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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

DETERMINATION OF LONGITUDINAL HANDLING QUALITIES


OF THE D-558-II RESEARCH AIRPLANE AT


TRANSONIC AND SUPERSONIC SPEEDS TO


A MACH .NUMBER OF ABOUT 2.0 

By Herman 0. Ankenbruck 

SUMMARY 

Flight tests were performed with the Douglas D-558-II research 
airplane to investigate the longitudinal handling qualities and trim 
characteristics at transonic and supersonic speeds up to a Mach number 
of about 2.0. 

Results of this investigation indicate that the aparent stability 
parameter d8e/dCN increases by a factor of about 11, the stick force 
per g increases by a factor of 22, and the apparent stability parthneter 
di.lJdCN increases by a factor of nearly 5 as Mach number increases 
from about 0.6 to 1.9. The greater part of these changes takes place 
in the transonic speed region between Mach numbers of 0.8 and 1.2. The 
trim capabilities of the airplane with stabilizer and elevator at 1 g 
are adequate, but in the transonic range and at the higher supersonic 
speeds, some trim instability is present. The maneuverability of the 
airplane is: seriously limited at high altitudes throughout the transonic 
and supersonic speed range.

INTRODUCTION 

The National Advisory Committee for Aeronautics is conducting 
flight research at transonic and supersonic speeds by using research- 
type aircraft at the High-Speed Flight Station at Edwards Air Force 
Base, Calif. The D-558-II-airplanes were obtained for the NACA by 
the Navy Department. in order to conduct flight research on swept-wing 
airplanes at high speeds. At the present time two D-558-II airplanes 
are being used in this program, one powered by a turbojet engine and 
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a rocket engine and the other powered only by a rocket engine. Both 
airlanes are launched at an altitude of about 50,000 feet from a 
Boeing B-29 airplane. The two airplanes are essentially the same with 
the exception of the power plants. 

Previous tests of the D-558-II airplanes have shown some data on 
the longitudinal handling qualities obtained in elevator and stabilizer 
maneuvers, (refs. 1 to 6). The present paper consists of results 
obtained with the all-rocket D-558-II airplane (BuAero No. 5797)4) pri-
marily at Mach numbers greater than 1.0 during power-off and power-on 
turns and during level flight, and of results of power-on turns made 
with the jet- and rocket-powered airplane (BuAero No. 57975) primarily 
at Mach numbers less than 1.0. Longitudinal handling qualities up to 
the highest speeds at which maneuvers were made with the D-558-II 
airplanes are described briefly herein. 

The data presented were obtained in flight at altitudes between 
20,000 and 70,000 feet. Usually the higher Mach numbers were obtained 
at the higher altitudes, hence no attempts were made to determine 
effects of altitude on the handling qualities other than the direct 
effects of lift coefficient on trim for 1 g flight. 

SYMBOLS 

CL	 airplane lift coefficient, L/qS 

CN	 airplane normal-force coefficient, Wn/qS 

Fe	 stick force, pull is positive, lb 

g	 acceleration due to gravity, ft/sec2 

it	 stabilizer angle, leading edge up is positive, deg 

L	 airplane lift, lb 

M	 free-stream Mach number 

n	 normal acceleration, g units 

q	 free-stream dynamic pressure, lb/sq ft 

S	 wing area, sq ft 

t	 time, sec
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W	 airplane weight, lb 

a.	 angle of attack, deg 

be	 elevator angle, trailing edge down is positive, deg 

INSTRUMENTATION AND METHODS 

Standard NACA recording instruments were installed to measure the 
following pertinent quantities: 

Airspeed and altitude 
Elevator and stabilizer positions 
Angle of attack 
Normal acceleration 
Pitching velocity 
Elevator stick force 

All instruments were synchronized by a common timer. 

The angle of attack was measured from a vane mounted on the nose 
boom 42 inches ahead of the apex of the airplane nose. No corrections 
were applied for boom bending, pitching velocity, or upwash. These 
errors are believed to be small, especially at supersonic speeds. 

The airspeed-altitude system was calibrated by comparing the 
static pressure measured in the airplane and the altitude of the 
airplane measured by radar with the pressure and altitude determined 
from a radiosonde balloon sent up at the time of each flight. The 
possible Mach number errors are about ±0.01 at M = 0.6 to about 
±0.04 at M= 2.0. 

The airplane weight and center of gravity during flight were 
estimated from the known loaded and empty characteristics, the pro-
pellant tank geometry, and the estimated propellant consumption. 

