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AN EXPERIMENTAL INVESTIGATION OF THE UNSTEADY LIFT 

INDUCED ON A WING IN THE DOWNWASH FIELD OF 

AN OSCILLATING CANARD CONTROL SURFACE 

By David E. Reese, Jr . 

SUMMARY 

The results of an experimental investigation of the unsteady lift 
induced on a wing in the downwash field of an oscillating canard control 
surface are presented . The in-phase and out -of-phase components of the 
lift and their respective centers of pressur e were measured at frequencies 
from 10 to 110 cyc l es per second over a Mach number range of 0.6 to 0.8 
and 1 . 4 to 1 . 9 at angl es of attack of 00, 50 , and 10°. 

The results indicated that existing theories pr ovide a reliable guide 
for the estimation of the magnitude of the lift der i vatives and centers 
of pressure at low values of reduced frequency and low angles of attack. 
An estimation of the effect of frequency on the l ift derivatives was 
developed using a simple i ndi cial function for the wing based on the lag­
in-downwash concept . The trends of the data with frequency predicted by 
the theory were , in general , borne out by experiment at low angles of 
attack. 

INTRODUCTION 

With the present trend in airframe configurations for guided missiles 
toward low- aspect - ratio wings and tails , the contribution of wing- tail 
interference effects to the over- all stability of the configuration has 
become of major importance. An accurate appraisal of these interference 
forces is necessary not only fo r the usual stability calculations but also 
in the design of automatic control eqUipment. 

In an analysis of the response of a missile to various guidance com­
mands, both static and dynamic forces and moments acting on the missile 
must be considered . The requirement of rapid response to these commands 
has focused increased attention on the dynamic quantities involved in the 
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calculations. One particular problem for canard- type missiles that has 
brought to light the need for information on dynamic interference forces 
is associated with the longitudinal dyrlamic stability of these missiles. 
In order to provide sufficient damping of the longitudinal motion of the 
missile 7 damping is often supplied artificially by actuating the forward 
control surfaces in proportion to the pitching velocity of the airframe . 
Since it is possible for a large portion of the total moment created in 
this manner to arise from the interference lift on the rear surfaces, it 
is necessary to know these dynamic interference effects with reasonable 
accuracy in order to predict the response of the missile . A knowledge 
of not only the magnitude of the interference lift but also its dependency 
on freQuency is reQuired . 

Some theoretical estimates of static wing- tail interference forces 
have been made by Nielson7 Kaattari 7 and Anastasio (ref . 1) and Schindel 
and Durgin (ref. 2) . An experimental investigation of these forces and 
moments for several wing- tail combinations is presented in reference 3 
by Schindel and Durgin . Some theoretical values for the time - dependent 
forces are given by Miles (ref . 4) and Martin 7 Dieterich7 and Bobbitt 
(ref . 5) for very low freQuencies. However 7 no published data on the 
experimental determination of these unsteady interference forces and 
moments are known to be available . The present experiment was 7 therefore, 
planned to meet this need. 

LIP 

M 

S 

SYMBOLS 

lift derivative in phase with control- surface pOSition, positive 
57 . 3LIP 

upward, 1 ' per radian 
'2PV2Soo 

lift derivative out of phase with control surface position (in 
phase with control surface velocity), positive upward 

57· 3 Lop per radian 
1 2 (50C)' 
2PV \~2V 

lift in phase with control position, lb 

lift out of phase with control position, lb 

V 
Mach number, d ' dimensionles s spee of sound 

total area of wing, sQ ft 
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v 

c 

f 

k 

2 

q 

t 

p 

cp 

w 

• • ••• • .. e .. 

free - stream speed, ft/sec 

wing chord, ft 

frequency of oscillation 

reduced frequency, W2, dimensionless 
2V 

• . .. 

