are more useful in detailed analyses or in the 
syntheses of automatic control systems. Such analytical expiessions, 
often called transfer functions, may be evaluated either from the experi-
mental frequency-response plots or from the predicted equations of motion 
of the airplane. In order to show the relationship between the transfer 
function and the frequency response more clearly, the predicted transfer 
functions will be derived first. Then the method for evaluating experi-
mental transfer functions will be explained and, finally, the results of 
the experimental and prediction methods will be compared. 

Predicted Transfer Functions 

Equations of motion. - To define completely the airplane dynamic 
system, the equations of motion must include all of the degrees of free-
dom, but for practical purposes the degrees of freedom are usually kept 
to a minimum by including only the most significant airplane modes. In 
the present analysis, only the short-period mode is considered since it 
was previously shown that the effects of other modes on the responses of 
principal interest, those involving motions of the fuselage, were small 
for the test altitude and range of Mach numbers. However, for response 
quantities near the wing tip where at frequencies near and above the 
wing first-bending mode frequency the response is large, these equations 
are, of course, not adequate. 

The equations for longitudinal motion, where changes in forward 
velocity are neglected, were used, with pitching-acceleration (b) terms 
added to account for the distortion of the airplane due to pitching-
acceleration inertial loads. These equations in operator form are: 

IC
T'a + ( c + 2T)D] a + [(CL.-2T)

D + CL D2] e +	 = o 

(Cma + 0m D) a + [Cm4D+(C_	
TKy2a 

.1 
D2 ] e + C1118

 = 0	 (2) 
2V  

In order to account for the first-order effects of flexibility in 
the preceding equations, the structural deformation associated with a 
coefficient of the variables a or 0 and their derivatives was assumed
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to be in phase with the variable, that is, the damping and inertial 
forces due to structural motion were neglected. 

Estimation of stability derivatives.- Stability derivatives were 
derived by available theory with the exception of the elevator-
effectiveness derivatives, which were modified to include additional 
Mach number effects indicated by wind-tunnel tests. The general methods 
applied were those of reference 8 to determine airloads and those of 
reference 9 to account for flexibility effects. Mach number effects 
were included by the Prandtl-Glauert rule as used in reference 8, which 
was indicated by wind-tunnel tests to be not greatly in error up to a 
Mach number of 0.75. 

In applying the general methods mentioned above, several modifica-
tions were made to facilitate use of structural test data. The struc-
tural stiffness of the wing was expressed in the form of influence coef-
ficients for the front- and rear-spar chordwise locations which are com-
patible with the measured influence coefficients and with the spanwise 
stations used in determining the span loading in reference 8. These 
wing influence coefficients were obtained from load deflection data pre-
sented in reference 10. The weight distribution shown on figure 3 was 
separated into equivalent weights as indicated and used with the influence 
coefficients for determining the wing distortion from inertial loadings. 
Fuselage influence coefficients were obtained from the Boeing Airplane 
Company, the airplane manufacturer. Table II lists all the influence 
coefficients, and Appendix A explains how they were used in conjunction 
with aerodynamic influence coefficients to calculate the lift, moment, 
and deflection of the flexible wing and tail due to any initial angle-
of-attack distribution. The stability derivatives were calculated by 
determining the initial angle-of-attack distribution due to rigid-body 
motions or to distortion from inertial loads , caused by rigid-body accel-
erations, and then calculating the resulting lift and moment coefficients 
by the method in Appendix A. The derivatives and the related factors 
which were taken into account are summarized in Appendix B. 

The values of the calculated derivatives are given in table III, 
which lists separately the aerodynamic and inertial contributions. Some 
of the more important derivatives are compared on figure 12 with values 
calculated for the rigid airplane. The Mach number effects are reflected 
by the rigid-airplane derivatives. The flexible-airplane derivatives 
include both Mach number and flexibility effects and show that flexibil-
ity tends to have the opposite effect of Mach number. Of all the deriva-
tives the largest variation occurs in Cm. , but, in general, aeroelastic 
effects are not exceptionally large because the range of dynamic pres-
sures in these tests is not large.
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Evaluation of theoretical transfer functions. - From equations (1) 
and (2), the following transfer function for pitching velocity may be 
obtained:

=	 K(1 + TOD) 

2	
(3) 

