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NATTONAL, ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

APPIICATION OF STATISTICAL THECRY TO BEAM-RIDER
GUIDANCE IN THE PRESENCE CF NOISE.
I - WIENER FILTER THEORY

By Elwood C. Stewart
SUMMARY

A study has been made of the application of Wiener filter theory to
the design of a beam~rider guldsnce system operating in the presence of
&lint nolse. Target and missile motions are restricted to the same plane.
The Wiener theory is then used to establish the theoreticel lower limit
of root-mean-square error and the corresponding desired transfer-function
characteristics. It is shown that although the practical achievement of
these results is restrlcted by saturation effects, the theory is useful,
with sultable modifications, as a guide in system design. Such modifica-
tions have been applied to the design of systems for which the optimum
flltering is placed elther in the missile~control system or in the tracking
redsr. The error performance of these systems for different noise magni-
tudes is presented. Other considergstions such as servo energy requirements
are briefly discussed.

INTRODUCTION

In the design of a missile-~guidance system certain standard criteria,
such as the fastest response, are not always the most useful. This is
particulerly true in the case of guidence systems which are forced to
operate in the presence of certain random unwanted disturbances known as
noise., The reason for this is that the effects of the noise can seriously
reduce the probabllity that the missile wlll hit the target. Furthermore,
the sources of noise, being dependent on the target charscteristics, can-
not be eliminated. Consequently the guidsnce system should be designed
to minimize the miss distance even when the nolse 1s present., This prob-
lem will be considered here.

There are-two possible design approaches. In the first, the form
of the systeg‘(i.e., the transfer function) is assumed and an attempt is
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made to adjust the existing parameters so as to reduce the effects of

noise (ref. 1). This procedure is not only difficult to apply, but the .
ultimete performance 1s limlited by the assumed form. In the second '
approeach, the form as well as the parameters of the transfer function

are determined so that the nolse has the  least possible effect on the

performance of the missile; an attempt is then made to devise a system

vwhich has a transfer function approximeting this optimum transfer func-

tion. The latter approach will be adopted here.

The problem of determining optimm traensfer functions has been
encountered previously In the communicstion field, and as a result of
this encounter a statistical theory kmown as Wiener filter theory has
been developed. By the use of this theory it is possible to determine a
unique optimum transfer function which will result 1n a theoretical lower
limit of mean-square error between the desired and the actual missile
position. Very little work has been done in the spplicatlion of this
theory to beam-rider guidance. Previous works, references 2 and 3, have
been confined to simple homing systems. The purpose of the present paper,
however, will be to investigate the applicability of this theory to a
beam-rider guldaence system.’

In the application of this theory to missile guidance 1t 1s necessary
to make certaln assumptions. Foremost of these is the assumption that the
target and missile move in the same plane, taken in this report to be -
horizontal. Other asssumptions, such as those relsting to the class of
target maneuvers and nolse, are discussed in the text. Within these
restrictions, however, the theory msey be used to obtain a measure both
of the error performance that might be expected and the difficultles to
be overcome in order to realize this performance.

SYMBOL.S
N hoise magnitude or zero frequency spectral density, f£t2/radian/sec
Ty = time constant of the noise spectrum shaping filter, sec
Yo optimum closed~loop transfer function ... ... ... .. .. e =
a acceleration of target maneuver, ft/sec2
k twice the average switching rate of target acceleration, l/sec
Yy apg:rent target displacement from true target center due to noise, “
migsile displacement from s space reference, ft *
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Y target displacement from a space reference, £t

O gpectral density of noise displacement yy, £t2/radian/sec
@ spectral density of target displacement Yops ftz/radian/sec
€ error between target and missile position, Yo = Yy ft

&N component of error € due to noise, £t

€q component of error € due to target motion, £t

s] control-surface deflection, radisns

¥ angle of yaw, radlans

Ko optimm open~loop transfer function

W open-loop transfer funection of system approximstion to ug
w angular frequency, radisns/sec

GENERAI. CONSIDERATIONS

Of the meny sources of noise which mey exist in a guidance system
utilizing radar detectlion, glint noise is one of the most serious. Glint
noise is a term that is used to describe a shift in the spparent center
of a target as determined by & tracking radar. It is due basically to
the variable reflection characteristics of alrcraft targets and arises
from the relative movement of the various reflecting surfaces. Slince the
radar utilizes the reflected signal to determine target position, vari-
ations in the reflected signal are interpreted by the radsr as a shift
in the target center. This type of noise is particularliy Important since
it is due fundamentally to the target characteristics and therefore cannot
be eliminated by eny known radar improvements. The situation is illus-
trated in figure 1(a) where the true terget position is indicated as Yps
and the glint noise is represented by the displacement e

The present report is restricted, for the sake of simplicdity, to a
two~dimensional study in which the target and missile move in a horizontal
plane.t The guidance system is considered to be of the beam-rider type,
illustrated in Pfigures 1(a) and 1(b). It should be noted here that dis-
placements are referred to a fixed space reference. The function of the
guldance system is to meke the missile position ¥y colncide as closely

iThe complete three-dimensional problem would require a more complex
enalysis than used herein. Possibly elther the present theory or Wiener's
theory for multiple time series (ref. 4) could be aspplied to this case.
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as possible with the actusl terget position yn. This requirement would
be relatively easy to satisfy if the tracking ¥adar could locate the _
target precisely. However, because of the radar nolse the only informa-
tion avalilable to the guldance system is the apparent target position as
illustrated in figure 1(b). For this reason the task is much more Aiffi-
cult and the missile position may deviate considerably from the actual
target position. The difference, ym =~ ¥y, i8 denoted on this figure by
the error €, which should be minimEzed n same manner.

