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TURBOPROP-~IXE DESIGN CONSIDERATICNS 

II - DESIGN REQUIREMEETS awD l?ERK)J3dAN~ OF TURBOPROP E N G m  

By Elmer H. Davison and Margaret C . Stalla 

The e f f ec t  of m o d e  of engine  operation,  engine  configuration, and 
airplane flight condition on the  performance and design  requirements of 
a turboprop  engine  with a high-pressure-ratio  single-spool compressor 
i s  investigated. Both single-spool engfnes (turbine  drives  both cmrpres- 
sor and propeller)  and gas-generating  engines  (free-turbine  drives  pro- 
pe l le r  only) are  considered. The analysis uses  hypothetical performance 

r a t i o  of 14.4. The f l ight   condi t ions  invest igated range frm sea-level 
take-off t o  600 miles  per hour a t  40,000 f ee t .  

11 character is t ics  of a single-spool compressor with a design-point  pressure 

The free-turbine  engine  appears  less versatile than  the single- 
spool engine,  because  the  range of turbine-inlet  temperature  over which 
it can operate is res t r ic ted .  The two engines also d i f f e r  in turbine 
requirements, which are more c r i t i c a l  f o r  the free-turbine  engine. Op- 
eration appears more favorable  with  variable . _ t h e n  with  constant  exhaust- 
nozzle  area,  because  the  turbine can be designed f o r  a much smaller 
blade  s t ress  and f ron ta l  area, and the  other  turbine  requirements  are 
l e s s   c r i t i c a l .  Use of a variable  exhaust-nozzle axea has only a minor 
e f fec t  on specif ic  fuel consumption. 

INTROWCTION 

An investigation of the performance and the design problems of tur- 
boprop  engines has been  conducted a t   t h e  NACA Lewis laboratory. Some of' 
the  turbine  design problems encountered i n  a turboprop  engine  with a 

investigated in reference 1. The same compressm was used in  reference 2 
t o  study the  effects  of mode of engine  operatfon on engine  performance. 
Other cycle  analyses  such 86 references 3 and 4 have shown tha t  lower 
engine spec i f ic  fuel consumption  can be  obtained wi th  engines  having 
higher compressor pressure  ratios.  

single-spool compressor of current  pressure r a t i o  (7.32 a t   des ign)  were 

d 
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The subject  report  presents t h e  effects  of mode of engine  operation, 
engine  configuration, and airplane  f l ight  condition on the performance 
and design  requirements of a turboprop  engine v i t h  a high-pressure-ratio 
single-spool compressor. A steady-etate  engine  cycle  analysis is made 
f o r  a range of fl ight  conditions.  Frorb this   cycle   andyais ,   the   re la t ive 
s i z e  of different  engine components and other design  requirements  are 
determined. Both single-spool  engines, i n  which the  turbine  drives  both 
the compressor  and propeller, and gas-generating  engines, i n  which a free- 
turbine  drives only the  propeller, are -considered.  Hypothetical perform- 
ance character is t ics  of a single-spool.compresaor  with a design-point 
pressure  ra t io  of 14.4 are  used i n  the .analysis. 

The following  three modes of engine  operation are considered  for 
f l ight  conditions ranging from take-off t o  speeds of 600 miles per hour 
at 40,000 feet :  

I. Compressor operating at constant  design  rotative speed 

11. Compressor operating at design  :equivalent  conditions at all times 

111. Compressor operating a t  constant  equivalent  design  rotative speed 

For the  free-turbine  engine  configuration, only modes I and III axe 
cons idered. . .  - .  . .  . 

The engine parameters- -investi@ed are spec i f ic   fue l  consumption, 
turbine-  inlet  temperature,  turbine  preqsure  ratio,  exhaust-nozzle &ea, 
turbine  f rontal  area, turbine  blade  stress, rotative speed, and equiv- 
alent weight  flow at  turbine entrance. The spec i f ic   fue l  consumptfons of 
the  engines of th i s   repor t  and those  of.reference 2 are compared. 

. . . . . . . . . . . - -. - " . . . . . -" . . " 
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SYMBOLS " 

The following s;ymbols are  used i n  'this report: 

area, sq f t  

gravitational  constant, 32.17 ft /sec2 

engine  parer (shaft horsepuwer p lus  equivalent  shaft hwsepower 
of net thrust) , hp 

. . .  

pressure,  lb/sq f t  

centrifugal. stress, p s i  - r.. .1 .. 

spec i f ic   fue l  cansumption (based on engine  parer P"), lb/hp-hr 

b 



NACA RM E55B18 3 

T temperature, 91 

"T, t tu rb ine   t i p  speed, f t /sec 

W weight f low,  lb/sec 

6 r a t i o  of pressure  to  2U6 113/sq ft 

11 efficiency 

8 r a t i o  of temperature t o  518.4O R 

P density,  lb/cu f t  

l4 stress-reduction factor f o r  tapered blades 

CD ro t a t ive  speed, radians/sec 

Subscripts: 

b blade 

C compressor 

P propeller 

X annular 

1 ambient 

2 compressor inlet 

3 compressor out le t  

4 tu rb ine   in le t  (fig. 1) 

4a ex i t  of gas-generator  turbine (fig. l (b )  1 
5 turbine  out le t  (fig. 1) 