reduced frequency at wind- tunnel resonance, dimensionless 

distance from control surface centroid to wing centroid, ft 

1 
dynamic pressure, 2PV2, lb/sq ft 

time, sec 

center of pressure of in-phase lift, positive behind wing 
leading edge, dimensionless 

center of pressure of out -of-phase lift, positive behind wing 
leading edge, dimensionless 

angle of attack of wing and body, deg 

instantaneous control- surface deflection, deg 

instantaneous control- surface angular velocity, deg/sec 

maximum control- surface deflection, deg 

maximum control- surface angular velocity, woo, deg/sec 

mass density of air, slugs/cu ft 

phase angle between lift and angular position of control surface, 
deg 

angular frequency, 2nf, radians/sec 

THEORY 

The purpose of this investigation is to determine the unsteady lift 
induced on a wing i n the downwash field of an oscillating canard control 
surface. I n this section, methods will be presented from which results 
can be obtained for the theoretical val ues of this lift. Frequency 
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effects on the phase relationship between the induced lift and the con­
trol deflection are of primary interest. For purposes of computation, 
the induced lift at frequencies near zero will be treated first, however, 
and then the effects of frequency will be studied . As is usually done in 
dynamic stability calculations, the amplitude of the unsteady lift will 
be divided into two components, one in phase with the control surface 
position and the other in phase with control surface velocity, the latter 
being commonly known as the out- of-phase lift. The model used for the 
theoretical analysis consisted of a canard control surface and a wing 
alone, that is, a bodyless model . The degree to which the body effects 
are considered in this report will be mentioned in a later section. 

Frequencies Near Zero 

The amplitude of the in-phase lift derivative CLo and its center 
of pressur~ at values of k approaching zero were calculated by the method 
presented in reference 1. Since this procedure is commonly used in the 
calculation of the static lift and center of pressure of wing-body- tai1 
combinations, it need not be discussed further here . 

The calculations for the amplitude and center of pressure of the out ­
of-phase lift derivati ve CL5 were based on the lag- in- downwash concept 
appearing in reference 6. .I n this approximation the assumpti on i s made 
that the downwash at the rear surface will be that created by the forward 
surface at a small time Z/V earli er, where Z is taken to be the dis ­
tance from the centroid of area of the control surface to the centroid of 
area of the wing . Thus 

where 

dE C do 
- - - .6t do dt 

.6Ew change in downwash at the wing 

dE C change in downwash at the control 

then 

The l i ft on the wi ng due to this change in downwash can be written 
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Lop = - qfil€w( CIn).,.. 
l dEc 

qS5 V do (Cru,)W 

5 

Where (CIu,)w 

But dEc (CLa,)w 
downwash dEc. 

is the lift-curve slope of the wing alone in uniform flow. 

is the negative lift on the wing due to a small change in 
This negative lift divided by do is then - CLo' so 

l 
lop = - qS6 V CLo ( 4) 

In coefficient form this lift is 

C~ 
l 

- 2 c CLc, 

which corresponds to the answer obtained by Martin, Dieterich, and Bobbitt 
in reference 5 . 

Frequency Effects 

The effects of frequency on the lift derivatives at a Mach number of 
1.7 were calculated using the response of the wing to an impulsive deflec­
tion of the control surface. This indicial response of the wing was cal­
culated by methods presented by Tobak in reference 7. The indicial 
response was then converted to frequency response through the use of the 
Duhamel integral. 

Since the calculations necessary to define the indicial lift response 
for the present problem were quite lengthy, they were carried out only for 
a Mach number of 1.7 and an angle of attack of 00 . However, it was found 
for this case that a g00d approximation to the frequency response obtained 
by the more exact solution could be made by assuming an indicial lift 
response based on the lag- in- downwash concept. This is an extension then, 
to include the effects of frequency , 
of the theory on which the low-
frequency values of the out -of-phase 
lift derivative were based as given CL 
in the preceding section. In this 
approximation it is assumed that the 
wing experiences no lift until the 
downwash impulse from the control 
surface has reached the midchord of 
the wing. At that time the lift of 
the wing immediately assumes its 
steady-state value . This results in 
an indicial function of the form 
shown in sketch (a), where t* is 
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the time required for the pulse to travel from control surface midchord 
to wing midchord and CL* is the steady- state value of the lift of the 
wing in the presence of the downwash from the control. 

The time t* has an 
ence 7. In that paper it 

important physical meaning as is shown in refer­
is shown that the indicial lift of the wing due 

to the downwash from the suddenly 
deflected control surface has the form 
shown in sketch (b) . It is also shown 
that, with the fulfillment of certain 

~ __ -,~~~ ______________ ~t mild conditions , the time at which the 
indicial curve crosses the zero lift 
axis is very nearly equal to the time 
t* defined above . It was also found 
that , in frequency- response calcula­
tions of the derivatives CLa and 
CL6, the effects of the two shaded 
peaks tended, in large part , to 

Sketch (b) cancel . Thus good correspondence 
between the results based on the sim­

plified indicial response and those based on the more exact solution is 
indicated. 