1 +	 D + --- D 

and, from the relation n = -	 ( è - 

- K(l + Tni
 + T2D2)

(!) 
1 

The acceleration responses at the wing tip and tail are obtained by 
adding the contributions of acceleration at the center of gravity, the 
pitching acceleration, and the structural deflection, so that 

nwt = + xwt D	 + 1 D 2 ( Z Wt	
(5) 8	 5	 g	 '\5) 12g	 3 ) 

and

t n xt	 e'\ 	 1	 - 2(Zt )	 (6) - = — + — D 

where

(7)

	

S aS n5 eS	 8

1/2 

-CL C 

[ CL..Cm +(	 - C) (CLi + 2T) 

wn =
	 in + Cm (CL	 2T)

]	

(8) 
/I1-TK2 

L e	 2V	
m 
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Wn 	 (C =	
+ 2T)	 - cm) + Cm (CL6 - 2T) + CL 

-CL C + Cm(CL -2T)

(9)  

=	 Ca + CL a Cm
(10)  

	

CLa C1114 +	
( CL6 -2 

T 

cm. + C (CL. + 2T) 
T0 =

	

	 (ii)
-C L8 CIna + CLa 

	

Kn = - I K6	 (12) 

-C (Cm. + C  CM5 (CL& + CLê)	
(13)Tn

-CL8 Cma + CLa Cm8 

	

Tn2 = 

L 1115+ L5\	 2V	 m	
(i))

-CI.6 C + CL Cm8 

Since the transfer-function coefficients are complex combinations 
of the stability derivatives and mass parameters, certain terms have 
been grouped together so that the coefficients are analogous to the famil-
iar equations for rigid airplanes. The derivatives CLé and CL& in the 
terms CLê - 2T and CL + 2T represent primarily the change in effective 

mass of the airplane resulting from lift due to structural distortions. 
As seen in table III, the aerodynamic contributions to these derivatives 
are relatively small. The derivative Cmë. in the term (TKy2 /2V) - C111



NACA RN A54H09	 17 

represents the change in effective moment of inertia due to pitching 
moments arising from structural distortions induced by rotational iner-
tial loads. 

Using the stability derivatives given in table III and figure 12, 
the transfer-function coefficients were calculated for both the flexible 
and rigid airplane and are shown on figure 1 3. The coefficient T 1 is 
not shown because its value is insignificant. 

Effect of flexibility on transfer-function coefficients.- The 
transfer-function coefficients for the rigid and flexible airplane will 
now be compared to show for the present tests the significance of addi-
tional terms included to account for flexibility. 

The over-all effect of flexibility on wn as shown on figure 13 
is to reduce the natural frequency by a maximum of about 10 percent. 
This is principally caused by the reduction in Cm due to flexibility 
of the fuselage. This C% effect is partially compensated by a sig-
nificant increase in the -CCmê term, which provides an effective 
spring force resulting from the pitching moments arising principally 
from wing deflection due to normal acceleration. The term Cm in the 
denominator tends to increase the frequency by about 5 percent. 

The effect of flexibility on damping ratio, , is small as shown on 
figure 13. The damping forces are reduced by flexibility, but the spring 
and inertial forces are also reduced to such an extent that the over-all 
effect of flexibility on damping ratio is insignificant. 

The pitching-velocity gain, K, of the flexible airplane is somewhat 
higher than that of the rigid airplane (fig. 13). This change is prin-
cially due to the reduction in magnitude of C 1	 in the denominator 
which also is in part compensated by the increase in Cm-. Because of 
this large contribution of Cm4 for the flexible airplane, increments 
in gain for a 10-percent increase in T given on figure 13 show that 
the flexible airplane has about a 15-percent smaller change in gain due 
to changes in gross weight and altitude. 

Flexibility has little effect on TO as shown on figure 13. 
Although the reduction in CLa due to flexibility tends to increase TO, 
this is compensated for the most part by the effective reduction in mass 
in the numerator term. 

The discussion of KO applies to K, since these factors are related 
by a simple constant. 

The term T 1 is exceptionally small and is not significant over 
the range of frequencies considered in this report.
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Flexibility tends to increase T 2 (fig. 13) . Although this term 
is small, it does have a noticeable effect at frequencies greater than 
that of the short-period mode. 