6 exhaust-nozzle outlet 

Superscripts: 

I total or stagnation state 

I1 t o t a l  o r  stagnation state r e l a t ive  t o  ro tor  
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ANALYS Is 

m i n e  Configurations 

NACA RM E 5 5 U  

Schematic diagrams of the two engine  configurations  analyzed  along 
with the  station  designations used in   the  analysis  are shown i n  figure 1. 
The engine referred to  herein &B a single-spool  engine (fig. l ( a ) )  is 
characterized by  one turbine  delivering all the power absorbed by the  
propeller, gearbox, and compressor. In addition,  the power obtained from 
the  turbine, and therefore the power that must be  absorbed by t h e  propel- 
ler, may be  varied by changing the  exhaust-nozzle  area. M 

3 
The engine  referred  to  herein aa a free-turbine engine (fig.  l ( b ) )  

is characterized by a gas-generator unlt delivering  hot-gas t o  a f ree-  
turbine t h a t  drives the propeller. Other c k a c t e r i s t i c s  of this unit 
are: (1) the power output of the gas-generator  turbine mist equal the 
power absorbed by the compressor,  and '(2) the power obtained from the 
free-turbine, and therefore  the power that must be absorbed by the  pro- 
pel ler ,  may be varied by changing the  exhaust-nozzle area. 

Assigned Flight Conditione and Operating Mcd.es 

The four flight  conditions  considered axe: 

I I Flight  condition I - 

O A  C B 

Altitude,   9t  

0.564 0.604 0.906 0 F l i g h t  Mach number 
400 400  600 0 Flight speed, mph 

19,000 40,000 40,'OOO 0 

For the single-spool engines Over. the range of f l i g h t  conditions 
investigated, the following  three mode.6 of engine  operation were 
considered: 

I. Compressor operating at constant design  rotative speed 

11. Compressor operating at design  equivalent  conditions at a l l  times. 
Accomplished by assuming turbine  could accommodate resulting 
variations i n  turbine-inlet  .equivalent weight flaw by turbine 
s t a to r  adjustment. 

111. COmpreSSOr  @crating at constant  equivalent  design  rotative speed 

Operation of the gas-generator  unit of the free-turbine  engine under 
modes I and 111 was considered. The more general  case was analyzed by 
assuming the  free-turbine  could accommodate a var ia t ion i n  i n l e t  equiva- 
len t  weight flow by turbine  stator  adjustment. The character is t ics  

c 
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* 
of the  more  specific  cases  could  then  be  determined  by  considering  the 
inlet  equivalent  weight flow to  the  free-turbine to be constant. Assum- 

that  the area of the first  turbFne  stator is fixed  and  that  the  first 
stator  is  choked. 

a in@; that  the  turbine-inle%  equivalent  weight  flow  is  constant  implies 

Compressor  Performance 

The  hypothetical  performance map of the  high-presswe-ratio  single- 
spool compressor  used in the  analysis is shown i n  figure 2. These hypo- 
thetical  performance  characteristics  were cmpomded by analytically 
estimating  the  change in performance  resulting f r m  the  addition of sev- 
eral  stages  to  the  eight-stage  compressor  reported in reference 5. At 
design-point  operation  the  equivalent  tip  speed of the  hypothetical 
ccpnpressor  is ll68 feet  per  second,  the  pressure  ratio is 14.4, the 
equivalent  weight  flaw  per  unit  compressor frontal =ea  (based on cm- 
pressor blade  tip  diameter)  is 30.2 pounds per  second  per square foot, 
and  the  compressor fs operating  near  peak  efficiency at 83 percent. 

Turbine-inlet  temperature was related to cmpressor performance for .. modes I and I11 by  assigning a turbine-inlet.  temperature of 2100° R at 
sea-level  static and compressor  design-porlnt  operation  and  by  assuming 

assumlng that the turbine-inlet  equivalent  weight f low is  constant  im- 
plfes that the  area  of  the  first  turbfne  stator  is  constant  and  that 
the  first stator is  choked. For these assumptions,  lines of constant 
engine temperature  ratio  (ratio of burner-exit t o  compressor-inlet t o t a l  
temgerature)  c&z1 be superimposed on the  ccmgressor  map as shown in fig- 
ure 2. These  temperature-ratio lines do not apply  to  mode II, for  which 
the cmpressor equivalent  operating  condftians remain fixed  at  the  de- 
sign  point. For mode I the  compressor  operates  at a constant  rotative 
speed,  or along a different  constant  equivalent  speed  line f o r  each 
flight  condition.  For  mode III the cqressor operates along the 100- 
percent  equivalent  rotative  speed  line for a l l  flight conditions. 