Once the indicial function has been defined , it is possible to obtain 
the variation of the lift on the wing with frequency through the use of 
the Duhamel integral. In reference 7 Tobak has used the Duhamel integral 
to derive the following equations for the in-phase and out -of-phase lift 
derivatives in terms of the indicial functions of the wing : 

where 

and 

CLo 

C~ 

cLo(e) - CLo* 

cLq(e) - CLq* 

cLQ(e) indicial response of the wing to a step deflect i on a of the 
control surface 
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c~* 

CLq* 

e 
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steady-state lift on the wing due to a deflection 5 of the 
control surface 

indicial response of the wing to a step change in pitching velo­
city q of the control surface 

steady-state lift on the wing due to a pitching velocity q of 
the contro l surface 

2Vt nondimensional time parameter = - -c 

k' reduced frequencY7 defined in reference 7 as wc 
2V 

It can be shown that , for the problem considered in this section, 
CLq* and the integrals containing F2 (e) are small relative to the 
remaining terms in the equations . Making this approximation and noting 
that k' = T k, we reduce equations (6) and (7) to 

(8) 

Performing the integrations indicated in equations (8) and (9) on the 
indicial function defined in sketch (a), we derive the following relation­
ships: 

Cl{) * cos 2k 

2 CLB = - c CIn * 
sin 2k 

k 

( 10) 

( 11) 

These expressions give the values of the in-phase and out-of-phase lift 
derivatives as functions of frequency. It is apparent that the limiting 
values of equations (10) and (11) as k approaches zero give the results 
obtained in the preceding section . 

is 
The phase angle b.etween the induced lift and the control deflection 

cp tan-1 1{)p 
LIP 

(wc/2V)CI.{, 
tan- 1 --------~ 

CIt, 
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Substituting the expressions from (10) and (11) in equation (12), we find 
that 

~ = ~ - 2k radians 

In order to obtain the variation of the centers of pressure of the 
in-phase and out-of-phase lifts with frequency it was necessary to obtain 
values for the in-phase and out- of-phase pitching moments corresponding 
to those found for the lift in equations (10) and (11). For this problem 
the indicial variation of the pitching moment with time was again that 
shown in sketch (a). While the calculations are not shown, it is apparent 
that the expressions for the pitching moments will be identical to equa­
tions (10) and (11) with the substitution of the appropriate moment deriva­
tives for the lift derivatives. Since center of pressure is defined as 
pitching moment divided by lift, it can be seen that both the centers of 
pressure of the in-phase and out- of-phase lifts are equal to the center of 
pressure for the steady- state case and that there is no variation of center 
of pressure with frequency. Therefore the method of reference 1 was used 
to calculate these values. 

APPARATUS 

Wind Tunnel 

The investigation was conducted in the Ames 6- by 6- foot supersonic 
wind tunnel which is of the closed- return, variable- density type and which 
has a Mach number range of 0.6 to 0.9 and 1.2 to 1 . 9 . A detailed descrip­
tion of the flow characteristics of this wind tunnel can be found in 
reference 8 . 

Model 

The model consisted of a rectangular wing and a rectangular control 
surface mounted in canard arrangement on a slender cylindrical body of 
fineness ratio 14 . The dimensions of the model are given in figure 1. 
Both the wing and the control surface were composed of 5-percent-biconvex, 
circular-arc airfoil sections. A 5-inch, hollow, circular cylinder fitted 
with an ogival nose served as the body. The model was fabricated from 
steel with the exception of the nose and wing . The nose section was made 
of fiberglass - reinforced plastic while the wing was made from magnesium 
to reduce its mass to a minimum . A three - phase induction motor was used 
to rotate the control surface in near sipusoidal oscillations about its 
midchord by means of the drive linkage shown in figure 2. The model was 
sting mounted in the wind tunnel and a strut was used to stiffen the body 
against the oscillating loads produced by the control surface . The loca­
tion and dimensions of the strut are given in figure 1. 
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There were four quantities obtained during this investigation: the 
amplitude of the oscillating lift induced on the wing in phase with the 
angular position of the control surface~ the amplitude of the oscillating 
lift induced on the wing in phase with the angular velocity of the control 
surface, and their respective centers of pressure . The measurement of 
unsteady forces such as those encountered in this investigation usually 
necessitates equipment in the nature of an oscillograph or an oscilloscope 
to record or view the dynamic signals. The use of such equipment is some­
what inconvenient compared with that utilized in static tests in that 7 in 
many cases 7 the desired quantities are not indicated directly and addi­
tional steps such as film reading and harmonic analysis must be added to 
the data-reduction process before the final result is obtained . It would 
be desirable, then, to use a technique that would eliminate these addi­
tional steps and make it possible to read the peak magnitudes of the 
dynamic quantities directly . 