DESCRIPTION OF THE AIRPLANE 

A three-view drawing of the all-rocket airplane used in the present 
investigation is shown in figure 1. Figures 2 and 3 are photographs of 
the airplane. Sinc& the two airplanes are essentially the same, photo-
graphs and drawings of only the all-rocket airplane are presented. 
Table I presents pertinent airplane physical characteristics. The 
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D-558-II airplanes have sweptback wing and tail surfaces and are 
equipped with an adjustable motor-operated stabilizer controlled by a 
double-throw spring-loaded switch on the control column. No aero-
dynamic balance or control boost is used in the control system, al-
though hydraulic dampers are linked to the surfaces to minimize possi-
ble control surface tlbuz U Figure 4 shows the variation of elevator 
friction force with elevator angle for slow elevator movement when the 
airplane is at rest on the ground. 

The airplanes were powered by LR8-.RM-6 rocket engines which use 
alcohol-water and liquid oxygen as propellants and have a design thrust 
of 6,000 pounds at sea level. During some of the flights, nozzle 
extensions were installed on the rocket engine of the all-rocket air-
plane in order to expand the exhaust gases to a design altitude of 
28,000 feet, thus giving greater thrust at altitudes above 16,000 feet. 
The jet- and rocket-powered airplane was equipped, in addition to the 
original rocket engine, with a J_34 turbojet engine having a design 
thrust of 3,000 pounds at sea level. The turbojet engine exhausts at 
an angle of 80 below fuselage center line. 

Also for some flights the inboard fences shown in figure 1 were 
not installed on the airplane. Previous tests at transonic speeds 
(unpublished data) have indicated that the effects of the inboard 
fences on the longitudinal handling qualities as presented in this 
paper are negligible, and that they also have little effect in the 
higher speed range. The data presented are for the clean configu-
ration with slats closed. 

PESTS, RESULTS, AND DISCUSSION 

Thrnsand straight-flight runs were made at altitudes between 
20,000 and 70,000 feet and at Mach numbers between 0.6 and 2.0. The 
center-of-gravity location varied from 24 to 27 percent of the mean 
aerodynamic chord, with most of the data being obtained with the center 
of gravity at about 25 percent. All wind-tunnel data presented for 
comparison have been corrected to 25 percent mean aerodynamic chord. 

In the left side of figure 5 is shown a time history of the 
measured quantities of a typical subsonic elevator turn, whereas in 
the right side angle of attack, elevator, and stabilizer angle are 
shown as variations with CN, and stick-force data are plotted against 

normal acceleration. Figure 6 shows similar plots of a typical turn 
at supersonic speed. These figures are presented to illustrate in 
detail the large differences in maneuvering characteristics between 
maneuvers at subsonic and at supersonic speeds. It may be observed 
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in figure 5 that when CN reached moderate values, the relative increase 
in a. and CN becomes greater than the increase in be, indicating a 

decrease in the stick-fixed stability and a pitch-up. The values of CN 
at which pitch-ups were observed throughout the speed range for the clean 
airplane are shown in figure 7. This figure was reproduced from refer-
ence 7 and corrected with recent data. The subsequent data presented in 
this paper are confined to the low-lift region well below the pitch-up 
where the lift, elevator, and stick-force gradients. are approximately 
rectilinear.

Stability Parameters 

Figure 8 shows the variation of normal-force-curve slope dCN/da. 
with Mach number from Mach numbers of about 0.46 to 1.85, together with 
wind-tunnel data from references 8 and 9 . The wind-tunnel data repre-
sent trimmed lift-curve slopes, and, as such, are comparable to the 
flight data. The value of dC /d(i increases from about 0.065 at a 
Mach number of 0.46 to about 0.09 at a Mach number of about 0.86, and 
thereafter decreases to a value of about 0.05 at a Mach number of 1.85. 
It appears that there is fair agreement between flight and wind-tunnel 
data throughout most of the speed range, although the wind-tunnel data 
give consistently lower results. 

The variation of d8e/dCN f or the D-558-II airplane through the 
range of Mach number is shown in figure 9. This parameter is an indi-
cation to a pilot of the over-all steady maneuvering stick-fixed 
stability. Figure 9 shows that there is a gradual increase in d)e/dCN 

UP to a Mach number of about 0.8 and a rapid increase with Mach number 
thereafter to a value of about -85 at M 1.3. Above a Mach number 
of 1.3, d6e/dCN increases with Mach number at a much slower rate to 
a value of about -100 at M 1.9. The wind-tunnel data of references 8 
and 9 show the same general trends in d e/dCN as the flight data 

except at the highest Mach numbers where the wind-tunnel data show values 
of dbe/dCN about 30 percent higher at a Mach number of about 1.9. 