I constant  turbine-inlet  equivalent  weight flow. As stated  previously, 

Cycle Analysis 

The  assumptions  asd  the  manner in which  the  cycle  analysis was 
cmied out  for  the  single-spool  engine  are  the same as in reference 2. 
The  following  conditions  are  assumed: 

I Ram recovery,  percent . . . . . . . . . . . . . . . . . . . . . . .  100 
Propeller  efficiency, qp, percent . . . . . . . . . . . . . . . . . .  80 
m e r  total-pressure  ratio '/p . . . . . . . . . . . . . . . .  o .95 

. . . . . . . . . . . . . . . . . .  Gearbox  efficiency, qg, percent 95 

I P 4  3 
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Burner  efficiency,  percent . . . . . . . . . . . . . . . . . . . .  100 
Turbine  adiabatic.efficiency  (based on turbine  total-pressure I 

ratio),  percent . . . . . . . . . . . . . . . . . . . . . . . . .  85 
Tail-cone  total-pressure  ratio, p;& . . . . . . . . . . . . . .  0.95 

must-nozzle efficiency,  percent . I. . . . . . . . . . . . . . .  100 
Ratio of specific  heats in corapressar . . . . . . . . . . . . . .  1.40 
Ratio  of  specific  heats in turbine . . . . . . . . . . . . . . . . . .  1.30 
Gas constant,  ft-lb/(lb) (%) . . . . . . . . . . . . . . . . . . .  53.4 
The  jet  velocity w8s calculated f r m  the  ratio  of  exhauet-nozzle  total 
pressure to ambient-&  pressure ps/pl, a nozzle  efficiency of 100 per- 
cent,  and  the  turbine-outlet  total  temperature Ti. The  turbine-inlet 
equivalent  weight flow w4 e / 6 ;  is  assumed  to  be  constant  for  modes 
I and III but is allow-ed to vary for mode II . The  air flow through &e 
compressor is assumed  equal  to the gas flow through  the  turbine. 

Q * ln rn 

. -  . .  ._ - " 

The  cycle  calculations  for  the  free-turbine  engine  differ from 
those for the single-spool  engine in the following vays: 

(1) The inlet  equivalent  weight flow w4 f l / 6 a  af the gas- 

generator  turbine  is  assumed  constant  for both modes I and 111, while 
that of the  free-turbine ~~~&/84;~ .is allowed to vary. 

(2) For the  free-turbine engine, an additional requirement must be 
met,  that  the  work  outputs  of  the twbine and compressor of the gas-  
generator  unit  be  equal. 

(3) Adiabatic  efficiencies  of 85 percf3fi-L  are  assumed for  both  gas- 
generator  turbine and free-turbine. - " 

(4) For the  free-turbine  englne  the  portion of t h e  pressure r a t i o  
p4dp1 taken  acrosa  the  free-turbine  at  fixed  engine  operating condi- 
tions is varied, as is that for the single-spool  engine (pi/pl). Fixed 
engine  qeerating  conditions in this instance mean a given flight condi- 
tion,  mode  of  operation, and turbineiinlet  t&perature. .. 

For both engines a range of burner-outlet  temperature from 2000° 
to 2500° R was assigned  at  flight condition 0 (sea-level  static) . At 
altitude the range of temperatures was frm 1600° to 30000 R. 

a -  

The  specific-fuel-consumption  values  obtained Fn reference 2 by 
operating  with a prescribed  exhaust-bozzle  area e r e  new the minimum 
obtainable. T h i s  characteristic a l s o  hdds for- the  high-pressure-ratio 
engines  analyzed in this report, as p x ~  be  determined  before  calculating 

- s  
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the  sfc  values.  For  this reason, only operation with constant  exhaust- 

a value  of 1.40 is prescribed  for  the  ratio of exhaust-nozzle  axea to 
compressor  frontal  area f&. This area ratio  represents a good cm- 
pr-se  between  optimum  engine  operation  at  take-off  and  the  other flight 
conditions  considered. 

I nozzle area is  considered Fn calculating  sfc. In these  calculations, 

Ccmponent Size  and Stress 

The stress  presented  herefn  is tple centrifugal  stress at the root 
of a turbine  rotor blade. Reference 6 shows that this stress can be 
determined  from  the following equation: 

Of  the  modes  of  engine  operation and flight conditions w e d ,  only 
those  resulting in the highest  blade  stress  are  considered Ln calculat- 

and  flight  conditfons on turbine  stress are discussed. As will be  seen, 
in  the  single-spool  engine  the  rotative  speed  and  required  turbine- 
outlet a n n u l a  area are  greatest  with mode I and  constant  exbust-nozzle 
area,  so'that  the  highest  stressea  are  encountered  under  these  conai- 
tions  (see  eq. (I)). The  stresses  calculated  were a mi&m f o r  these 
operating  conditions,  slnce  the  turbine  is  considered to be at limiting 
loading  at a l l  times.  The  stresses  calculated  in  this  manner are design- 
point  values, w h i c h  implies that turbines  designed  for  the  low-stress 
conditions would not be suitable f o r  operation  at  the  higher  stress  con- 
ditions if constant  exhaust-nozzle area under  mode I operation is 
stipulated. 