The technique and instrumentation employed in this investigation per­
mitted the rapid, direct measurement of the peak magnitudes of the in-phase 
and out-of-phase components of the lift on the wing. The method consisted 
of multiplying a signal proportional to the induced lift on the wing by a 
sine or cosine signal in phase with the control- surface position and velo­
city~ respectively . These two products can be written as: 

where 

Psin = sin wt L1sin(wt + ~) 

Pcos = cos wt Llsin (wt + ~) 

L1sin(wt + ~) . the oscillating lift induced on the wing 

Psin 

Pcos 

phase angle between the oscillating lift and the angular 
position of the control surface 

product of the sine signal and the oscillating lift 

product of the cosine signal and the oscillating lift 

Equations (14) and (15) can be rewritten as : 

Psin i [cos ~ - cos ( 2wt + ~)] ( 16) 

L 
Pcos = ; [sin ~ + sin(2wt + ~)] ( 17) 
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But the magnitude of the in-phase lift is defined as Llcos ~ and that 
of the out -of-phase lift is defined as Llsin~. Thus, it is evident 
that if the time - varying portions of the product signals are filtered out, 
the remaining parts are proportional to the components of the lift in phase 
with the angular position and angular velocity of the control surface . 

The technique described above can be realized with a system made up 
of three parts : a load measuring device capable of producing a signal pro ­
portional to the induced lift of the wing, a circuit producing the sine 
and cosine signals, and an indicating device that will respond only to 
steady signals . The force induced on the exposed portion of the wing was 
indicated by strain gages mounted on the wing supports . The arrangement 
of these strain-gage members is shown in figure 3. In all, eight strain­
gage bridges were used, two on each of the four wing supports . In order 
to compensate for any spanwise movement of the center of pressure , each 
bridge on the left side of the body center line was connected in parallel 
with its counterpart on the right side. Thus there were four bridge pairs, 
two located at the wing leading edge and two located at the trailing edge . 
This arrangement of strain- gage circuits provided duplicate indication of 
the components of the induced lift acting at the leading and trailing edges 
of the wing, and the dual circuits were then used to find the in-phase and 
out-of-phase parts of these lifts . The sum of the in-phase lifts at the 
leading and trailing edges gave the total in-phase lift while the ratio 
of the lift at the trailing edge to the total lift gave the distance of 
the center of pressure from the leading edge in percent chord . These cal­
culations were also carried out for the out -of-phase lift . 

The product of the force signal with a sine or cosine signal was 
obtained by using a sine or cosine voltage as power for the strain- gage 
circuits. The output of the gage circuit was then proportional to the 
stress in the gage multiplied by the applied voltage signal. The sine 
and cosine voltages were produced by a circuit which utilized a commercial 
induction resolver whose armature was driven by the motor driving the con­
trol surface . A 20 - kc sinusoidal carrier wave was used as an input signal 
to the resolver . This carrier wave was modulated sinusoidally by the 
resolver at the drive frequency to give two output signals with a 900 phase 
difference . These signals were each passed through a half-wave rectifier 
and filter to remove the carrier frequency and amplified to the level 
needed to drive the strain- gage circuit . 

The outputs of the strain- gage circuits were connected to light -beam 
galvanometers . The frequency response of these galvanometers can be 
described adequately by the response of a spring-mass - damper system . The 
differential equation of motion for the system is : 

mX + cx + kx '" P sin wt ( 18) 

and the solution to this equation is 
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sin(wt + E) 

Xst static deflection of the galvanometer to a steady signal of 
magnitude P. 

natural frequency of galvanometer , 11 
damping ratio of galvanometer, c 

2 .jk;. 

11 

(19) 

Examination of equation ( 19) shows that if the ratio of the signal 
frequency w to the natural frequency Wo is sufficiently large, the 
response of the galvanometer to the signal is essentially zero . The 
response is also decreased by a high damping ratio . The galvanometers 
used during this investigation had sufficiently low natural frequencies 
and high damping that no response was observed to signals of 10 cycles 
per second or greater. As a result , the gal vanometers acted as filters 
to remove the time -varying portions of the strain- gage signals and only 
the steady part of the signal was indicated . 