'Effect of approximate equations on transfer-function coefficients. - 
Approximate equations are often used for calculating the transfer-
function coefficients. These equations, which are obtained by simplify- 
ing equations 8, 9, 10, and 11, are as follows: 

	

Cfl1a	
1/2 

fl	 (17) 
= ( 2)  

2V 

=(	
p Sc	 1/2( 

cm)	 Ky CL" - Cm. - CmtIc	 a	
(16) 

	

2V	 2V ) / 

K4 -
CL Cm

(17) e	 2TCma 

	

T.=-L	 (18) e 
CLa 

Transfer-function coefficients for the rigid and flexible cases 
were calculated using both the complete and the approximate equations 
and the results are shown on figure 

Coefficients evaluated by the approximate equations show reasonably 
good agreement with those from the complete equations for the rigid air-
plane, but large discrepancies are apparent in the case ofw and 
for the flexible airplane. This is principally due to the fact that the 
approximate equations reflect only the large reduction in magnitude of 
Cm due to flexibility while in the complete equations, the effect of 
this reduction in magnitude of Cma is partially compensated by a sub-
stantial increase in the term _CLaCm• Hence, it may be seen that Cm. 

should not be neglected in calculating the frequency and gain of a flex-
ible airplane.
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Experimental Transfer Functions 

Experimental transfer functions may be evaluated by applying various 
curve-fitting procedures to the time histories or to the frequency 
responses. Curve fitting of a time history may be accomplished by a 
least-squares fitting method such as described in reference 11. Curve 
fitting of the frequency response, as in the following analysis, may be 
done by use of a special set of templates described in reference 5. 
This method may be explained briefly as follows. It can be shown that 
an expression for frequency response is obtained by replacing the dif-
ferential operator, D, in the transfer function by the frequency vari-
able, iw. The resulting complex number can be factored into first- and 
second-order terms expressed in polar (amplitude and phase angle) form. 
The method of reference 5 involves fitting the measured frequency 
response by graphical addition of templates selected from a set of curves 
which represent a wide range of first- and second-order factors. 

Evaluation of transfer-function coefficients. - As shown previously, 
the accuracy of the frequency response at low frequencies is question-
able. For this reason, template fitting of the frequency response was 
only considered to be valid for frequencies above 1 radian per second. 
This limitation made it difficult to fit the frequency response by a 
unique combination of templates for all of the numerator and denominator 
terms which are involved simultaneously in the frequency-response expres-
sion. Because of this, the natural frequency and damping ratio were 
determined by a least-squares curve-fitting method (similar to that of 
reference 11) of the pitching-velocity time history over the portion of 
the record in which rate of change of elevator position could be neg-
lected. The appropriate templates for these values of damping ratio 
and natural frequency were then fitted to the center-of-gravity accel-
eration frequency-response curves to obtain the acceleration gain, K, 
and the time constant, T 2 . The gain KO was then determined from Kn. 
By use of this value of K6and the previously determined values of 
and w, the pitching-velocity frequency response was fitted to determine 
T. A typical template fit is shown on figures 7(a) and (b) for the 
0.63 Mach number curve. 

Transfer-function coefficients evaluated from experimental data for 
the forward and rearward center-of-gravity locations are plotted on fig-
ure 15. These values were corrected to a common altitude and gross 
weight in accordance with predicted variations, but in general these 
corrections were small. 

Comparison of Experimental and Predicted Transfer Functions 

Predicted transfer-function coefficients for the rigid and flexible 
airplane are also shown on figure 15 for comparison with the experimental
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values. The moment of inertia used in the predicted coefficients was 
determined from ground-oscillation tests for the basic airplane, with 
corrections made for condition of the fuel tanks. The stability deriva-
tives of table III were employed. 

Effect of Mach number. - Referring to figure 15, it may be seen that 
the experimental values of natural frequency show good agreement with 
the predicted values for the flexible airplane and fall about 10 percent, 
below those predicted for the rigid airplane. An exception is noted at 
a Mach number of 0.84 where the measured frequency decreases sharply, 
probably due to the large decrease in Cma as the airplane approaches 
the pitch-up. Also on this figure, it is seen that the scatter in the 
measured damping-ratio points prohibits definite confirmation of the 
predicted small variations with Mach number, center-of-gravity location, 
and flexibility. However, the general level of the values shows good 
agreement with theory. 