I ing  the  stress.  However,  the  effects of other  modes  of  engine  operation 

I 

Limiting  loading is assumed to occur a t  an exit axial Mach number 
of 0.7 for  this analysis. Limiting loading occurs  when a further in- 
crease in pressure  ratio across a turbine  does not produce an increase 
in  turbine work output. The exit axial Mach number at wfiich limiting 
loading occurs is discussed in reference 7. The other  assumptions 
involved  in  the  stress  calculation  are: 

Stress-reduction  factor  for  tapered  blades, f . . . . . . . . . .  0.70 
.- io  of  exhaust-nozzle mea to canpressor  frontal area, &/Ac . . 1.40 - Density of blade  material, pb , lb/cu ft . . . . . . . . . . . . . .  500 
Compressor  blade t i p  velocity,  ft  fsec . . . . . . . . . . . . . .  U68 

4 
The  turbine was sized WLth respect to the  canpressor f o r  the same 

operating  conditions  used to calculate  turbine  blade  stress.  One  addi- 
t i ona l  assumption i s  made,  tbat  the  hub-tip  radius  ratio  of  the  last 
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tu rb ine   ra tor  i s  0.6.. This asswnption i s  also used t o  determine  the 
t o t a l  temperature   re la t ive  to   the last rotor a t   t h e  hub section. Aeswn- 
ing  sane value other than 0.6 far the,hub-t ip  radiue r a t i o  would change * 
the  numerical  value6  obtainea from t h e  analysis  sl ightly  but  not  the 
r e l a t ive  magnitudes on which the conclusions  are based. 

RESULTS AND DISCUSSION 

Single-Spoal Engine 

The r e su l t s  of the  cycle analysis for  the single-spool  engine  are 
presented in figures 3 and 4. Figure; 3 presente  the  variation in engine 
power with exhaust-nozzle  area f o r  l ines  of conetast  turbine-inlet tem- 
perature and turbine  total-pressure  ra t io  for the  different modes of 
engine  operation and. flight conditioIis  consiaered. The engine power 
plotted. i n  these figures i s  the a m  cjf the shaft horsepotrer delivered 
t o  the  propeller plus the  equiva1ent':shaft horsepower of the   ne t   j e t  
thrust. Figure 3 shows the  e f fec t  & the  division of the  over-all ex- 
pansion r a t i o  p;/pl , between €he -tu?bine and exhaust nozzle on the en- 
gine power. Ih addition,  these figures are  used In determining the tur- 
bine  design  requirements  for the various operating  conditions. 

L 

* 
The variations  in  specific  fuel,consumptioa with engine parer for 

various f l i g h t  conditions and modes  of operation  are  presented in f ig -  
ure 4. The s fc  was calculated us- reference 8 and figure 3 fo r  8 

constant   ra t io  of exhaust-nozzle  area t o  compressor f ronta l   a rea  A ~ / A ~  

of 1.40 and various turbine-inlet  tepgeratures. An area r a t i o  09 1.40  
represents a good compromise betweeq' the opt& engine  operating  condi- 
tions  for  take-off  and  the  other flight conditions  considered,  as is 
apparent upon inspection of figure.3. Ae in reference 2, s l i gh t ly  lower 
s f c  in  some instances could be obtained. if .the  exhaust-nozzle  area were 
varied. Because the improvement i n  s fc  is h, Only curve8 for con- 
stant exhauet-nozzle  area  are  incluiied. . 

I .  . . .. 

- I  
. .  - 

. .. 

The var ia t ions   in   s fc  shown +n figure 4 a r e  very s i m i l a r  t o  those 
obtained f a r  the 1.m-presaure-ratio.engine analyzed i n  reference 3. 
Minimum sf c is obtained at f l igh t  condition A 600 mph at 40,000 f t 1. 
Dropping t h e   f l i g h t  speed t o  400 mfles  per &our t cornlition B) i n  general 
ra i ses  the whole leve l  of the  sfc  ,curvesj  while  decreasing  the alti- 
tude t o  19,000 feet   (condition C) raises the   l eve l  of the  sfc curves 
even more. At the higher power outputs,  theee  curves show that there w 

is no marked advan6age of one mode bf operation  over  another. The chief 
differences between the   s fc  curves of t h f s  analysis and those of ref-  
erence 3 fo r  a low-pressure-ratio  eigine are :  - 
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(1) The minimum s f c   f o r  a given f l igh t  condition is lower f o r  the 
high-pressure-ratio  engine  (about 14, percent  less a t  condition A ) .  

J 

(2)  The re l a t ive   i nc rease   i n   s f c  w i t h  decreasing  alt i tude and 
flight speed is less f o r  the high-pressure-ratio  engine. 

The higher  turbine-inlet  temperatures  obtained with mode I1 opera- 
t i on  were possible  because  the compressor did not encounter  surge. As 

CN pointed out previously, mode II complicates  the  engine  design in that 
+ adjustable  turbine  stator  areas must be employed in order t o  achieve cn th ie  type of operation. From the s f c  curves ( f ig .  4 )  it appears, as 
UI 

in   reference 2, that s l igh t ly  lower s f c  can be obtained under mode I11 
without any added complication to t h e  engine. 

Free-Turbine w i n e  

The results of the cyc le   sna lysh   for  the free-turbine engine me 
presented i n  figures 5 and 6. Only the   resu l t s   for  m o d e  111 a re  pre- 
sented,  since mode I w a i ~  very similar. For mode  III, constant compres- 
sor equivalent  rotative speed and adjustable free-turbine s t a t o r  keas  
were assumed. Figure 5 presents the effec-t of f l i g h t  condition on en- 
gine  design  requirements. For each flight condi t ion  the  var ia t ion  in  
engine power with exhaust-nozzle  area is presented  for   l ines  of constant 
gas-generator-turbine inlet temperature and free-turbine  total-pressure 
r a t io .  -In addition, the var ia t ion in  gas-generqtor-turbine  total- 
p ressure   ra t io  and the var ia t ion of the  inlet equivalent w e i g h t  flaw t o  
the free-turbine with the gas-generator-turbine  inlet  temperature are 
presented. The variat ion of sfc w i t h  engicz power of the  free-turbine 
engine for various f l i gh t  conditions and mode If1 operation is presented 
i n  figure 6. The performance presented is f o r  a r a t i o  of exhaust-nozzle 
a rea   to  compressor f ron ta l  area &/A, of 1.40 and a range of gas- 

generator-turbine inlet temperatures.  Simlhxly  to  the  single-spool 
engine, the area r a t f o  of 1.40 represents a good  compromise between the 
optimum engine  operating  conditions for take-off and the other flight 
conditions  considered, as can be noted  from figure 5. 