The variation of dFe/dfl throughout the range of Mach number is 

shown in figure 10. The stick-force gradient dFe/dn is an indication 

of the over-all steady maneuvering stick-free stability of the airplane. 
As with d5eIdC j, the stick-force gradient 	 e/	 increases slightly 

to a value of about 20 at M 0.85. Above M 0.85 the stick-force 
gradient increases rapidly reaching a value of about 200 at M = 1.10; 
thereafter increasing at a much slower rate up to a value of about 225 
at a Mach number of about 1.6.
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The variation of dit/dCN for the D-558-II airplane through the 

range of Mach number is shown in figure 11. There is a large increase 
in dit/dCN up to a value of about -11 at M 1.2; thereafter, with 

increasing Mach number, dit/dCN increases at an ever decreasing rate 

up to a value of about -19 at a Mach number of about 1.9. The wind-
tunnel data of references 8 and 9 show fair agreement except at the 
highest Mach numbers where the wind-tunnel values of dit/dCL are 

somewhat higher than comparable flight data. 

A large part of the increase in dbe/dCN, dFe/dIl , and dit/dCN 
at Mach numbers below 0.85 may be attributed to an increase in stability 
inasmuch as references 8 to 10 show that elevator and stabilizer effec-
tiveness increases slightly in this speed range. Above M 0.85, 
however, a large decrease in elevator and stabilizer effectiveness is 
expected as Mach number increases; therefore, the large changes in 
dbe/dCN, dFe/dn, and dit/dCN  above M 0.85 may be attributed r . 

both to increase in stability and to loss in control effectiveness. 
The relative elevator-stabilizer effectiveness is shown in figure 12. 
Although there are large losses in both elevator and stabilizer effec-
tiveness, it is apparent that the losses of elevator effectiveness at 
transonic and supersonic speeds are much greater than the comparable 
losses in stabilizer effectiveness. 

Trim Characteristics 

The variation with Mach number of the elevator angle required for 
trim at altitudes of 35,000 and 50,000 feet and a gross weight of 
13, 000 pounds is shown in figure 13. The data were corrected to the 
lift coefficient required for 1 g flight at 35,000 and 50,000 feet 
according to the values of d5e/dCN shown in figure 9 . The subsonic 

part of the curve for it = 1.90 was obtained by applying a correction 

based on d8e/dit obtained from figure 12. These were included for 

completeness and to give results comparable to the wind-tunnel data. 
The trim curves for an altitude. of 50,000 feet are terminated at 
M = 0.95 since at this altitude the airplane will pitch up in 
1 g flight below this speed. It may be noted that the elevator angle 
reached in the curve for it = 00 at 35,000 feet is greater than the 

maximum of 150 available. 

The wind-tunnel data from references 8 and 9 show fair agreement 
except in the transoñic region and in the higher supersonic region. 
However, the trends appear to be about the same at all Mach numbers 
and stabilizer angles for which comparable data are available. 
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The stabilizer angles required for trim at 35,000 and 50,000 feet 
at a gross weight of 13,000 pounds are shown in figure 14. These data 
were obtained in the same manner as the elevator trim data: by 
correcting the data according to the values of dit/dCN to an ideal 
lift coefficient for 1 g flight. In addition, a correction was made 
for the elevator angle when this was not zero, according to the rela-
tive sabi1izer-elevator maneuvering effectiveness from figure 12. At 
Mach numbers below 1.0 1 trimmed flight by the use of the stabilizer is 
difficult because of the high effectiveness and the lack of feel to 
the pilot. For this reason the data between M = 0.6 and 1.0 at 
35, 000 feet were obtained by interpolation of a number of elevator trim 
runs at various stabilizer angles; and though the exact values may not 
be correct, it is believed that the trends shown are essentially true. 
At 50,000 feet, the airplane will pitch up in 1 g flight at any Mach 
number below about 0.95. 

The agrernent between flight and wind-tunnel data of references 8 
and 9 appears to be fair for the most part; however, at subsonic speeds 
the wind-tunnel data show slightly more trim stability than is indicated 
by the flight data.