On figure 15 good agreement is indicated for the pitching-velocity 
gain except at Mach numbers of 0.8 and higher, where large unpredicted 
increases in the measured gain are apparent. This again is probably the 
result of the sudden decrease in the static margin as the critical Mach 
number is approached as previously mentioned. On this figure, good 
agreement also is indicated for the pitching-velocity time constant, Té, 
although the experimental values tend to fall consistently a small amount 
below the predicted ones. 

Effect of center-of-gravity location.- On figure 16, the variation 
of natural frequency and damping ratio with center-of-gravity location 
is shown for several Mach numbers. The measured values of natural fre-
quency show good agreement with the frequencies predicted for the flex-
ible airplane over the test range of center-of-gravity locations. The 
frequencies predicted for the rigid airplane are consistently higher 
than those for the flexible airplane, but show about the same variation 
with center-of-gravity movement as for the flexible airplane. The 
measured and predicted damping ratios show fairly small changes with 
center-of-gravity location. 

In summary, the longitudinal response of the airplane may be 'ade-
quately predicted by the theory used herein to account for flexibility 
up to a Mach number of 0.8. The largest errors occur in the natural 
frequency if flexibility is not taken into account, but in general all 
of the transfer-function coefficients show only small changes over the 
airplane range of dynamic pressures at 35,000 feet. 

Since the transfer-function coefficients are relatively insensitive 
to flexibility effects at these flight conditions, a more sensitive 
transfer function, the wing-tip deflection response, was calculated 
from equation () in order to provide a more accurate check on the aero-
elastic calculations. The method of calculating deflections is shown
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in Appendix A. The comparison between experimental and predicted values 
in frequency-response form is shown in figure 17. It may be seen that 
the amplitude ratios agree very well and that-the phase angles of the 
experimental response tend to lag the predicted ones 200 to 300 up to 
frequencies of 7 radians per second. From this, it would appear that 
the theoretical calculations of the contribution of the wing to the sta-
bility derivatives are accurate except for a small phase lag which is 
probably due to the inertial and damping forces due to wing bending 
motion which were neglected in the theory. 

CONCLUSIONS 

The evaluation of the dynamic response of a large flexible airplane 
to elevator pulses at 37,000 feet over a Mach number range of 0.6 to 0.87 
and the comparisons with predicted response have led to the following 
conclusions: 

1. The pulse technique provides dynamic-response data that are 
sufficiently accurate for evaluation of frequency response from 1 to 20 
radians per second, a frequency range which includes the first two aero-
elastic modes. 

2. Except at conditions where the airplane has a pitch-up tendency, 
good agreement between predicted and experimental transfer functions is 
obtained for frequencies near that of the short-period mode, using pre-
dictions based on the usual two-degree-of-freedom form of transfer func-
tion in which the coefficients were modified to include zero-frequency 
aeroelastic effects. 

3. For frequencies near and above that of the wing first-bending 
mode, the modified two-degree-of-freedom theory is inadequate. However, 
the response amplitudes at the center of gravity and tail which are asso-
ciated with airplane structural modes are small compared to the response 
amplitude of the short-period mode and could be neglected for this range 
of flight conditions. On the other hand, the response amplitudes near 
the wing tip become relatively high at these frequencies and could not 
be neglected. 

)#. For the flight-test conditions, the principal effects of air-
plane flexibility are to decrease the natural frequency and increase the 
steady maneuvering acceleration per unit elevator deflection, trends 
which may be attributed principally to fuselage and tail bending and the 
associated loss in the angle-of-attack moment derivative, C. This 
effect would be more significant if it were not compensated partially by 
the effect of the increase in the rate-of-pitch moment derivative, C, 
due to normal acceleration.
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5. The method of employing aerodynamic and structural influence 
coefficients in aeroelastic calculations which was used in this investi-
gation proved to be advantageous in simplifying spanwise loading calcu-
lations and in applying static-test load data. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Aug. 9, 1954
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APPENDIX A 

A METHOD FOR DETERMINING THE AERODYNAMIC LIFT AND MOMENT OF 

A FLEXIBLE WING THROUGH USE OF INFLUENCE COEFFICIENTS 

The approach used is generally that presented in reference 9. How-
ever, for the calculation of wing deformations, the use of structural 
influence coefficients in conjunction with aerodynamic influence coef-
ficients will be introduced in place of the wing bending and torsional 
stiffness distributions El and GJ, and the distributed aerodynamic load-
ings used in reference 9. 

