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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 


RESEARCH MEMORANDUM 

CALCULATED EFFECTS OF THE LATERAL ACCELERATION 


DERIVATIVES ON THE DYNAMIC LATERAL STABILITY 


OF A DELTA-WING AIRPLANE 

By John P. Campbell and Carroll H. Woodling


SUMMARY 

Calculations have been made of the dynamic lateral stability of 
a 600 delta-wing interceptor airplane with the lateral acceleration 
derivatives Cn and C 1 . included and neglected. Calculations were 

made for angles of attack of 10 0 , 200 , and 300, with the airplane flying 
at sea level and at an altitude of 70,000 feet. Including the lateral 
acceleration derivatives in the calculations caused changes in stability 
that were small at 100 angle of attack where the values of these deriva-
tives were small, fairly large at 200 angle of attack where the deriva-
tives were larger, and very large at 300 angle of attack where the deriv-
atives were very large. These results indicate the necessity for including 
the lateral acceleration derivatives in calculations of dynamic lateral 
stability. In practically all cases, including these derivatives caused 
increases in the damping of the Dutch roll oscillation. The effects 

Of. Cn and C1 varied greatly when the airplane was assumed to have 

different values of static directional stability C 	 and effective 

dihedral N. The effects on stability of varying the yawing deriva-
tives C	 and C 1- wëre different from the effects of varying Cn13 

and Cj, especially at the high angles of attack. 

INTRODUCTION 

Recent NACA research with wind-tunnel oscillation testing equipment 
has shown that large values of the lateral acceleration derivatives 
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of attack. (See refs. 1 and 2.) In the past, these derivatives have 
usually been neglected in making dynamic-lateral-stability calculations 
for airplanes because little information was available to permit rea-
sonably accurate estimates of the derivatives. Now that experimental 

data on Cn and Clj have become available, a theoretical investiga-

tion of the effects of these derivatives on dynamic lateral stability 
has been undertaken. In this investigation, calculations are being made 
for a variety of configurations and flight conditions with the lateral 
acceleration derivatives .included. and neglected. Some preliminary results 
of this investigation, consisting of stability calculations for a delta-
wing interceptor airplane, are presented in this report. 

Since the values of Cn and Cj appear to be appreciable only 

at moderate and high angles of attack, the calculations for the delta-
wing interceptor were made only for angles of attack of 100 , 200, and 300. 
The calculations were made both for sea level and for an altitude of 
50,000 feet. The airplane was assumed first to have values of Cri 

and C	 of zero and then to have values of these derivatives similar 

to those obtained from oscillation tests of a delta-wing model in the 
Langley free-flight tunnel. 

SYMBOLS AND COEFFICIENTS 

angle of bank, radians 

angle of azimuth, radians 

angle of sideslip, v/V, radians 

	

V	 airspeed, ft/sec 

	

v	 sideslip velocity along Y-axis, ft/sec 

sideslip acceleration along Y.-axis, ft/sec2 

	

p	 rolling velocity, d/dt, radians/sec 

	

r	 yawing velocity, dir/dt, radians/sec 

rate of change of angle of sideslip,' r/v, radians/sec 

cob/2v reduced-frequency parameter 

	

w	 angular velocity, radians/sec 

CI	 AL
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P	 mass density of air, slugs/cu ft 

q	 dynamic pressure, 	 pV2, lb/sq ft 

b	 wing span, ft 

S	 wing area, sq ft 

W	 weight of airplane, lb 

m	 mass of airplane, W/g, slugs 

g	 acceleration due to gravity, ft/sec2 

relative-density factor, m/pSb 

TI	 angle of attack of principal longitudinal axis of inertia, deg 
(see fig. 1) 

€	 angle between reference axis and principal longitudinal axis of 
inertia, deg (see fig. i) 

a.	 angle of attack of reference axis, deg (see fig. i) 

Y	 angle of climb, deg (see fig. 1) 

kx	 radius of gyration in roll about principal longitudinal axis of 
inertia, ft 

kz	 radius of gyration in yaw about principal normal axis of inertia, 
ft 

Kx	 nondimensional radius of gyration in roll about principal longi-
tudinal axis, 

