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RESEARCH MEMORANDUM 

TEZ WAVE DRAG OF ARBITRARY CONFIGURATIONS IN 

LINEARIZEDFLOWASDETEFK!X EDBYAREAS 

AND FORCES IN OBLIQUE PLANES 

. 

The wave drag, based on linearized theory, of any lifting or non- 
1Lfting plansr or nonplanar object in a steady supersonic flow is shown 
to be identical at a fixed Mach number to the average wave drag of a 
series of equivalent bodies of revolutfon. The streamtiae gradient of 
area, measured normal to the free stream, at a section of each of these 
equivalent bodies of revolution is given by the sum of two quantfties: 

L 
1. The streamwise gradient of area, measured in parallel oblique 

planes tangent to the Mach cones, along the given object 

2. A term proportional to the resultant force on the object measured 
in the same oblique planes. 

INTRODUCTTON 

The evaluation of the wave drag of airplanes traveling at transonic 
speeds has, recently, been greatly simplified by the discovery of what 
has been termed the trsnsonic srea rule which can be stated as follows: 

A (reasonably smooth) airplane flying at a 
near sonic apeed has the aame drag as a body 
of revolution with the same cross-sectional 
area in planes normal to the flight direction. 

r 

The original statement of this rule (ref. 1) has since had many experi- 
mental verifications. From a theoretical viewpoint, a paper written by 
Hayes (ref. 2) also contains the concept in the sense that it is a result 
of Hnearized supersonic flow theory when the Mach number Fs allowed to 
approach 1, More recently, several papers have developed theoretical 

. 
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technique6 which make it pOB8fble to Include the study qf thiclmess * 
ef,fects in slender airplane theorye a linearized rIofl.theory devoted 
specifically either to airplanes flying at any speed but geametrical2y . 
slender in the streamwise direction, or to airplanes flying near the 

I 

speed of sound but smooth enough and having an aspect ratio low enough _ .-.A 
for the pressure coefficient to be small.almost everywhere on the* 
surface. The rule stated above lies at ieast implicitly in published . 
results baaed on the latter theory. See, for example, referencee 3 and 4. 

When linearized supersonic flow theory was shown to be consistent 
with the tranaonic area rule as the Mach number approached unity, the 
question naturally arose as to whether or not It could be USed to develop 
an analogous rule applicable to the evaluation of wave drags on airplanes 
flying at supersonic.;speeds. Thereafter, a formula, often referred to as 
the supersonic area rule, was presented-(refs. 5 and 6) which did extend 
the transonic area rule, again expressing the drag In terms of the atream- 
wise distribution of airplane cross-sectional area - but this ttie in 
terms of cross sections taken in planes tangent to the characteristic 
Mach cones. However, this supersonic area rule, when applied to general .- 
airplane shapes, gives only an approximation to the correct llnearized- 
theory value of the wave drag. The degree of approximation ranges from 
very good, for cases such as a nonlifting wing centrally mounted on a l 

slender body (essentially the case to which Jones (ref. 5) limited his 
result), to very poorr for cases such as the Husemann biplane or a shrouded 
body similar to that studied by Ferri in reference 7. Further, the quan- l 

titative error made in applying the rule to general shapes flying at 
supersonic speeds was unknown. 

The object of this report is to present a formula which gives the 
correct (linearized theory) value of the wave drag for any lifting or 
nonlifting object in s steady supersonic flow as the average of a serfes 
of wave drags of equivalent bodies of revolution 

CP 
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LIST OF IMPORTANT SYMECLS 

pressure coefficient, 
local pressure - free-stream pressure 

q 
wave drag- 

oblique section lift (see eq, (17)) 

free-stream Mach number 

normal to airplane surface : 

. --- 
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Era 

Qe 

PO 

cp 

direction cosines with respect to the x,y,z axes 

free-stream dynamic pressure, $, poUo2 

(Y-Yd2 + (x-x1) 2 

oblique section axea (see eq. (l2)) 

speed of free stream 

x - pr 

Cartesian coordinates in wind-axes system 

cylindrical coordinates in wind-axes system 

&i=T 

conormal to airplane surface 

coordinates defFned in equation (10) 

coordinate defined in sketch (d) 

free-stream density 

perturbation velocity potenttil 

DEYEZOP.MEN'T . 