.cu 

V 
J 
z 

The s f c  curves f o r  the free-turbine  engine differ from  those 
sham f o r  m o d e  III operation of the single-spool engine only as a result 
of the turbine-efficiency  assumptions. Taking par t  of the over-all ex- 
pansion r a t i o  pi/pl across the ges-generator  turbine and part across 
the free-turbine while assuming an adiabatic  efficiency of 0.85 for   both 

all turbine  expansion  process. Thus, f o r  the free-turbine engine, the 
eff ic iency  for  some over-all  turbine expansion process would be greater 
than f o r  a corresponding  expansion  across the single-spool  turbine. 

I turbines results i n  a s l igh t ly  higher adiabat ic   eff ic iency  for  the mer- 

6 



10 W A  FtM E55B18 

This  higher  adiabatfc  efficiency for  the  aver-all  turbFne  expansion 
procese is r e f l e c t e h a  lower sfc  . - f o r  the  free-turbine  engine  than f o r  5 
the single-spool  engine  (cf.  figs. 4cc]- and- " -  . - "" " 

4 .  . . .  
" 

Engine Comparison 

The free-turbine and the  single-spool  engines  differ  principally 
i n  the  turbine  requirements.  Table I(a> shows the var ia t ion in turbine 
requirements fo r   t he  two engines betwe,en f l i g h t  condiitions 0 and A f o r  
mode III operation with constant  burneboutlet  temperature;  Table  I(b 
shows the  variation  in  turbine  requirepents f o r  the two engines between 
burner-outlet  temperatures of 1600° aqd 2600° R far mode III operation 
at fl ight  condltion A. A r a t i o  of exliaust-nozzle m e a   t o  compressor 
f ronta l   a rea  %/4 of 1.40 waa prescribed i n  aetermining  the  turbine .- 

requirements i n   t a b l e  I. . . .  . . "- 

- . . . . . . . -. 

High turbine  pressure  ratios can  ,be obtained without any penalty in 
turbine efficiency, although these high pressure  ratios  increase  the 
number of turbine  atages requi&ed. Hawever, €he-range of pressure ratio ri-  

over which a conventional  turbine  can:qperate  efficiently is limited if 
the  equivalent  rotative  speed of the turbine does not  vary  greatly (+15 
percent of design). In tab le  I the  range of .equivalent  rotative  speed 
for the  gas-generator  turbine and the  turbine  for  the  single-spool engine 
i s  roughly 20 percent of design. No rotative-speed  variation was speci- 
fied for  the  free-turbine.  

.. . " 
. .  

. .  

- c  

I . . .  

The variation  in  pressure  ratio  gcross  the  free-turbine and the  
single-spool turbine shown i n  table  I: could be reduced by the  use of 
variable  exhaust-nozzle  area (e.g., f i g .  3(b) mode 111 a d  f lg .  5 ( b ) ) .  
However, it i s  apparent from figure  5(b) that use of a variable exhaust- 
nozzle  area would not a i d  i n  reducing:  the  variation i n  pressure  ra t io  
across  the  gas-generator turbine nor #&e var ia t ion   in  inlet equivalent 
weight flow to  the  free-turbine.  . . . . -. - .  , .  . .  " 

It may not be possible  to  obtain, a high  efficiency  over  the range 
of ro ta t ive  speed and pressure  ra t io  bhom in- table I far  the  turbine 
of the  single-spool  engine. However, the variation i n  pressure ratio 
could be reduced, if not  eliminated, by use of a variable  exhaust-nozzle 
mea,  thereby  permitting a high  turbihe  efficiency to be maintained over 
t h e   e n t b e  range of engine  operation. 

In order  to  obtain  the  free-tur'qine  pressure ratios shown i n  table I, - 
multistage  turbines would probably have t o  be.employed. Although e f f i -  
cient performance o m  a wide ranQe df inlet  equivalent  weight f low has 
been achieved f o r  a single-stage  turljine  (ref. 9 ) ,  no similar performance 
ha6 been  demonstrated for a multistage  turbine. Even If a variable 
exhaust-nozzle  area were used t o  redyce  the "" maxirmun pressure  ratio across 

b 
- 

-- - .. . .. . 
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the free-turbine and thereby  the  range of pressure  ra t io  over which it 
must operate,  the  turbine would still  have t o  contend with  the  variation 
in   inlet   equivalent  weight flow. The task of mintaining high turbine 
efficiency over t he  engine  operating  range would be much more diff icul t  
for   the  f ree- turbine  than  for   the  turbine of the  single-spool  engine. 
The task of  maintaining  high  turbine  efficiency over the  engine  operating 
range would also be more diff icul t   for   the  gas-generator   turbine than f o r  
the  turbine of the  single-spool  engine,  because, as mentioned previously, 
the  range of pressure  ra t io  imposed across  the  gas-generator  turbine can- 
not  be  reduced by using an adjustable  exhauet-nozzle area. 