1(z	 nondlinensional radius of gyration in yaw about principal vertical 
°	 axis, ko/b 

Kx	 nondimensional radius of gyration in roll about longitudinal 

stability axis, \JKxo2cos2rI + KZo2sin2li 

KZ	 nondimensional radius of gyration in yaw about vertical stability 

axis, \JKz 2co52 r1 + K02sin21
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KXZ	 nondimensional product-of-inertia factor, (KX 
0 
2 - Kz 2)cos Tj sin 

(Note that Kxz is negative for positive values of ri.) 

CL	 trim lift coefficient, Lift/cis 

C 1	 rolling-moment coefficient, Rolling moment/qsb 

Cn	 yawing-moment coefficient, Yawing moment/q.Sb 

Cy	 lateral-force coefficient, Lateral force/qS 

C IO	 effective-dihedral derivative, rate of change of rolling-moment 
coefficient with angle of sideslip, Ci/3, per radian 

CnO	 static directional-stability derivative, rate of change of 
yawing-moment coefficient with angle of sideslip, 
per radian 

CY	 rate of change of lateral-force coefficient. with angle of side-0	 slip,	 Cy/3, per radian 

C	 rate of change of rolling-moment coefficient with lateral-

acceleration factor,C1

/

	

	

per radian

 2V 

C-	 rate of change of yawing-moment coefficient with lateral-

acceleration factor,

	

	 , per radian

V 

Cy	 rate of change of lateral-force coefficient with lateral-

acceleration factor, Cy 	 , per radian 

/ 

Cnr	 damping-in-yaw derivative, rate of change of yawing-moment coef-

ficient with yawing-angular-velocity factor, Cn/, per 

/ radian 

C	 rate of change of yawing-moment coefficient with rolling-angular-

velocity factor, Cn	 , per radian 

• Cp__
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C1	 rate of change of rolling-moment coefficient with rolling-




angular-velocity factor, 6C, gb , per radian 

Clr	 rate of change of rolling-moment coefficient with yawing-angular-

velocity factor,c1/, per radian 
/2V 

Cy	 rate of change of lateral-force coefficient with rolling-angular- 
/pb 

velocity factor, CyJ—, per radian 
Y/ 2V 

Cy	 rate of change of lateral-force coefficient with yawing-angular-

velocity factor, Cy/24, per radian 

t	 time, sec 

s	 nondimensional time parameter based on span, Vt/b 

D	 differential operator, d/ds 

P	 period of oscillation, sec 

T112	 time for amplitude of oscillation to change by a factor of 2 
(positive value indicates a decrease to half-amplitude, nega-
tive value indicates an increase to double amplitude) 

A,B,C,D,E coefficients of lateral-stability equation 

DUATIONS OF MOTION 

The nondiinensional linearized lateral equations of motion, referred 
to the stability axes, used to calculate the stability roots are as 
follows: (These equations are the same as those of reference 3 except 
for the addition of theCn^y Cj, and Cy terms and a change in the 

sign of KXZ.) 

Rolling moment 

2IL(Kx2D - KxzD?*) = C 1 +C-1 D + CD + Cj,D* 

co	 ML
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Yawing moment 

2.t(Kz2D21V - KXZD20) = C 13 + CDt3 + CDØ + CflDiit 

Lateral force 

2i(Df3 + m) = Cy + 1 CyDI3 +	 + CL + CD + (CL 
tanY) 

When Ø0e	 is substituted for 0, iIi0e	 for ,, 0 e 'S for 0 in 

the equations written in determinant form, 7 must be a root of the 
stability equation