Consider an airplane in a steady supersonic stream. Let the surfaces 
of the aIrplane be inclined to the free stream at angles small enough for 
the disturbed flow field to be adequately approximated by solutions to 
the wave equation 

a%, - 9y-y - 'pzz = 0 (1) 

where the free stream is moving in the positive x direction and 
P' =M2 - 1. A general solution to equation (I), developed by Volterra, 
is given by 

(p(x,y,z) = - 1 a 
ss( 

AL& x-xl+J(x-X1)2-B~12dSI 
2s ax T av1 h an Prl 

(2) 
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where r12 = (y - y1)2 + (z - z1)2, dS, is an element of surface area 
on the airplane, ~1 is the outward conormsl (the conormal to the char- 
acteristlc cone lies along the cone) to that element, and T is that, 
portion of the airplane surface within the Mach forecone from the point 
XlYYz- 

I 
I 

u, 
/ 

- 
Y 

I 
L- x f 6 

Y 

Sketch (a) 

We wish to use equation (2) to cal- 
culate the wave drag of a given object. 
For this purpose the wave drag is expressed 
in terms of the perturbation velocities 
induced by the object on an enclosing 
cylindrical control surface of Tnfinite 
radius. This equation (see, e.g., ref. 8) 
can be written in terms of the cylindri- 
cal coordinate system defined in . 
sketch (a) (notice that the control sur- 
face is pars&lel to the free-stream 
direction, that is, we are using wind - 
axes) as 

The wave drag of an arbitrarily a* 

shaped object (arbitrary except, of course, 
for the condition that equation (1) met 
adequately represent the flow field) can 
be calculated by inserting equation (2) 
Fnto equation (3). 

First let us inspect the conormal derivative a/&, and the differ- 
ential. axea dS1. By definition (see ref. 9, p. 246) 

a a 
a -P% & + 52 - 

ayl. 
+ iis - 

h. -= 
h. 

iiz2p4 + a== + iis= 
L I 

where ii=, &, and E3 are.the direction cosines of an outward normal to 
the airplane surface. 'For surfaces making sm&L angles with the free 
stream 

ii22 + iis+ 1 

fiil ru streamwise surface alope 
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Hence, tithin the framework of Unearized theory 

a a -=- 
av,, an, 

(4) 

where nl is either the normalto the airplane surface or the normal to 
the surface in the yl,zl plane. Similarly, the differential area 
al can be expreSSed as 

dsLdxL 

dS1 = JS 

where aB1 is an element of arc along the airplane surface in an 
Xl = constant plane; so, again, within the framework of linearized theory, 
one canwrite 

dS, = dsldxl (51 

For convenfence equation (2) is divided tit0 two partg such that 

where 

dX,YA = CSrbtY,d + (P2hY,7J (6) 

(x - Xl)2 - p+12 

Pa' 
u&s1 

and 

Ta(x,Y,z) = L a 
ss 

cp(xl,sl) -L b x - x1 + J (x - x1)2 - f32rp 

2~c ax T h Pl 

Consider, first, equation (7). According to equation (31, we 
to find the value of gx and qr in the 1Imi-t as r (which equals 

r 
49 + z2) goes to 5nfinity. However, since no disturbances can be 

induced ahead of the foremost Mach cone enveloping the disturbing object, 
it is convenient to increase x as r is increased so that the point 
x9,@ rem&n8 in the vicfnity of this Mac &cone. Therefore, we first 
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set (see sketch (b)) 

x = x, + fir 

and then let r approach infinity. 
In thLs way, as r becomes very 
large, one can show that equation (7) 
reduces to 

Sketch (b) 

cpdx,r,N = -l ss 2rr* 7 JQ-xl + j3ylcos 8 + @zlsin 8 

By means of the transformations 

f = Xl - j3yrcos 8 - pzlsin 8 

Q = 81 I 

equation (9) further simplifies to 

where 
J 

dc is a line integral mound thea‘llplane surface 2n the 
oc 

oblique cut. 