Another feature inherent i n  the free-turbine  engine is tha t   the  
gas-generator  turbine and the  free-turbine performances must be well 
matched i n  order t o  obtain good over-all performance. It is concluded, 
then, that the  free-turbine  engine has more cr i t ical   turbine  require-  
ments than  the  single-spool  engine. If the inlet  equivalent w e i g h t  flow 
to   the   f ree- turb ine  is not allowed t o  vary, the  free-turbine  engine i s  
much less versat i le   than t h e  single-spool  engine.  Requiring  the inlet 
equivalent  weight flow t o   t h e  free-turbine to remain  constant  implies 
that the first s t a t o r  is operating in a choked condition  with a fixed 
area. .. 

For the example shown in t ab le  II, a turbine-inlet  temperature of 
ZlOOO R was assigned at the  sea-level  static-  condition (01, and constant 
exhaust-nozzle area was assuuied. The values listed for   turbine- inlet  
temperature,  free-turbine  pressure  ratio, power, and s f c   a r e   t he  only 
ones possible at the  other  f l ight  conditions if operation is r e s t r i c t ed  
t o  constant  equivalent compressor speed ( m o d e  IX). These values were 
obtained  from  figures 5 and 6 by  assuming that the   sea- leve l   s ta t ic   va lue  
of entrance  equivalent weight flow f ~ f l / € j ~ A , ) ~ ~  to   the  f ree- turbine 
prevailed a t  the  other f l ight   condi t ions.  IY an increase in  turbine- 
inlet temperature is des ired  at f l ight   condi t ion A i n  order t o  obtain 
more  power and lower sfc,  it could be  obtained by increasing  the  rota- 
t i v e  speed of the engine. However, the  increase in turbine-inlet  tem- 
perature that can be  obtained in this meaner is #res t r i c t ed  by the  increas- 
ing  blade  stress and a deter iorat ion of compressor  performance.  Another 
a l te rna t ive  would be t o  design f o r  a high turbine-inlet  temperature a t  
fl ight  condition A and then  derate   the engfne at condition 0 by not 
u t i l i z ing   t he  maxim temperature  possible. In conclusion, if adjustable- 
mea s t a to r s  cannot be employed in  the  free-turbine,   the  free-turbine 
engine is  restr ic ted  in   the  range of turbine-inlet  temperature over which 
it can operate  and is therefore less ve r sa t i l e  than the  single-spool 
engine. . "  - 

Turbine  Stress and Frontal Area 

The centrifugal stress a t  the  hub of the last turbine  rotor far a 
single-spool  engine  operating under mode I with  constant  exhaust-nozzle 
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area (%/A, = 1.40) is presented in f m e  7. With respec t   to  stress, 
these  operating  conditions and t h i s  engine  configuration  represent  the 3 

most critical  conditinns  analyzed. However, the  stresses  calculated were 
a minirmrm for  these  conditions,  since %he turbine was  considered t o  be 
at limiting  loading at a l l  times. 

The l e f t  side of f igure 7 shows the  effect  of both f l i g h t  condition 
and turbine-inlet  temperature on s t resa  . By lollaiing the   f igure t o  the 
r igh t   s ide  ae indicated,   to ta l   temperature   re la t ive  to   the  rotor  may be 
determined f o r  any given  flight  condition and turbine-inlet  temperature. - 2  
The t o t a l  temperature  relative  to  the r o t o r  is, Por practical purposes, 
the  blade  metal  temperature a t  these conditions. A 100-hour s t ress-  
rupture  curve  for a comon  high-temperature blade material terminated by 
the  curve for the  0.2-percent  offset  yield  strength of t h i e  material is 
superimposed on the r i g h t  s ide of f i g k e  7 .  Stresses t o  the left or 
below these  curves are within  the material s t ress   l imi te   for  a 100-hour 
l i f e .  

- 

M 

For t he   f l i gh t  conditions considered in  f igure 7, turbine-inlet  t e m -  
peratures up t o  26000 R c& be  reached  without  the  exit  stress  exceeding 
the 100-hour stresa-rupture limits. However, these  stresses  are a minimum 
f o r  the f l i g h t  conditions shorn, and no design factor of safety has been 
employed. The increase in   s t ress   wi th  alt-itude and f l igh t  speed r e su l t s  .I 

primarily from the  increase in turbine-exit arkulas area required, as 
ref lected by the turbine  total-presslrbe  ratio  obtained under mode I with 
constant  exhaust-nozzle  mea ( f ig .  3): In this case, it i s  obviou that, 
at  al t i tude,   the  blade  stress  could be"@at ly  reduced by decreasing the  
exhaust-nozzle  area and hence the regpired  turbine  pressure  ratio. For 
example, a t  fl ight  condition A, t h e   s t r e s s   a t  a turbine-inlet  temperature 
o f  2200° R could be reduced from 70,0130 to   less   than 50,000 pounds per 
square  inch  without  increasing  the  specific fuel  consumption. Huwever, 
t h i s  would require a large reduction :b exhaust-nozzle  area, a reduction 
i n  the area r a t i o  %/A, from 1.40 t o  0.93. The problem could  also  be 
al leviated by operating under mode I1 or I11 with  their reduced ro ta t ive  
speeds a t  a l t i tude,  or by u t i l i z ing  a free-turbine,   the  rotative speed 
of which would be Wependent . o f  the ;compressor characterietice.  A t  8ea- 
l eve l   f l i gh t ,  however, the   s t ress  fo$ -modes I1 &d I11 would be  greater 
than for mode I. 