AA+BA3+CA2+DA+E=O 

where 

A 8It3 (Kx2Kz2 - Kxz2) - 21.12 (Kx2Kz2 - Kxz2)Cy 

B = _2IL(2JKx2Kz2Cy + 4KX2Cnr +	 2pKXZ 	 + XZC lr + 

PKXZCnp - 1CXnrCy -	 - K 2CCy - KXZC jrCy - 

XZCl A - CnKCY + 1 KyCy Crib + Kz2CCi + 

K)(2CyCfl . + K)CyCj.)
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C = pick 2cnrCy + 14i.L2Kx2Cn + PKZ 2cl p 
Cyo +! ILCnrC jp + PKXZC 1rCY + 

4i.t2KxzCi + pCnPKXZCYO - p.Cfl C 1, - PKXZCn CYp - 

-.tKX2CyrCn - XZCYrC I O - cnrc lpcY - 

+ CrC Cy +	 tCnC - ItC]jCaCrj - 

-	 tan i -	 tan y + 

.1 C jpCCfl3 - • CflpCCl3 - Cj.CypCt +	 Yp r1	
/ 

D = - 1 CnrCpCY -	
1 

+ cc 1.cy +	 - 

24LKXZCn - 21.LCLKZ2C 1 - 2PKX2Cfl CL tan 7 - 

2PKXZC10CL tan y + C pCn CYr - ccCy - 

Cz1.Cn CYp + I CnrC l Cyp + CLCnrCl - CLC 1rCII + 

ccc tan 7 - CLCfl C 1 . tan y 

E = CL(CnrC lt3 - C lrCn) + CL tan (c1c - cc1)
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CALCULATIONS 

Calculations were made to determine the period and damping of the 
oscillatory mode and the damping of the aperiodic modes using the equa-
tions presented in the preceding section. The dimensional and mass char-
acteristics assumed for the airplane are presented in table I and the 
flight conditions for which calculations were made are given in tables II 
and III. Calculations were made for angles of attack of 100, 200 , and 300 
for sea level and for an altitude of 50,000 feet. 

Values of the stability derivatives used in the calculations are 
given in tables II and III and plots of variations with angles of attack 
of some of the derivatives are shown in figure 2. For 300 angle of attack, 
four different combinations of the important sideslip stability deriva-
tives Cn and Cj were assumed as follows: 

Combination Crj CIO 

A -0.0573 0 

B -.0573 -.0573 

C .0573 0 

D .0573 -.0573

Studies of force-test results for several delta-wing configurations have 
indicated that, depending upon the particular configuration, any one of 
these combinations of Cn and C 1 might exist at 300 angle of attack. 

Values of the rolling derivatives Ci and Cnp and the yawing deriva-

tives Cnr and Cjr were estimated from experimental data obtained by 

the MACA on delta-wing configurations; and the derivatives Cy, CYr 

and Cy were assumed to be zero. 

Values of Cn and Cj were estimated from the data presented 

in references 1, 2, and 1. In making the estimates of C, values 

of Cnr obtained from curved-flow tests (ref. 
4) were subtracted from 

k . —, A, 
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the values of Cnr - C	 of reference 2. For estimating C 1 ., values


of C - Cu?3, C1 J1 Cr1p jP
 and Cir measured about the stability axes 

and values of Cur - Cr1 cos e and C1 + C1 . sin 8 measured about the 

body axes (ref. 1) were substituted In the equations relating the stability-
axis and body-axis damping derivatives. The equations were then solved 
for C 1 . . The data of references 1 and 2 were obtained at values of the 

reduced-frequency parameter u/2v of about 0.21 to 0.25. Subsequent 
oscillation tests of a delta-wing model (results unpublished) have indi-
cated large effects of frequency, particularly at angles of attack above 
about 150 . The effects of frequency are such that greater values of Cn?3 

and Cl?3 are obtained at the smaller values of ciI/2V. In addition to 

these results, some results (also unpublished) have recently been obtained 
in the Langley stability tunnel which show that the values of Cflr and 

CIr for a 600 delta wing in an oscillation are actually much greater 

than the values obtained in the curved-flow tests of reference li. The 
values of Cur and C1  used in the present calculations are therefore 

probably smaller than they should be. These data also indicate that the 
values of Cn?3 and C1 ?3 used in the present calculations are too large 

since they were obtained by subtracting the curved-flow-test values 
Of Cnr and Clr from the oscillation-test values of Cnr - 

and C7,r - Cj. The overall significance of these additional unpublished 

results in connection with the present calculations will be discussed in 
the "Results and Discussion" section. 