The loading on a flexible wing may be separated into two parts: 
that of the rigid wing and that produced by the wing deflection. The 
discussion that follows will be concerned with the determination of the 
loading produced by a wing deflection corresponding to a given rigid-
wing loading. The change in streamwise angle of attack due to wing 
deformation may be expressed in a power series form as 

= €0 (1)q + € 1 (i)q2 + e2 (i)q3 + . . .	 ( Al) 

where

is the angle-of-attack distribution due to rigid-wing loading 

is the angle-of-attack distribution due to loading obtained 
from e0(r) 

2(11) is the angle-of-attack distribution due to loading obtained 
from 

The incremental angle-of-attack distributions o(11), € (11) may be con-
verted into incremental lifts to form the series 

CLCLq+CLq2 +CLq3 + . 

As shown in reference 9, this series can be represented very nearly by 
the equation

CL q 
CL	 A	 (A3) 1+ kq
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where

CLBk = -	 - 	 etc. 
CLA	 S 

C 

The total lift coefficient for the flexible wing may be written as 

q	 CLA

1 + kq CLR )
CLF = CLR	 + (AI.) 

where CLR is the lift coefficient for the rigid wing. Similar equations 
may be written for the aerodynamic moment coefficient. 

Thus it remains to determine CLA/CLR and k through use of the 
influence coefficients. The aerodynamic influence coefficients were 
obtained in the form of the loading coefficient Gvn at a station n 
due to a unit angle of attack at station v, the angle of attack at the 
other stations being zero. The loading coefficients were obtained by 
the method of reference 8. By use of this method, aerodynamic influence 
coefficients at four spanwise stations could be found which, with proper 
care, were sufficient to provide desired accuracy in determining wing 
deflections. These coefficients, Gvn, were obtained by assuming a unit 
angle of attack at one control point, and zero angle of attack at the 
remaining three, and then solving the set of four simultaneous equations 
consisting of the an coefficients obtained from reference 8. For 
instance, Gin can be calculated from the following simultaneous 
equations

1 = a11G11 + a12G12 + a13G13 + a14G14 

o = a21G11 + a23G12 + a23G13 + a24G14 

o = a31Gil + a32G12 + a33G13 + a34G14 

o a41G11 + a42G12 + a43G13 + 

11n reference 9, the constant k was determined by the ratios of 
the incremental deflections 

k=-  	 =-	 ,etc. 

However, for the present method, it will be more convenient to deal 

	

directly with the incremental lifts.	 S
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where subscripts i, 2 3, and 4 refer to the semispan stations i =0.924, 
0.707, 0.383, and 0. The resulting lift coefficient for each unit angle 
of attack can then be calculated using the equation 

LA / 
CLV =	 Gv4 + 1.848Gv3 + 1.414Gv2 + 0 . 765G 1)	 ( AS) 

The experimentally determined structural influence coefficients (ref. 10) 
were measured in the form of deflections in inches at front and rear 
spars due to 1,000-pound loads at front and rear spars at a number of 
spanwis.e stations. These were cross-plotted to obtain the influence 
coefficients at the spanwise stations, shown in table II. For use with 
the aerodynamic influence coefficients, these coefficients were further 
reduced into the form of a change in streamwise angle of attack in 
radians, due to a 1,000-pound load at the quarter-chord position, S. 

The influence deflections due to a unit angle of attack at a con-
trol station can now be calculated through use of the aerodynamic and 
structural influence coefficients. In order to calculate the deflec-
tions with sufficient accuracy, an integration formula given in refer-
ence 8 was used.

'l	 2 

f
f(r) dli = 2

II 

f ( ii) sin (p11 

-1	 11=1 

where	 =and f (li 11) is the value of f (i) at ii = cos 
2'l• 

For 
the particular number of control stations used in the present case, and 
since f(rj 4) = 0, and using only the interval 0 < rj < 1, the integration 
formula becomes

ff(li) dli =,	 (in) 'n
	 (A6) 

where

1, 	 0.1702 

12 = 0.2776 

13 = 0.3628
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Thus, the angular deflection at station m due to loading due to angle 
of attack at station V, with q 1 psi is calculated from the equation 

b2(l2)2 
3 

=1000	
GvnSmnmn	 (A7) 

n=]-

with

m = 1, 2, 3 

V = 1, 2, 3, 1 

The resulting loading due to (CO) Vm 
is calculated from the equation 

(GA)	
=	

(€o)G	 (A8) 

from which the lift coefficient may be obtained 

	