TESTS 

The investigation of the unsteady lift induced on the wing by an 
oscillating canard control surface was conducted over a Mach number range 
of 0.6 to 0.8 and 1.4 to 1 . 9 at angles of attack of 00 , 50, and 100 . The 
minimum supersonic Mach number was chosen such that the reflection from 
the tunnel walls of the shock waves from the control surface fell behind 
the wing trailing edge . A constant Reynolds number of 1.67XI06 based on 
wing chord was held for the entire tes·t . 

The control surface was driven at frequencies from 10 to 110 cycles 
per second covering reduced- frequency ranges of 0 .06 to 0.70 at a Mach num­
ber of 1.9 and 0 .15 to 1 . 80 at a Mach number of 0. 6 . The maximum amplitude 
of the control surface osci llations was fixed by the drive linkage at 5°. 
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The only corrections made to the data obtained in the subsonic speed 
range were to the Mach number and dynamic pressure of the flow. It was 
recognized that the phenomenon of wind-tunnel resonance and its effect 
on the air forces acting on an oscillating two-dimensional wing has been 
predicted on a theoretical basis and that experimental verification of 
this theory has been made (ref. 9) . However, the author knows of no pub­
lished corrections for the effects of tunnel walls on the oscillatory air 
forces of a subsonic three-dimensional wing. Woolston and Runyan in ref­
erence 10 give an equation for the resonant frequency of a tunnel having 
a rectangular cross section which has been used to calculate tunnel reso­
nant frequencies for this investigation. These frequencies are shown in 
their appropriate places with the data and will be discussed more fully 
in a subsequent section. 

The Mach number and dynamic pressure of the subsonic flow were cor­
rected for blockage effects by the method presented in reference 11. At 
a Mach number of 0.8, these corrections amounted to an increase of about 
1.5 percent in the Mach number and dynamic pressure over the value obtained 
from measurements made without a model in the tunnel. 

No corrections were made to either the flow conditions or the lift 
data at supersonic speeds. 

The possibility of errors due to air-stream fluctuations of a periodic 
nature was considered. These periodic fluctuations could be caused by 
tunnel turbulence, an oscillating wake shed from the nose of the model at 
angle of attack, or possibly by the wake from the supporting strut . In 
order to evaluate this effect, a series of tests were made on the model 
with the control surface removed. These tests showed that there were no 
periodic fluctuations in the air stream of measurable magnitude for the 
range of Mach numbers, frequenCies, and angles of attack covered in this 
investigation. 

PRECISION OF DATA 

In the section "Technique and Instrumentation," the system used in 
this investigation was presented in its simplest form in order to show the 
essential features of its operation. As could be expected, actual practice 
proved the system to be more complex than was indicated from simple con­
siderations. These complexities, as it turned out, determined the accuracy 
of the final results . In this section, the various factors that contribu­
ted to a departure from the elementary system mentioned previously will be 
discussed in terms of their relationship to the precision of the data. 
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The usual starting point for a discussion of the precision of the 
data is concerned with the least readings of the quantities involved in 
the reduction of the data to coefficient form. For this investigation 
these readings were as follows : lift, 0.05 pound; stagnation temperature, 
20 Fahrenheit; stagnation pressure, 0.2 centimeter of mercury; period of 
oscillation (l/f), 0.0001 second. The total uncertainty in the coeffi­
cients due to least readings was taken as the square root of the sum of 
the squares of the effects of these least readings . This calculation led 
to uncertainties of ±0.003 for CLo' ±0.12 for CL5' ±0.005 for center of 
pressure, and ±0.5° for ~ .l 

In the earlier description of the technique, the expressions for the 
terms in the product signals ( eqs. (14) and (15)) were written in an ide­
alized form. In general , however, the strain-gage output cannot be 
expressed as a simple sine function but will also contain a steady term 
and harmonics of the fundamenta l fre quency. These harmonics could arise 
from the distortion in the control-surface motion produced by the drive 
mechanism or from a nonlinear response of the downwash to the control 
deflection. The driving voltages could also contain harmonics introduced 
by the electronic circuitry producing them. Therefore, the signals must 
be written as: 

where 

00 

L = 10 + L Lnsin(nwt + CPn) 

n=l 

00 

vsin = L Bm sin(mwt + em) 
n=l 

00 

v cos = L Cm cos(mwt + Em) 
m=l 

L total lift on the wing 

vsin sine voltage 

vcos cosine vo l tage 

( 20) 