Calculations were made for each condition with Crl?3 and Cj


neglected, with	 Included, and with both 	 and Cz?3 included. 

In addition to these three calculations for each condition, two other 
calculations were made with 	 and Ci neglected - one in which Cnr 

was increased by an amount which would correspond to Cflr - Cri ?3 and the 

other in which Cur and Clr were increased to correspond to Cnr Cn?3 

and C•ir - C 1 , respectively. These latter calculations were made to 

determine whether. C	 and C1 might have the same general effects on


stability as Cn?3 and C l?3 . It might be reasoned that such could be the 

C11%W_
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case, since it appears that most of the terms of primary importance con-
taming these four derivatives in the coefficients of the lateral-stability 
equation can be combined, into terms involving C - Cr1 and Cj - Cj. 

RESULTS AND DISCUSSION 

The results of the calculations are presented in tables II and III. 
Some of the results showing the effects of Cn and C 	 on the period 

and damping of the Dutch roll oscillation are presented in figures 3 
and Ii.

Effects of CnA and 

The data of table II and figure 3(a) show that for 100 angle of

attack the effects of Cn and Cii on either the Dutch roll oscillatory 

mode or the aperiodic modes were quite small for both the sea-level and 
50,000-foot-altitude cases. The Dutch roll damping was increased slightly 
by including Cnf and still further by Including both 0n and Cj. 

The relatively small effect of the lateral acceleration derivatives at 
100 angle of attack can be attributed to the fact that these derivatives 
are small at this angle of attack as shown by figure 2. 

For 200 angle of attack, the data of table II and figure 3(b) show 
that substantial improvements in Dutch roll damping at sea level and at 
50,000 feet were obtained by including C11 and C1 in the calcula-

tions. The changes in the damping of the aperiodic modes resulting from 
inclusion of Cn and Cj at this angle of attack, however, were very 

small. 

The data of table III and figure 4 show that at 300 angle of attack 
the effects of Cr1 and C	 were very pronounced for both the Dutch 

roll and aperiodic modes of some of the combinations of C 1 	 and C. 

In most cases the damping of all the modes was increased. An extreme 
change from a high degree of instability to a high degree of stability 
of the Dutch roll oscillation was obtained with combination D by 
including the acceleration derivatives. On the other hand, including 
Cn and C 1 In the case of combination A caused only relatively minor 

changes In Dutch roll damping. These results indicate that the effects 

Of Cri and CiA are greatly dependent on the values of the other 

AL



NACA 14 L514X26	 CC	 T	 11 

stability parameters such as Crj and C. A detailed analysis of the 

results of this and other similar investigations might reveal the reasons 
for some of the differences in the effects of Crj and C	 for differ-

ent cases but more than likely it will not be possible to make any gen-
. eralizations regarding the effects of these derivatives. Previous studies 
of dynamic lateral stability have indicated that it is unwise to attempt 
to generalize regarding the effect of any given stability derivative 
because of the strong interdependence that exists between most of the 
derivatives. 

As pointed out in the "Calculations" section, values of Cn 

and Cif3 used in the present study were estimated from oscillation test 

data obtained at values of cLOV from about 0.21 to 0.25. The results 
of the calculations, however, show that for the flight conditions con-
sidered in this investigation the values of th/2V are in most cases 
much smaller than 0.21. As stated previously, unpublished test results 
obtained with a delta-wing model subsequent to the tests of references 1 
and 2, have indicated that the values of 	 and CiA are much larger 

at the lower values of u±/2V, particularly for angles of attack above 15. 
On this basis it would appear that the values of CnA and C	 used in 

the present calculations for 20 0 and 300 angle of attack are too small. 
On the other hand, as pointed out in the "Calculations" section, the 
additional unpublished results on the derivatives Cnr and Cir indi-

cate that the values of CnA and CiA used in the calculations are too 

large. A preliminary analysis of the limited amount of data available 
at present indicates that these factors are roughly compensating so that 
the values of CrLA and Cj used are at least of the right order of 

magnitude. In any event, it is unlikely that the changes in Cr1 

and CiA which might be involved would alter the principal conclusions 

drawn from these calculations - that the effects of Cr1A and Cj are 

appreciable and that these derivatives should be considered in studies 
of dynamic lateral stability. 