(CLA I =	 [ 4+ 1.88(GA ) 3 + l.l (GA )	 + 0.765 ( GA ) ]	 (A9) 

The influence lift coefficient, (c 1 '), due to deflections due to the 

loading coefficient 

(YLB)v 

( GA)Vn can be calculated in a similar manner. The 

	

equation for	 is 

A 
L 

r 

	

(CLB) =	 V4 + 1.848 ( GE) 3 + 1.41I(GB)V2 + 0.165(GB)V1] (AlO) 

Thus, for a given angle-of-attack distribution, c, the lift result-
ing from the initial angle of attack and from the first and second twist 
distributions is calculated from the following equations 

4 

CLR	 CLVaV	 (All)

V='
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CLA 

=

(cLA) v X
	

(1a2) 

CLB =	 (CLB)V 

The total lift for the flexible wing may then be expressed as 

_ 

CLF = CLR	

CLA \ 

-	 l+k,) 

where

k
CLB

= --
CLA

(A13) 

(All) 

A similar procedure is used to obtain the aerodynamic moment for a 
flexible wing. 

Wing deflections may also be determined by means of wing-deflection 
influence coefficients in a manner similar to that which was used for 
determining the change in streamwise angle of attack. The deflection at 
station m due to the loading due to angle of attack at station V, 
with q = 1 psi is calculated from the equation 

b2(12)2 

(zo)vm = 1000 	
GvnZmnln 

n=i 
with

in = 1, 2, 3 

V = 1, 2, 3, 4

where Zmn is the deflection in inches at station in due to a 
1,000-pound load at the quarter chord at spanwise station n.

(A15)
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For an arbitrary angle-of-attack distribution, the deflection at 
station m due to the initial load is 

( zo) 	 (ZO)Vm av	 (A16) 

The total deflection for the flexible wing may be developed in a 
manner similar to that used for equation (Al li-). Then 

q 
Zm =	 (zo)m

1+ kq 

in which the k from equation (A14) may be used with sufficient 
accuracy.

(All)
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APPENDIX B 

EVALUATION OF STABILITY DERIVATIVES 

CL 

Wing lift-curve slope.- This was determined theoretically from 
reference 8 and Appendix A using the section lift-curve slope of 5.71 as 
determined from wind-tunnel data supplied by the Boeing Airplane Company. 
This derivative should not be confused with the one in reference 12, 
which includes inertial effects. The present derivative is the one 
which would be evaluated experimentally in a wind tunnel with a flexible 
model. 

Tail lift-curve slope.- This was determined in a manner similar to 
that of the wing, except that fuselage bending was included in the flexi-
bility of the tail. It was found that the principal reduction in the 
tail lift-curve slope was caused by fuselage bending. Other factors 
included were the rate of change of downwash (ref. 13) and a tail effi-
ciency factor of 0.95. 

Body and nacelles lift-curve slope. - This was determined from wind-
tunnel data supplied by the Boeing Airplane Company. 

CLà 

Lag in wing downwash. - Only the tail contribution was considered 
and was determined in a manner similar to that described in reference lii-, 
including aeroelastic effects determined by the method of Appendix A. 
Although this term has small effect from the standpoint of lift, it is 
important in the calculation of C. 

Normal acceleration.- Since normal acceleration is related to a 

in the equation	 n = -	 (e-&), effects of structural deflections due to 

normal acceleration were included in derivatives in a and e	 by the 
method of Appendix A. The principal contribution to this derivative is 
from the lift of the wing. Contribution of the tail varies according to 
the amount of fuel in the rear main tank and is from 10 to 20 percent of 
the total.
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CT. 
6 

Lift arising from angle-of-attack distribution due to pitching 
velocity (primarily a tail contribution) was determined using the method 
of Appendix A. 

Normal acceleration.- Same as normal acceleration part of CL., but 
of opposite sign.

CL 

Lift resulting from angle-of-attack distribution caused by struc-
tural distortion due to rotational inertial loads was determined.by  the 
method of Appendix A. Primarily a wing contribution, but the total 
effect is small. 