A sultable criterion for Judging system performance depends primarily
on the manner in which the system operates. In the case of the beam-~rider
system the missile-to-~target range is not normally transmlitted to the
misslle so that the missile cannot know when the target will be reached.
Hence the error should be minimized for all values of range or, equiva-
lently, of time. A mathematically convenient criterion which does not
involve welghting with respect to missile travel time 1s the mean-square
time aversge of the error. This criterion will be used herein.

The design of a system normally depends on the inputs to be encoun-
tered, in this case the target motion and nolse. Because of their random
nature 1t is not convenient to define these gquantities explicitly as
functions of time, and statistical descriptions ere more sultable. Since
it is generally believed that the target motion and noise are uncorrelated
they will be described independently. Whet follows 1s a brief discussion
of these inputs. :

Intenslive effort has been devoted in recent years to the measurement
of radar glint noise. References 3 and 5 through 8 are typical of such
work. The quantity of most genersl interest in these measurements is the
displacement of the apparent center of the target from the true center,
or ¥y shown in figure 1(a). This quantity can be defined statistlcally
by means of (1) the amplitude distribution and (2) the power spectral den=-
sity. Although the determination of these gquantities is somewhat uncertain,
it 1s generally found that the smplitude distribution is approximetely
Gaussian and that the spectral density can be adequately represented by

— N ;
o = T2w® + 1 (1)

Spectra obtained from seny one individusl experiment msy deviate scmewhat
from this form but 1t is generally considered that the above character-
istic represents a reasonsble average of meny different experiments.
Exanination of nolse spectra indicates that the break point (l/QﬂTN) is
on the order of several cycles per second and for this report will be
taken to be 6 cps corresponding to Ty = 0.0265 second, The msgnitude
of the spectrum, N, depends on factors such as target size and target
aspect so that the guidance system 1g usually forced to operate over a
wide range of magnitudes. This range may extend from 7 £t2/radiasn/sec
for small targets up to around 30 ft®/radian/sec for large bombers,
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Because of the varistion in masgnitude due to uncertainty in target size
and aspect as well as uncertainty 1in the noise measurements, this factor
becomes of real and practical importance and will be considered herein.

In considering terget maneuvers it is difficult to say exactly how
a target will maneuver when under attack. However, a reasonable situs-
tion might be one in which the target is merely aware of the attack and
therefore maneuvers in some severe menner to avoid being hit, Here it
will be assumed that the target meneuvers laterally with maximum acceler-
ation alternately in opposite directions. The duration of each acceler-
ation will be & random function determined by some distribution. A
reasonable distribution which leads tc an easily handled spectral density
is the Poisson distribution [(1/T)exp(~T/T)] where T represents the time
and T +the average time between swiltching of the sccelerastion. As shown
in reference 9 the spectral density of the target acceleration 1s then
described by

ka2
Q:Y._ﬂ'! n w12 o 12Y
i iy jo\w T o)

Here the quantity a represents the megnitude of the target acceleration
normal to the beam, and k 18 twice the average switching rate, k = 2/T.
The spectral density of the target displacement is then given by

a2

= = k

It would sppear that there is a problem here concerning the existence of
this spectrel density becsuse of the w%* in the denominator. However,
it can be shown that it is possible to use thls representation for pur-
poses of computations (see Appendix A). For the tail-chase maneuver to
be used in a later example the target acceleration is specified to be
11 g at an average period of 5 seconds, which gives a = 32.2 ft/sec2
and k = 0.4 switch/sec.

It should be pointed out that s system design based on the target
motions described above would operate well against this class of maneuver
a8 a whole. This sppears to be a desirable procedure. Nevertheless,
without altering the parameters this system would not be expected to
operate as well as it could egainst one particular target maneuver such
a8 & single target turn. Even then, however, it can be shown by simu-
lation studies that systems optimized for the statistical maneuver used
herein are essentially optimum for the single turn meneuver as well.
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ANATYSIS, RESULTS, AND DISCUSSION

The Wiener Fllter Theory

The problem of minimizing the effects of noise can be considered to
be one of compromise. AL one extreme for which the system response is
fast the error becomes large because of the ability of the missile to
follow the noise toc well. At the other extreme for which the system
response ls too slow the error becomes excessive because of the difficulty
the mlssile has in following the target maneuvers. The optimum system 1s
one which will compromise these two situations in the best possible man-~
ner. More preclsely stated the problem becomes: Gilven the statistical
characteristics of the two input quantities, target motion and nolse,
what 1ls the optimum transfer function which will minimize the mean-square
error €22 The answer to this problem can be determined by a statistical
theory known as the Wiener filter theory. The filnal result of thils theory
is an lntegral which when evaluated represents the optimum linear transfer
function. This transfer function is given by

tw) = —=> ® - 3 ® ¢T(m)eimt
Yo(1w) = 2ﬁ¢+(w)¥Z: =T Wl; o (a) da. At (3)

In this equation @1 and ¢~ have the following meaning: If @ is the
spectrael density defined by the equation . .