Effects of C	 and C1
r 

The results of calculations made to determine whether Cnr and Cj 

have the same effects on stability as C 	 and C1 are presented in r
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tables II and III. In each group of five rows in these tables, the 
second and fourth rows afford a comparison of the effects of Cr 

and Cnr while the third and fifth rows give the results when either 

Cri and Cj or Cr	 and C1 were changed. 

It is apparent from the results presented in tables II and III that 
the effects of Cn and C 1 cannot always be properly simulated by 

making corresponding changes in Cnr and. C 1 . The differences between 

the effects of the 3 and r derivatives were especially great at 50° 
angle of attack. Since, for the purpose of this report, this general 
result is the only one of interest in connection with the Cnr and 

calculations, no detailed discussion of these results will be given. 

CONCLUDING REMARKS 

The results of the dynamic-lateral-stability calculations for the

jO delta-wing interceptor airplane with the lateral acceleration deriva-




tives	 and Cj included and neglected can be summarized as follows: 

1. Including C	 and Cj in the calculations caused changes in 

stability that were small at 100 angle of attack where the values of 
these derivatives were small, fairly large at 200 angle of attack where 
the derivatives were larger, and very large at 30 0 angle of attack where 
the derivatives were very large. These results indicate the necessity 
for including the lateral acceleration derivatives in calculations of 
dynamic lateral stability. 

2. In practically all cases, including 	 and Cj caused 

increases in the damping of the Dutch roll oscillation. 

5. The effects of Cn and C 1 varied greatly when the airplane 

was assumed to have different values of Cno and Ci. 

V WE
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11.. The effects on stability of varying Cnr and Clr were differ-

ent from the effects of varying Cn and C, especially at the high 

angles of attack. 

Langley Aeronautical Laboratory, - 
National Advisory Committee for Aeronautics, 

Langley Field, Va., November 16, 1954. 
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TABLE I 

DIMENSIONAL AND MASS CHARACTERISTICS ASSUMED FOR AIRPLANE 

Weight, lb	 . 22,850

Wing loading, lb/sq ft ..................... 5I.5 

()h=o ............................. 11.85 

Kx 2 ...............................0.0135 
.	 ...	 ........................O.O84-I4 

€, deg .............................1.2 

Wing: 
Area, sq ft ......................... 662 
Span, ft ........................... 58.1 
Aspectratio ......................... 2.2 
Sweepback of leading edge, deg ................ 6o 

Vertical tail: 
Area, sq ft .......................... 6.8 
Span, ft ............................ 8.7 
Aspect ratio .........................1.1 
Sweepback of leading edge, deg ................ 60
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C	 1.	 NACA RN L5K26 

Figure 1.- The stability system of axes and angular relationships in 
flight. Arrows, indicate positive directions of moments, forces, and 
angles. This system of axes is defined as an orthogonal system having 
the origin at the center of gravity and in which the Z-axis is in the 
plane of symmetry and perpendicular to the relative wind, the X-axis 
is in the plane of symmetry and perpendicular to the Z-axis, and the 
Y-axis is perpendicular to the plane of symmetry. At a constant angle 
of attack, these axes are fixed in the airplane. 
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Figure 2.- Assumed variation of stability derivatives with angle of attack.
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(a) Sea level (h = 0). 

	

Figure 4. Effect of C	 and Cj on period, and damping at 500 angle 

of attack for various combinations of Cn and C1. 
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(b) h = 50,000 feet. 

Figure 4 • ... Concluded. 
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