(21) 

lIt should be noted that the uncertainty due to least reading becomes 
very large as the lift forces approach zero. The values given here are 
for average values of in-phase and out-of-phase lift. 
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Lo steady lift on the wing 

Ln amplitude of the nth harmonic of the oscillating lift 

~n phase angle between the nth harmonic of the lift and the position 
of the control surface 

Bm amplitude of the mth harmonic of the sine voltage 

8m phase angle between the mth harmonic of the sine voltage and the 
position of the control surface 

Cm amplitude of the mth harmonic of the cosine voltage 

€m phase angle between the mth harmonic of the cosine voltage and 
the velocity of the control surface 

The products of the lift and the sine or cosine signal are then 

00 

La L Bmsin(mwt + 19m ) 

m=}. 

00 

La L Bmsin(mwt + 19m) 

m=}. 

cos[(n + m)wt + ~n+ 

00 

La L Cmcos(mwt + €m) 
m=}. 

00 

La L Cmcos(mwt + €m) 
m=}. 

00 00 

+ L L LnBmsin(nwt + q:n) sin(mwt + 8m) 
n=lm=l 

+ I I~m {cos[ ( n 
n=}. m=l 

00 00 

+ L L LnCmsin(nwt + ~n)cos(mwt + €m) 
n=}. m=}. 

00 00 

+ L L Lngm {Sin [ (n - m)wt + q:n - €m1 + 
n=}. m=l 
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Examination of equations (22) and (23) shows that the only terms in 
the expressions that are not functions of time arise from the products of 
like harmonics in the lift signal and driving voltage. Thus the signals 
indicated by the galvanometers are: 

Pain ( 24) 

Pcos 

The desired quantities are, of course, the in-phase and out-of-phase com­
ponents of the fundamental amplitude of the lift, that is, L1cos ~1 and 
L1sin ~1· 

It can be seen then that the higher harmonics can produce spurious 
signals which would lead to erroneous results. 

Since no measurements were made of the harmonic content of the lift 
signal, it was not possible to determine quantitatively what errors were 
introduced from this source. However , harmonic analyses of the output of 
the resolver circuits were made during calibration and it was found that 
there was 7 percent of the fundamental amplitude present as second harmonic 
and 1 percent as third harmonic in both the sine and cosine voltages for 
the frequency range of the investigation. All higher harmonics were negli­
gible. Thus if B1 = 1, then B2 = 0 .07, B3 = 0.01 and B4 , B5 , ••• = O. 
Hence, if the amplitude of the second harmonic equals that of the funda­
mental in the lift signal, the error in the measurement of the fundamental 
amplitude would be 7 percent . It can be seen therefore that the low har­
monic content of the sine and cosine voltages reduces any error due to 
harmonic content of the lift force. 

The misalinement of the resolver was another factor that could lead 
to error in the final result . This misalinement can be thought of in terms 
of a phase angle between the sine and cosine voltages and the position and 
velocity of the control surface, respectively. The resolver would be per­
fectly alined if these phase angles were zero. The general form of the 
products written above incorporated these phase angles. Inasmuch as it 
has been shown that the effects of the second harmonics, or higher, are 
small, only the alinement of the fundamental amplitude of the resolver 
signals was considered . Calibrations were made during the course of 
testing which showed that the average values of 81 and €1 were about 
0.50 each. It can be shown that a resolver misalinement of 0.50 will 
introduce an error of not more than 0.50 in the calculation of the phase 
angle ~1. 

The remaining factor to be discussed with regard to the prec1slon of 
the data is the response of the mechanical system to oscillating loads. 
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It was recognized that the output of the strain gages indicating the l ift 
on the wing would be influenced by the response of the various parts of 
the mechanical system to the oscillating loads . In order to obtain a 
quantitative measure of this influence , a series of cal ibrations were made 
on the model in place in the wind tunnel by applying an oscillating force 
of known magni tude and measuri ng the amplitude and phase response of the 
system indicated by the output of the strain gages as the frequency of the 
input force was varied. These calibrations showed that above a frequency 
of 110 cycles per second, the natural frequency of the wing panels in 
bending ( 140 cps) introduced large errors in both amplitude and phase 
angle. In addition, it was found that the body natural frequency in bend­
ing occurred at approximately 85 cycles per second . However , the influ­
ence of this resonant peak on the response of the system was restricted to 
a narrow frequency band . Thus , by testing over a frequency range up to 
110 cps and omitting a band near 85 cps , large errors arising from reso ­
nance of parts of the mechanical system were eliminated . With these 
regions eliminated, the results of the calibrations still showed small 
deviations from the ideal response . Since this scatter was greater than 
any known inaccuracies in the instrumentation, it was felt that it should 
be attributed to the response of the mechanical system and therefore had 
to be taken into account in the precision of the results . The calibra­
tions showed that the root -mean- square deviation of the indicated force 
from the true force was ±6 . 4 percent of the true force , the rms deviation 
of center of pressure was ±0 . 02 wing chord, and the rms deviation of the 
phase angle from zero was ±1 .7° . 