Maneuvering Characteristics 

In general, the large values of d5e/dCN and dit/dON at tran-
sonic and supersonic speeds cause a serious loss of maneuverability 
which was somewhat disturbing to the pilots, especially when flying 
at high altitudes. Indeed, the maneuverability of the airplane with 
elevator alone is so poor that all turns at supersonic speeds were 
completed with the use of the stabilizer. This is illustrated in 
figure 6 where the elevator was able to provide only an increment of 
about 0.59 for maneuvering. In figure 15 are shown flight envelopes 
beneath which controlled flight is possible at altitudes of 35,000 and 
50,000 feet. The dashed curve represents the pitch-up boundary, and 
the solid curve represents the maximum load factor that can be obtained 
when maneuvering from 1 g flight. The maneuvering ability of the air-
plane is limited by the pitch-up boundary at speeds below M 1.6, 
and by the control maneuvering effectiveness above a Mach number of 
about 1.6. An extrapolation of the data indicates that only about 2g 
can be obtained at a Mach number of 2.0 at 60,000 feet. The data of 
reference 8 indicate that the loss of maneuvering effectiveness in the 
transonic region is largely due to an increase of stability; but at 
Mach numbers above 1.3 it appears that the decreasing lift-curve slopes 
of the horizontal tail and wing are primarily responsible for the 
increasing stabilizer required for maneuvering. At higher altitudes, 
the increasing stabilizer required for trim at 1 g further reduces the 
maneuverability of the airplane at all Mach numbers. 
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CONCLUSIONS 

Results of a longitudinal handling qualities investigation at 
transonic and supersonic speeds with the D-558-II research airplane 
indicate the following: 

1. The apparent stability parameter döe/dCN increases by a 

factor of 11, the stick force per g increases by a factor of 22, and 
the apparent stability parameter dit/dCN increases by a factor of 

nearly 5 as Mach number increases from about 0.6 to 1.9. The greater 
part of these changes takes place in the transonic speed region between 
Mach numbers of 0.8 and 1.2. 

2. The trim characteristics of the airplane with stabilizer and 
elevator are adequate for 1 g flight at 55,000 and 50,000 feet; however, 
in the transonic range and at the higher supersonic speeds, some areas 
of trim instability are present. The airplane cannot be trimmed at 
Mach numbers below 0.95 at 50,000 feet because of the pitch-up. 

3. The maneuverability of the airplane is seriously limited at 
high altitude throughout the transonic and supersonic speed range. 

1. In general, the wind-tunnel data show fair agreement with 
flight data throughout most of the speed range for which comparable 
data are available. 

High-Speed Flight Station, 
National Advisory Committee for Aeronautics, 

Edwards, Calif., July 13, 1954. 

CONFIDENTIAL



NACA RM H54G29a	 CONFIDENTIAL 

REFERENCES 

1. Sjoberg, S. A., Peele, James R., and Griffith, John H.: Flight 
Measurements With the Douglas D-558- II (BuAero No. 37974) Research 
Airplane. Static Longitudinal Stability and Control Character-
istics at Mach Numbers up to 0.87. NACA EM L50K13, 1951. 

2. Williams, W. C., and Crossfield, A. S.: Handling Qualities of 
High-Speed Airplanes. NACA EM L52A08 1 1952. 

3. Mayer, John P., Valentine, George M., and Swanson, Beverly J.: 
Flight Measurements With the Douglas D-558-II (BuAero No. 379714) 
Research Airplane. Measurements of Wing Loads at Mach Numbers 
up to 0.87. NACA RM L501116, 1950. 

4. Fischel, Jack, and Brunn, Cyril D.: Longitudinal Stability Charac-
teristics in Accelerated Maneuvers at Subsonic and Transonic 
Speeds of the Douglas D-558-II Research Airplane Equipped With a 
Leading-Edge Wing Chord-Extension. NACA EM H54H16 1 1954. 

5. Ankenbruck, Herman 0., and. Dahien, Theodore E.: Some Measurements 
of Flying Qualities of a Douglas D-558-II Research Airplane During 
Flights to. Supersonic Speeds. NACA RM L53A061 1953. 

6. Fischel, Jack: Effect of Wing Slats and Inboard Wing Fences on the 
Longitudinal Stability Characteristics of the Douglas D-558-II 
Research Airplane in Accelerated Maneuvers at Subsonic and Than-
sonic Speeds. N.&CA RM L53L16, 1954.. 

7. Ankenbruck, Herman 0.: Determination of Longitudinal Stability in 
Supersonic Accelerated Maneuvers for the Douglas .D-558-II Research 
Airplane. NACA EM L53J20, 1951. 

8. Spearman, M. Leroy: Static Longitudinal Stability and Control 
Characteristics of a 1/16-Scale Model of the Douglas D-558-II 
Research Airplane at Mach Numbers of 1.61 and 2.01. NACA 
RN L53122, 1953. 