Rigid-airplane value was obtained from low-speed wind-tunnel data 
supplied by the Boeing Airplane Company and was assumed to be constant 
with Mach number. This is justified because the theoretical increase 
according to the Prandtl-Glauert rule is usually compensated by the 
pressure losses at the elevator hinge point (ref. 15). Aeroelastic 
effects of lift and moment on body bending and of lift on stabilizer 
distortion were included. Stabilizer distortion due to elevator pitch- 
ing moment and elevator distortion were neglected. 

Cma 

This derivative was determined by multiplying the preceding CL 
derivatives by the distance in mean aerodynamic chord lengths from their 
theoretical centers of pressure to the center of gravity. The value 
of Cm for body and nacelles was obtained by subtracting the theoreti-
cal Cm for wing alone from wind-tunnel values of Cma for wing, body, 
and nacelles. It should be noted that this also includes the change 
in C	 due to the difference between theoretical and experimental 
of wing alone, a difference which is principally due to a somewhat 
higher loading near the root for the experimental than for the theoreti-
cal case. Since this additional loading occurs near the wing root, it 
does not affect the aeroelastic calculations and, hence, is appropriately



NACA RM A5 1 HO9	 r: _----	 31 

added to Cma in the form of a correction for body pitching moment. 

Cmn, Cm6 P Cm, Cm 

These moment derivatives were determined by multiplying the corre-
sponding lift derivatives by their moment arms in a manner similar to 
that described for C.
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TABLE I. - FLIGHT-TEST CONDITIONS 

Flight 
number

Run 
number

. 
Altitude

Mach 
no.

'
L W e.g. 2 

Ky T 

16 36,170 0.68 0.56 121,400 20.9 2.11. 5.8 
18a 35,500 .72 .148 120,900 20.9 2.4 5.2 
18b 35,500 .72 .48 120,900 20.9 2.4 5.2 
20 36,260 .78 .11-1 120,000 21.1 2.4 14.9 

2 21 314,860 .82 .38 119,800 21.1 2.4 4.4 
22 34,860 .84 .33 119,300 21.1 2.4 14.3 
23 311,100 .85 .28 118,200 21.8 2.4 14.1 
25 32,230 .63 .49 113,600 21.0 2.5 4.9 
26 35,950 .62 .61 113,200 21.0 2.5 5.8 

15 35,070 .63 .63 116,100 12.7 2.5 5.6 
16 35,090 .66 .55 115,900 12.6 2.5 5.3 
17 35,360 .71 .11-8 115,900 12.6 2.5 5.0 
18 35,060 .74 .45 115,900 12.5 2.5 14.7 
19 34,980 .77 .38. 115,900 12.4 2.5 4.5 
20 314,960 .81 .37 115,700 12.5 2.5 11.4
21 35,150 .82 .36 115,600 12.5 2.5 14.3 
22 35,600 .84 .36 115,500 12.3 2.5 14.3 

1 35,840 .79 .140 119,100 214.9 2.4 4.8 
3 314,170 .73 .143 . 118,200 214.8 2.4 14.6 
14 314,070 .69 . 1-1.8 117,800 214.6 2.4 14.9 
5 314,220 .65 .514 117,000 214.6 2.4 5.3 
6 35,100 .60 .66 116,600 214.6 2.4 5.9 

15 35,950 .72 .47 111,100 21.6 2.4 14.9 

19 34,860 .73 .43 . 116,200 29.7 2.4 4.8 
22 314,590 .60 .60 115,300 29.5 2.4 5.8 
20 314,780 .70 . 43 116,200 29.7 2.14 5.0 
16 34,960 .81 .37 116,800 29.8 2.4 4.4
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TABLE II. - STRUCTURAL INFLUENCE COEFFICIENTS 

Wing 

1000-pound load at station1  

3F' 3R1 2F 2R iF 1R 5F 5R 

0.0659 0.0580 0.1767 0.1663 0.27 0.2307 0.2033 0.1936 
Inches 3R .0707 .0931 .2116 .2398 .3057 .3339 .211.86 .2784 
deflec- 2F .1769 .2052 .7419 .7795 1.21311 1.21190 .9285 .9590 
tion at 2R .18O4 .2318 .7881 .9005 1.3309 1.4300 .9995 1.1070 
station' iF .2 302 .2730 1.1943 1.2934 2.3486 2.3840 1.6374 1.7184 