The velocity potential 'pl given by equation (11) is exactly the 
same aa that induced on a large cylinder by.a line of sources distribu- 
ted along the xl axis from -Q) to xo, the variation of their strengths 

being given by 
s 

cpn,dcr. (This was first pointed out by Hayes Fn 
oc 

ref. 2.) The physical significance of the term 
s 

%,da is more 
oc 
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. 

readily grasped by referring to sketch (c). Imagine a series 

Ar eo equuts \ 
rr 2 %Ep 

\ \ c 
\ 

& i-5 

----- 
Yl Xl, ‘, 

----- - -- -- -- 
A 

Sketch (c) 

of Mach 

planes parallel to the yl axis each given by the equation 
x1 - gz= = constant. Place the aIrplane in its normal flight attitude. 
Each Mach plane slfces through the aIrplane, defining, thereby, a certain 
area camposed of the region on the Mach plane within the airplane surface. 
Project these areas on planes normal to the free stream (i.e., yltzl 

planes) and designate the resulting area ddstribution by S(E ,$I-.The . 

fntegral 
s 

mldu is then proportional to the streamwise rate of change 
oc 

of these normally projected, obliquely cut areas; that is, for the air- 
plane so placed, 

s 
cpn,da = Uo 

oc 

Now, keeping the Mach planes fixed,' revolve the airplane about the x1 
axIs (not about its own body sxLs unless the latter happens to coincide 
with the x1 axis in our wind-axes system) and repeat the above process 
for all orientations in a complete 360~ rotation. For any given angle 

s cpn@ = uo as a s(E,e) = u,s* (E,e> 
oc 

lCrholdintheaIrplane fixed,rotatetheMachplanes -always, 
of course, keeping them tangent to the characteristic &ch cone. 
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Since one cm show (c&)~+~ = -~(r.px),+,, combining equations (XL) 
and (12) yields 

(‘Plx)r+m = - $ (cpl,) = - u” 1” st;(g>e);E (13) 
r+a 2scG -03 x0- 

and, by means of equation (3), this gives the complete contribution to 
the wave drag of the first term in equation (2). 

Consfder next equation (8). Taking the derivative with respect to 
nl aa indicated, we have 

cpht%) dzl COB 8 + - 
cp.&x,y,z) = 12' 

ss 

drill 
2lfax T 

c (Y-Yd2 +(z-zd21 Jcx-x1>'- P2(y-yd2- p=(z-zl)' 

Proceeding as before, setting x = % + pr, y = r co8 8, z = r sin B, 
and letting r go to infinity, we find 

a 
p2(x,r,e) = ' - 

ff 

d xi,sI)(g CO8 8 + 2 sin +,as, 

2Jr~axoT Jxo - x1 + pylcos 8 + pzlein 8 

Introduce the transformation gfven by equation (10) and (p2 can be 
expressed as : 

. 

Notice (see sketch (d)) that the term 
( 

s 
1 

COB 8 + 2 ein B)ds, 

fs simply the component of de1 normal to the plane 8 = constant. 
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c 

Designate this direction by the 
coordinate Qe, as in sketch (d), 
and equation (14) becomes 

9 

Integrating by Parts (notice that 

a 93[5 - 
z 

f(g,a),a] = u[E - f(C,a>,al 

where u(x,d) = 5 dx,d f since In 

. 

linearized theory af/& can be 
neglected relative to unity) and usfng 

COSJ cod + sinpin = cos/74) 

the relation for pressure coefficient 

cp = 1” - po = L 2 (15) 
z PoUo2 

we find 

-wo s xo d5 =4lcJ-QF ‘QJ Gz o.Cpd=e s 
(16) 

Sketch (d) 

The veloc-lty potential ~p2 is again exactly the ~&me as that induced 
on a large cylinder by a LLne of sources distrtbuted along the x1 axis 
from -CO to xo, the variatfon of their strength this time being given by 
PO 