9. Osborne, Robert S.: High-Speed Wind-Tunnel Investigation of the 
Longitudinal Stability and Control Characteristics of a 1/16-Scale 
Model of the D558-2 Research Airplane at High Subsonic Mach 
Numbers and at a Mach Number of 1.2. NACA EM L9C04, 1949. 

10. Holleman, Euclid C.: Longitudinal Frequency-Response and Stability 
Characteristics of the Douglas D-558-II Airplane as Determined 
From Transient Response to a Mach Number of 0.96. NACA RN L52E02, 
1952.



10
	

CONFIDENTIAL	 NACA RM H54G29a


TABLE I. - PHYSICAL CHARACTERISTICS OF THE DOUGLAS D-558-II AIRPLANE 

Wing: 
Root airfoil section (normal to 0.30 chord of unswept panel) . . . . .	 .	 .	 .	 .	 .	 NACA 63-010 
Tip airfoil section (normal to 0.30 chord of unswept panel)	 .......... NACA 631_012 
Total	 area,	 sq	 ft	 .................................. 175.0 
Span,	 ft	 ......................................... 25.0 
Mean aerodynamic	 chord,	 in.............................. 87.501 
Root chord (parallel to plane of symmetry), in .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 108.51 
Extended tip chord (parallel to plane of symmetry), in . 	 .	 .	 . . .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 61.18 
Taper	 ratio	 ...................................... 0.565 
Aspect	 ratio	 ...................................... 3.570 
Sweep at 0.30 chord of unsvept panel, deg 	 ...................... 35.0 
Sweep of leading edge,	 deg	 .............................. 38.8 
Incidence at fuselage center line, deg ......................... 3.0 
Dihedral,	 deg	 ..................................... -.o 
Geometric	 twist,	 deg	 ................................. 0 
Total aileron area (rearward of hinge line), sq ft .................. 9.8 
Aileron	 travel	 (each),	 deg	 .............................. ±15 
Total flap	 area,	 sq ft	 ................................ 12.58 
Flap	 travel,	 deg	 ................................... 50 

Horizontal tail: 
Root airfoil section (normal to 0.30 chord of unswept panel)	 .	 .	 .	 . . .	 .	 .	 .	 .	 NACA 63-010 
Tip airfoil section (normal to 0.30 chord of unswept panel) 	 . .	 . . . .	 .	 .	 .	 .	 NACA 63-010 
Total	 area,	 sq	 ft	 ................................... 39.9 
Span,	 in....................................... 113.6 
Mean aerodynamic chord,	 in.............................. l.75 
Root chord (parallel to plane of symmetry), in . 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 53.6 
Extended tip chord (parallel to plane of symmetry), in . .. 	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 26.8 
Taper	 ratio	 ..................................... 0.50 
Aspectratio	 ...................................... 3.59 
Sweep at 0.30 chord line of unswept panel, deg .................... 
Dihedral,	 deg	 .................................... o 
Elevator	 area,	 sq ft	 ................................. 9.1 
Elevator travel, deg 
UP......................................... 25 
Down......................................... 15 

Stabilizer travel, deg 
Leading edge	 up	 .................................. 
Leading edge	 down	 ................................. 5

Vertical tail: 
Airfoil section (normal to 0.30 chord of unswept panel) . . . . . . . . . . . . NACA 63-010 
Effective area, (area above root chord), sq ft .....................36.6 
Height from fuselage reference line, in.........................98.0 
Root chord (chord 24 in. above fuselage reference line), in . . . . . . . . . . . . . . 116.8 
Extended tip chord (parallel to fuselage reference line), in . . . . . . . . . . . . . 27.0 
Sweep angle at 0.30 chord of unswept panel, deg ...................i9.O 
Rudder area (aft hinge line), sq ft .........................6.15 
Rudder travel, deg ..................................±25 

Fuselage: 
Length, ft .......................................142.0 
Maximum diameter, in .	 . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . 	 6o.o

Fineness ratio .................................... 
Speed-retarder area, sq ft ................................5.25 

Engines: 
Rocket......................................u8-ER-6 
Turbojet ......................................J_3l-.WE_1O 

All-rocket airplane weight, lb: 
Full rocket fuel .................................16,000 
Nofuel	 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 	 9,550 

Jet- and rocket-airplane weight, lb: 
Full jet- and rocket-fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . .	 15,570 
Full jet fuel	 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 	 12,380 
Nofuel	 .....................................10,820 
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Figure-1, Three-view drawing of the Douglas D-558-II research airplane.

All dimensions are in inches. 
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Figure 6.- Variations with time and CN of data obtained in a typical 
supersonic turn with the D-758-II research airplane. h = 63,000 feet. 
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