1R .2 330 .29110 1.2430 1.4057 2.4598 2. 5920 1.7086 1.8677 

Fuselage 

Load Change in stabilizer angle 

-0.11.5° 
1 Radian/sec2 
ig Normal acceleration ........

pitching acceleration. = 
ri
25 percent) 

1,000-pound tail load (down) .	 .	 .	 . +3.420 
1,000 inch-pounds moment 
applied at stabilizer ........0.000207°

Station locations are shown on figure 3. F denotes front spar loca-
tion. R denotes rear spar location. 
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TABLE III. - PREDICTED LONGITUDINAL STABILITY DERIVATIVES FOR THE FLEXIBLE 
AIRPLANE AT AN ALTITUDE OF 35,000 FEET; W = 100,000 POUNDS 

Mach number 
Quantity e.g. - 0 0.5 0.6 0.7 0.8 

CL --- 5.27 5.31 5.36 5.45 5.6 

Aerodynamic 
CLa --- 7/V .015 .013 .011 .010 

Aerodynamic 0.12 36/V .069 .056 .o46 .038 
CL .25 27.2/V .050 .O11O .032 .025 

Inertial .12 .026 L .38 .1O1 .444 

CL . and -CL. .25 .027 1 .373 .I31 .8o .512 

CL.. .12 -.o34  - .031 -.030 -.029 -.028 
e .25 -.030 -.027 -.026 -.025 -.024

Cma
.12 -1.68 -1.81 -1.82 -1.82 -1.81 
.25 -1.01 -i.ilt- -1.15 -1.11 -1.08 

Aerodynamic .12 -27/V - .053 -.047 -.040 -.036 
Cma .25 -26/V -.050 -.045 - .039 -.035 

Aerodynamic .12 -146/v -.302 -.256 -.224 -.2o4 
Cmê .25 -138/V -.288 -.244 -.213 -.192 

Inertial .12 .02 .337 .398 . 1 51 .189 

and Cm. .25
.338 . 1 oo .457 .1499 

Cm.. .12 .031 .030 .029 .028 .028 
e .25 .030 .029 .028 .027 .027 

- - - .327 .312 -3o6 .299 .292 

C .12 -1.21 -1.16 -1.14 -1.11 -1.08 
.25 -1.17 -1.12 -1.09 -1.07 -1.05 

T --- 29140/V 6.05 F5,03 4.31 3.77S7 
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C	 II,
	 Accelerometers 

:350	 Rear main fuel tank 

Optigroph 

----rE 

Wing:

Area 1428 sq ft 
Aspect ratio 9.43 
Taper ratio .42 
M.A.G. 13 ft 

Tail: 

Area 268 sq ft 
Aspect ratio 4.06 
Taper ratio .42 
Elevator	 chord 30%-

59.0—' 
535.0" 
558.2" 

Optigraph

77 

Figure 2.- Two-view drawing of test airplane. 
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+ Optigraph targets Front spar 
17% chord 

NACA RN A541109	 39 

Rear spar 
58% chord

Note: Stations 1,2,3,4 correspond 
to control stations in 
reference 8. 

Inboard nacelle
7,785 lbs at -0.39c 

$ Wing weight 
I	 at 0.38c Outboard nacelle 

3,312 lbs at 0.14c 

mc 

N 
U)

lO
0 
q..	 41801bs

:1,96:0lbs 
-	 I

Il j!60lbs 

	

I I	 I 0
0	 .2	 .4	 .6	 .8	 1.0 

Fraction semispan,	
0 

Figure 3.- Wing stations and weight distribution used in analysis.
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Figure L- Typical time histories of input and output response quantities. 
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Figure 5.- Typical elevator control inputs and the amplitude of their 
Fourier transforms. 
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Figure 6.- Comparison of pitching-velocity frequency responses obtained 
from a long- and a short-pulse elevator input at the same flight con-
dition and from a short-pulse input at a slightly different flight 
condition; M = 0.72.
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(a) Pitching velocity at the center of gravity. 

Figure 7.- Frequency response for the center of gravity at approximately 
12.5 percent	 . 
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Figure 7.- Continued. 
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Figure 7.- Concluded. 
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(c) Acceleration at the tail. 

Figure 8.- Continued. 
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