It can be seen that the scatter in the results of the frequency­
response calibrations for the mechanical system is the primary factor in 
the determination of the precision of the final result . The calculation 
of the uncertainty in the results including the effects of least reading, 
resolver misalinement , and mechanical- response errors led to values ±0.024 
for CL5 ' ±0 . 24 for CLi,' ±0 . 02 for x/c , and ±1.9° for cp o 

RESULTS AND DISCUSSION 

The results of the experimental investigation of the unsteady lift 
induced on a wing in the downwash field of an oscillating canard control 
surface are shown in figures 4 through 8 as a function of reduced frequency 
for several Mach numbers and angles of attack . The nondimensional lift 
derivatives in phase and out of phase with control- surface position are 
presented in figures 4 and 5, while their respective centers of pressure 
are shown in figures 6 and 7. The variation of phase angle with reduced 
frequency is shown in figure 8 for the data obtained at ~ = 00 . It should 
be noted that , since the experimental values of the l ift derivatives were 
obtained by dividing the lift by 50 or 50 ' the assumption is implicit that 
lift is a linear function of 5 and 5. 
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Also shown on these figures are the corresponding theoretical values 
computed using equations ( 10) , ( 11 ) , and (13) . The values of static lift, 
CL5*' used in these calculations were computed by the method of refer­
ence 1. Thus, while the theoretical development of equations (10), (11), 
and (13) was based on a bodyless model , the calculated values of CL5* 
were based on wing-body theory. In other words , it has been assumed that 
the body affects the initial values of the lift derivatives (k~ 0) but 
does not affect their dependency upon frequency given in equations (10) 
and (11). 

In-phase lift derivative .- Figure 4 is a plot of the in-phase lift 
derivative CLo versus reduced frequency for the Mach numbers and angles 
of attack covered. Examination of this figure shows that the theory of 
reference 1 provides a reliabl e guide to the estimation of CL5 at low 
frequencies for an angle of attack 00 . In addition, the theoretical trends 
of CL5 with frequency calculated using the simplified indicial response 

were, in general, borne out by the experimental data for this angle of 
attack. At the higher angles of attack, however , there were some depar­
tures from the theory . For supersonic Mach numbers , the primary differ­
ences were in magnitude. The trend of the data with frequency remained 
the same as the angle of attack increased . At subsonic speeds , large 
variations in both magnitude and trend with frequency appeared . This was 
most noticeable at an angle of attack of 100 . While there is not suf­
ficient evidence to explain this result conclusively, partial separation 
of the flow over the control surface may be one of the causes. Static 
tests of a similar wing ( ref . 12) show that at subsonic speeds, the flow 
begins to separate at an angle of attack of about 100 and that the lift no 
longer increases with increasing angle of attack above 160 . Since the 
angle of attack of the control surface varied from 50 to 150 during each 
cycle when the body angle of attack was at 100 , the character of the flow 
was probably changing radically through each cycle, thereby affecting the 
lift induced on the Wing . 

The possibility of an effect of wind- tunnel resonance on the data 
obtained at subsonic speeds must be considered . The wind- tunnel resonant 
frequencies, kr' are shown in the figures in terms of reduced frequency 
for each of the subsonic Mach numbers . It was shown in reference 9 that, 
for the two -dimensional case , the effect of tunnel resonance is to decrease 
the lift markedly near the resonant frequency . Examination of the data 
obtained in this investigation indicates that if a wind- tunnel resonance 
phenomenon exists for this particular combination of model and tunnel, it 
does not have the simple effect indicated in reference 9. 