2 s Cpae l 
The physical 'significance of 

s ocCPdffe can be demonstrated 
oc 
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with the aid of sketch (e). As before, imagine a series of planes 

Sketch (e) 
(Xl - PZl = constant) parallel to the y1 axis. Again place the air@ane 
in its normal fUght attitude. ?&en if we define Z(g, rr/2) as the lift 
(the ccmponent of net resultant force in: tbie. zl. direction, positive 
upward) on a @;lven section formed by the intersection of a Mach plane 
with the airplane surface, one ca.c show, for the afrplane 80 placed, 

where q is the free-stream dynamic pressure. If we keep the coordinate 
aystem and Mach planes fixed and revolve the airplane about the x1 axis, 

P 
for each 8 the term q 

J oc Cpdae represents at a given x the net 

lift2 on the obliquely cut section. In general, 
- 

w 

s cPdae 
oc 

= + a,@) (17) 

Now combfning equations (r6) and (17), one can show 

=Xf the airplane is ffxed and the Mach planes are rotated, Z(e,Q) 
represents the resultant obliquely cut section force normal to the free 
stream and parallel to the pltie 8-= -coiistant, and doe is anelement , _ 
of lengthnormaltothatplsne. 
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where NE,d = $ 2(e,e), that is, the stresmwise gradient of the lift 

on the obliquely cut section. FinaJly, if equations (13) and (18) are 
placed Into equation (3) and the x integration fs carried out, there 
results 

c s* *(x2,e) - $ 2 * (x2,8) -1 h 1x1-x2 t (19) 

where for constant 0 
x = -L=(e) to x = L(e). 

the intersecttig Mach planes extend from 

Equation (19) gi ves the wave drag of any lifting or nonlifting air- 
plane in a steady supersonic stream, the only approximations being those 

, basic to linearized theory. 

SOME SIMPLE APPLICATIONS 

APlane Wing 

In order to demonstrate the general applicability of equation (191, 
let us use it to solve some skr.rple problems. Some of the s-lest kinds 
of aerodynamic problems sre those concerning sale plauar systems, that 
is, systems ColiQOSed of thin wfngs, the surfaces of whfch are everywhere i 
close to a given plane. For such cases the area and lift terms in equa- 
tion (19) have certati symmetry properties. SpecificaLLy 

S’f (x,8) = S’ * (x,-e) 

2*(x,8) = - 21(x,-8) 
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or 1'(x,8) is an odd and S"(x,8) is an even function of 8. Hence, 

s 

2Yc 

Sr'(x,8)2'(x,8)d8 = 0 
0 

and equation (19) reduces to 

which simply exemplifies the well-Imown fact that in the study of a thin 
planar wing, lffting and tbicknes.s effects can be eal.yzed separately. 
Further, since one can prove (for any f(x) that can be expanded in a 
Fourier series) 

1 1 

-s s 
f (Xl) f( x2) In I x1-x2 I &lax2 2 0 

-I -1 

equation (2C) shows that the only way the wave drag of a single wing can 
be zero is for both S**(x,8} and Zt(x,8) to be identically zero, which 
is the trftial case of no wing St d. 

A Biplane 

Consider next a biplane, in pmticU7RT, the Bueemann type biplane 
shown in sketch (f) traveling at the highest Mach number at which the 
wave drag is LcnoWn (a prio$%) to be zerb, that 'is, at a Mach number 

Since the ffow'is tie-d&ensi.onal, we need only 

study the cut represented by 8 = 2 and consider strips of unit width 

. 
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c in the spmwise direction. Sketch (f) 
shows the variation of S(x), S(x), snd 

g (x) with x. One csn show that the 

two terms S*(x) and $ Z(x) are exactly 

equal for any given value of x md 
thus, by equation (1-g), the total wave 
drag is zero - the correct result 
according to liuesxized theory. 