4 

" 

7 . .  . .  

The centr i fugal   s t ress  at the hub of t h e   f i r s t   r o t o r  was estimated 
t o  be between 10,000 and 12,030 pounds per .square inch. The f i r s t - ro to r  
stress is assumed t o  be constant  for : a l l  f'lQht conditions and turbine; 
inlet temperatures,  because, under m6de I f o r  the  single-spool  engine, 
the f i rs t  turbine  s ta tor  was assumed:to be always choked. For mode IIC 
the stress would be somewhat less a t l a l t i t ude  than for  mode I because 
of the reduced ro ta t ive  speed - approximately 1 2  percent a t  f l i g h t  

- "" 

" - 
e 
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condition A. For stresses of the order of 10,OOO pounds per  square  inch, 

would require very l i t t l e  cooling-air flow. 
s reference 10 indicates tha t  turbine-inlet  temperatures as high as 2600° R 

The r a t i o  of tu rb ine   to  compressor f ronta l  area is  plotted against 
turbine-inlet  temperature i n  figure 8 f o r  the various  f l ight  conditions.  
Here again a single-spool  engine  operating under mode  I w i t h  constant 
exhaust-nozzle area (+/& = 1.40) is considered,  because it would re- 

w 
* UI quire the largest   turbine  f rontal  areas. Similarly t o  figure 7, the 
Q, turbine  f rontal  axeas in figure 8 were a minimum for  these  conditions, 

since the turbine was considered t o  be at  limiting loading at all times. 
The turbine blade t i p  speed is a l s o  shown in figure 8 f o r  a compressor 
blade t i p  speed of 1168 fee t   per  second. 

It would be difficult  from the present limited analysis t o  determine 
w h a t  maximum turbine  frontal   area  could be tolerated. However, it appears 
from figure 8 that the  turbine  f rontal  area at the higher a l t i t udes  and 
speeds may already have  exceeded a prac t ica l   s ize  limit. Arem as small 
as those shown for the sea-level-static curve  (condition 0 )  could  be 

c achieved at the alt i tude  conditions if the  required turbine design pres- 
sure   ra t io  were reduced by decreasing  the  exhaust-nozzle area. For the 
same example used previously to indicate how the exit stress could  be 

f ron ta l  area could 6e reduced  from 2.14 t o  1.51,. A variable  exhaust- 
nozzle area would, therefore, be beneficial   in  reducing  both  turbine 
frontal   area and turbine stress and, as p o e t e d  .out i n  reference 2, would 
make the other  turbine  requiiements less c r i t i c a l  without seriously af- 
fectiqg  engine performance. 

I reduced  without increasing sfc,  the r a t i o  of turbine to compressor 

The turbine t i p  speeds shown i n  figure 8 axe higher than those nor- 
mally 'considered in turbine designs. However, high t u rb ine   t i p  speeds 
are  not a hindrance i n  designing  an  efficient  turbine if the resulting 
turbine stress is not a problem. It has been  noted that turbine blade 
stress need not be a problem for these engines. 

k convert- the net j e t  thrust  to equivalent shaft horsepower, 
a propeller  efficiency of 80 percent was assumed. This assumed propeller 
efficiency does not  influence  the vdues of sfc ca lcu la ted   to  any 
great  extent,  because the equivdent  shaf t  horsepower of the  net  thrust 
is, in  general ,  a small part of the  engine power for   the  condi t ions 
considered. 
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SUMMARY OF RESULTS 

The  effects of mode  of  engine  operation,  engine  configuration,  and 
airplane flfght  condition on the  performsnce of a turboprop engine with 
a high-pressure-ratio  single-spool  cc)mpressor were investigated. The 
following results and conclusions were obtained: 

c 

1. The lowest specific  fuel  consungtion for engine dth constant 
exhaust-nozzle area occurred  at  the  bighest  flight  velocity and altitude 
considered.  Either decremhg the fUght velocity or decreasing the 
altitude  below the troppuse resulted in higher specific fuel consump 
tion  for  the engine. Minor  fmprovem&nt in specific fuel consumption at 
some flight  conditions ccld be  obtained by varying the exhaust-nozzle 
area. 

2. For all flight  conditions,  the minimum specffic-fuel-consumption 
values of the high-pressure-ratio.engine were less  than those of the 
low-pressure-ratio  engine  previously:  &-zed.  The  percentage change 
in  specffic  fuel  consumption w i t h  altitude  and flight speed f o r  the 
high-pressure-ratio  engine  was  less 'khan f o r  the low-pressure-ratio 
engine. 4 

3. The mode of engine opqation had little  effect on specific fuel 
consumption f o r  the  single- spool engine. Houciver; for mode U: (com- 
pressor  design-goint  .oJeration), the: 'engine power U&B not Umited by 
compressor surge. Comparable specific-fuel-consuinption values f o r  the 
free-turbine e n m e  were  obtained udder mode I (constant cmpressur 
mechanical  speed) and mode III (constant cmpre-seor equivalent  speed). 