A comparison of the results calculated by the simplified indicial 
response and those calculated by the more exact indicial response is shown 
in figure 4(b) for a Mach number of 1 . 7. It is apparent that the differ­
ences are quite small over a large portion of the frequency range, thus COr­
roborating the statement concerning this fact \lade in section "Theory." 
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It may be well to mention here the point brought out in the intro ­
duction concerning artificial damping for canard- type missiles . Since 
damping may be added by motion of the control surface proportional to the 
missile pitching velocity, the in-phase lift shown in figure 4 contributes 
to the damping of the missile . The results show that if the pitching 
freQue ncy is sufficiently high, there would be a serious reduction and 
possibly a reversal of the damping moment supplied by the rear surface . 
However, the probability that the pitching freQuency will reach these 
values appears small . 

Out-of -phase lift derivative. - The lift derivative out of phase with 
cont rol deflection, CL5 , i s shown plotted versus reduced freQuency in fig-

ure 5. Here the predictions of the theory are confirmed by the experiment 
for ~ ~ 00 at subsonic speeds . However , as was the case for the in-phase 
derivative, the agreement between experiment and theory became poorer as 
the angle of attack increased, with the data obtained at ~ = 100 showing 
a marked difference from that obtained at the lower angles. 

I n the supersonic speed range , the theoretical values of CL5 at 

low freQuencies show somewhat better agreement with experiment at ~ = 00 

than at the higher angles of attack. However, the decrease in CL5 with 

increase in the freQuency predicted by the simplified indicial response 
is not reflected in the experimental values. ExaminatioN of figure 5(b) 
shows that the more exact indicial- response result is similar to that for 
the simplified indicial response . Calculations of the values of CL5 
have shown that the freQuency response of this derivative is highly sen­
sitive to changes in the details of the indicial curve. Hence , better 
agreement could be achieved with a more refined indicial function . 

Center of pressure of in-phase lift .- The experimental values of the 
center of pressure of the in-phase lift are shown in figure 6 along with 
the theoretical values for ~ = 00

• The theoretical values were calculated 
by the method of reference 1. Since this method is based on linear theory, 
no variations of center of pressure with angle of attack are predicted. 

The theory of reference 1 pr~dicts the location of the center of 
pressure very well for all Mach numbers at low freQuencies and low angles 
of attack . In addition, the lack of variation with frequency predicted 
by the simplified indicial approach is borne out by the experimental data 
over most of the frequency range . The large deviations from the theoreti ­
cal values were obtained either for conditions where the in-phase lift was 
near zero , thus affecting the accuracy of measurement , or at ~ = 100 for 
subsonic Mach numbers where it is known that the lift forces themselves 
do not follow the predicted results. 

Center of pressure of out -of-phase lift.- The experimental data for 
center of pressure of the out - of-phase lift, presented in figure 7, 
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confirms, in general , both the magnitude and trend with frequency pre­
dicted by the theory (excluding the data at a = 100

) . At the lower 
frequencies, the data obtained in the subsonic speed range show values 
somewhat forward of those predicted by theory, but at supersonic speeds 
agreement is good throughout the frequency range . 

Phase angle . - Perhaps the most direct application of the lag-in­
downwash concept is to the calculation of the phase angle of the lift 
induced on the wing. Here , the time necessary for a disturbance to travel 
from the forward surface to the rear surface - the lag - can be converted 
directly to a phase angle for a given frequency . Figure 8 shows a com­
parison between this theory and the phase angles obtained at all Mach 
numbers for an angle of attack of 00

• It can be seen that this simple 
theory predicts the experimental variation of phase angle with frequency 
adequately for all Mach numbers for values of k up to about 1.0. Beyond 
that value the experimental results are somewhat higher than theory. While 
only the phase angles for a = 00 are presented in this figure, the phase 
angles for the other angles of attack, with the exception of those obtained 
at a = 100 and subsonic speeds , showed the same variation with reduced 
frequency. 

CONCLUSIONS 

An experimental investigation of the unsteady lift induced on a wing 
by the downwash field of an oscillating canard control surface led to the 
following conclusions : 

1. Existing theories provided a reliable guide to the estimation of 
the magnitudes of the i n -phase and out -of-phase lift derivatives and their 
respective centers of pressure at low values of reduced frequency and low 
angles of attack . 

2. The trends of the data with fre quency calculated with the use of 
a simple indicial lift response for the wi ng were , in general, confirmed 
by the experimental results at l ow angles of attack . 

Ames Aeronautical Labor atory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif. , J une 1, 1955 
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Figure 4.- Variation of in-phase lift derivative with reduced frequency. 
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