Shrouded Bodies of Revolution /’ /- 
T ” * ” 

/ 
f / / Amh 

As a final example, let us develop h 
a method for calculating the shape of a i/' 

/' ,/ ,//' h?S 
/ / / 

body of revolution which when enshrouded 
byathin cylindrical tube (havingneg- 

'-Cl 
ligible thickness) will result in zero Sketch (f) 
wave drag for the cmbinat-lon. Let the 
length of the tube be c and its 
radius R (see sketch (g)). 

Ar 
- - - Much tunes 

Assume a certain loading on the 
cylinder (i.e., a value of 
%(X1 = Cpimer - CpOUt~)' The 
equation of the projection in the 
xy plane of the curve formed by 
the iutersectfon of the oblique 
plane,x= 5 +gz,audthe cylfn- 2* 
der, p + ze = R2, is given by 

= R’ 

Sketch (g) 

Hence, the oblique section lift can be written 
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a, -= 2 R 
9 s 

AC,{5 + S rp)dy - 2 ACp(S - B -)a,; 
0 

O<E<$R 

GE) R 
-=2 q s 

P&E + P -by - ACp(E - B m)ldy; 
0 

BR<5<c-j3R 

(=d 

(=c) 

and so forth. Now if the interior body of revolution is slender enough 
to be analyzed by slender-body theory (i.e., source strength is propor- 
tional to St(x)), the oblique section loading on the body itself can be 
neglected and the body shape-for zero total wave drag is, therefore, 
simply 

where the values of Z(e) are g5ven by equations (2l). 

X 
w 

Sketch (h) 

If the body determined by the above 
process is real and closea, the enshroud- 
ing tube till be a perfect cylinder and 
the velocity of the air everywhere exter- 
ior to the shaded region in sketch (h) 
till be equal in magnitude and direction 
to the free-stream velocity.s 

The solution given by equations (21) . 
and (22) has been applied to a tube for 
which 

%his follows directly from a theorem due to E. W. Graham (unpub- 
lished) which statea that the flow fields of all finite systems having 
a minimum wave drag under the s&me specified restraint sze Identical out- 
side their enclosing fore-and-after Mach cones. 
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i where A is a constant. There results 

S’(x) = "((6 - 2 $)b Jq + co*-<%)J - C 

s*(x) pR_<xLc-@R 

and these values are fdentfca14 to those derived Tn reference 10 by means 
of a different method. 

CONCLUDING REMARB 

The wave drag of any object in a supersonic flow field governed by 
the wave equation is identical at a fixed Mach number to the average wave 
drag of a serfes of "equivalent" bodies of revolution. The atresmwise 
gradient of area, measured normal to the free stream, at a section of 
each of these equ5.valen-t bodies of revolution is given by the sum of two 
quantitiee: 

1. The streamwise gradient of area, measured in parallel oblfque 
planes tangent to the Mach cones, along the given object 

2. A term proportional to the resultant force on the object measured 
in the ssme oblique planes. 

Obviously, a formal general application of the ahove result requires 
a ccmTplete Imowledge of the shape of the disturbing object snd its pres- 
sure distrzLbution - a knowledge which always, of course, fixes the drag 
of the object. However, in many special applfcatfons one or the other 
of the two terms mentioned above fs small or can be eattited accurately 
enough without a detailed bnowledge of the entire airplane or its surface 
pressures. For example, if one wishes to find the wave drag of a Wang- 
body combination that is symmetrical about a horizontalplane (e.g., a 
thin nonliftTng wing mounted centrally on a body of revolution), it is 
not necessary to know the pressures anywhere on the wing, since (if the 
wing is thin enough) their contributions to the resultant forces on 
oblique sections are negligible. Hence, for such an example the force 
term in the drag equation depends only on the pressure over the body and, 

41n the equatfon for radial force in Graham's report the exponent 2 
was omitted from the B term. 
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in fact, only on the asymmetry of these pressures in the oblique (Mach) 
planes. If the body is slender, the latter effect is small relative to 
the oblique-mea gradient, and, for such configurations, the form of the 
supersonic area rule posed by Jones is seen to be a good approximation. 
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