4.  The free-turbine and ~ingle~spool engines -fer  mainly in  tur- 
bine  requirements,. w h i c h .  are - . more "" critical for the free-turbine. . ". . .. - - -  - .. - _  . . " - -- ". 

5. If variable-area  stators  cagnot  be  employed in the  free-turbine, 
the  engine is restricted in t he  range of  turbine-inlet  temperature mer 
which  it  can operate.,Fd is therefo$e less-versatile than the single- 
spool engine. 

. . . - . . ,. , - - . . . . - "". ...-.. I ..,. . - .. . . .  " . . .. ." 

6. For c o n s t a n t - e x h a u s t - n o z z l e . ~ ~ e a ~ o p ~ t i o n ,  turbine blade stress 
and f ronta l  area  become  quite large: at ?xi@ fllght  speed and altitude, 
being  greatest for the sFn@;le-spooljengine"~era~in;g linder  mode I. A 
variable  exhaust-nozzle  area would Fherefore  make it possible to dealgn 
f o r  much smaller  turbine b l e  stress and frontal area in additlon to 
making the other  turbine requiremen)s less-.?T%%icaI-. . f;ittle, if any, a 

penalty in  spectfic fuel consmr@tiap w o u  be incurred frm closing 
down the exhaust nozzle at high f l q h t  speed and altitude. 

". 
-.. 

- .  

I 

L e w i s  Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, Februaly . .  24, i955 , 
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TABU I. - EFFECT O F   F L I G H T  C O ~ ~ I O N  AM3 TURBl3E-lXLET 

ON TURBINE DESIGN BJ3-S 

[Mode III an& constant  exhaust-nozzle area.) 

Flight 
condi- 
t i o n  

Curbine- 
Lnlet 
temper- 
2ture, 

*4$ 
OR 

Fxee- 
turbine 
to ta l -  
pressure 
rat io ,  

weight turbine 

free- pressure 

Over-all 
turbine 
total- 
pressure 
ratio, 
P;/P; . 

. . . . . . .  . .  . 
On 

. .  ~ 

Single- 
spool 
.=l@;ine 
llurbine 
to t a l -  
pres ~ u r e  
ra t io ,  

0 
17.1 17.55 4.5 17.2 3.90 2100 A 
11.6 11.56 5.4 20.5 2.14 2100 

-. . . . . . .  . . . . .  ....... - . .  . . .  . . . . . .  .. . . . . . . . . - .  . . . .  .. _ I I " .  
. . . . .  

(b) Effect of turbipe-inlet.teinperatu2e 
.-I 

. . .  

A 
17.9 18 .O 3.43 13.6 5.25 2600 A 
16 .O 15.9 7.07 26 .O 2.24 1600 

. . . .  . .  . > . . . . .  -7. :i"" . . . . . .  . .   . -  . -- . 

TAX23 II. - ENGINE MATCH POINTS AT VARIOUS FUGEEII CONDITIONS 

FOR CEDKED FFEE-TURBME 

[Mode I I I  and constapt exhaust-nozzle area. 1 

- " 

.. 

Flight 

consump- output, turbine weigh3 total-. temper- t ion  
fue l  power generator- equivalent tu rb ine   in le t  condi- 
Specific Engine Gas- Inlet: Free- Turbine- 

ature, t ion,  P*/&, total- flow t o  pressure 
sfc, 

Sq f t  lb/hp-hr I c 

0 0.531 

1894 2120 5.12 2 2 5  

2.14 &2100 
A 

.425 2.35 1940 C 

.409 710 2.59 1700 B 

.363 U40 3.15 1850 
I 

. . . .  .:. ...... . . -  .. : . .  1' 7 .;.=: 
aAssigned. 

. . .  " i .. : . . - ~ ~  . - _  
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Figure 1. - Schematic diagrams of tvo engines analyzed. 
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Figure 2. - Compreeeor map with temperature-ratio lines. 
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(a) Plight oonditian 0 .  

FQurfz 3. - Effect of Plight cmdltlon and mode of engine operation an design requkwacnte Por alngle-spool englne. 
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Ratio of exhaust-nozzle araa t o  colapraseor frontal area, M A o  

[ c )  Flight aondit lm B. 

Figure 3. - Continued. Effect of flight o o n d l t l m  and m o d e  of engine 
operAtlm on design requfresents fclr single-spool engine. 
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(b) Halo 11. 

Mgure 4. - Cmtlmcd. V r r l r t l m  in spCOlflc tUS1 Ommuptim w i t h  angina pamr .for single-spool ~ g h c  with aonatmt  
exhaust-norzlo area. Ratio of exhmat-nozzle m a  t o  a a ~ r o r r o r  frmtal area, 1.4. 
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Flgure 4. - Concluded. Variation In specific  fuel conaumptlm rith engine power for single-spool 
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area, 1.4. 
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Figure 8. - Effect of turblne-inlet  temperature and flight  condition on 
turbine pmntal area. Single-spool engine; mode I operation with 
constant exlmuet-nozzle area. 

1 

. ..  .. . 

, 1 

.- . . . . . . . . . . . . . . . . . . 
8WE 

. .. . . .  . 