® = Op + Oy
then ¢ and ®~ must satisfy
ot ¢~ = o

where &% has poles end zeroces only in the upper half of the complex w
plane and &  only in the lower. More detalls are given in Appendix A.
The derivation of equation (3) is beyond the scope of this report; for
this derivation see references 4 and 10.

The trensfer function Y, of equation (3) 1s a mathematical repre-
sentation of the box in figure 1(b). According to the method of deriva-
tion, the transfer function must be physically realizsble which means
that the system ls not required to respond to an input before that input
occurs.

It might be polnted out that a genersl solution exists which involves
the problem of prediction as well as filtering, However, gince it is
apparent fram figure 1{a) that we are interested only in the missile



NACA RM ASSE1L G T

position coinciding with the present target position, the prediction aspect
hes been eliminated from the general solution in writing equation (3).

Restrictions involved in the theory.- There are certain restrictions
implicit in the derivation of equation (3) so that the validity of its
application to the beam-rider guldence system depends on how well these
restrictions are met. First, the input quantities, target motion and noise,
must be statlonary rendom serles (see ref. 1 for a detailed definition) and
be defined by corresponding power spectra which are contlnuous. A discon-
tinuity in the spectrum might be due to a predictable component such as &
sine wave; such components must be eliminated from the input before the
theory can be gpplied. It is generally believed that displscements at the
target are approximately stationary random series (ref. 3). Since the
beam-rider system operates from these displacements, the inputs to the
beam-rider system are also statlionary random series. (In contrast, the
inputs to a proportional-navigation guidance system are nonstationary ran-
dom series since angular inputs are measured by the missile itself and the
angles tend to become lsrger as the range decreases.) Second, the solution
is based on linear theory and furthermore is applicable only to a systenm
with constant coefficients in its differential equation. On the other
hand, the kinematic loop of guidance systems generelly involves a tTime-
variable range factor. In particular for the beam-rider system, the time-
veriable factor is the ratio of the launcher-to-missile and the launcher-
to~target ranges. However, since the miss is determined primerily by what
happens near the end of flight, during which the variation in this ratio
ie smell, it is reasonable to assume that the requlrement of constant
coefficients is approximately met.

Evaluation of the optimum transfer function.- Within the gbove
restrictions, it is possible to use equation (3) to evaluate Ffirst, the
general form of the optimum transfer function and second, the numerical
constants. As an illustration of thilis method the theory has been spplied
with certain simplifyling assumptions as discussed in Appendix A to the
target motion and noise characteristics described earlier. TFor this case,
then, equation (3) can be evaluated to glve the general form of the optimum
closed~-loop and corresponding open-loop transfer functions as follows:

(Te®s® + 2L Tas + 1) ()

Yols) = (Tgs + 1)}(Ty2s® + 28, Tys + 1)
_ (T2s2 + 2(,Tgs + 1)
Ho(s) = Xy 2 (Te + 1) (5)

These equations can be evaluated for any specific case and, as an exsmple,
for the specific target motion and noise cheracteristics given below
equation (2) and with the masgnitude of the noise, N, chosen to be

15 ft?/radien/sec, the optimum transfer functions become
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= (0.855 82 + 1.1 8 4+ 1)

Yo(s) = (0.687 s + 1)(0.490 82 + 0.727 8 + 1) (6)
2

po(s) = 7.h2 (0.855 s2 + 1,41 & + 1) -

82(2.50 s + 1)

The chosen value of N represents a mid-value between the expected
extremes, The slgnificance of this choice will be discussed later.

The corresponding frequency characteristics are possibly more 1llus-
trative to the control designer. The solld curves in figure 2(a) show
the optimum closed-loop characteristic for the above conditions and
describe the characteristics of the box in figure 1(b). It might be noted
that since the break point of the noise spectrum occurs at 6 cps, 1t 1s
essentially flat over the frequency range of importance of the optimum
transfer function. Since actusl systems are usually designed on an open-
loop basis, the corresponding open-loop characteristic is shown in fig-
ure 2(b). The considerations involved in achieving the characteristics
of figure 2 are discussed l1n later sectiouns.

BMS error performance.~ Although the Wiener filter theory can be used
to define the optimum transfer function, it does not give the minimum
error directly. This must be evaluated from the optimm transfer function.
With the earlier assumptions as to the form of the target motion and noise,
reference 1 shows that the total mean-square error is composed of target
end noise components which can be evaluated according to equation (8).

e = € + €

=j‘p—Yde%ﬂmM+j‘Hde%MMm (8)

The quantity Yo(iw) is obtained from equation (k) by the substitution
8 = iw., It is possible to evaluate these integrals mathematically but
experience has shown that it is easier and more instructive to use
graphical techniques. For the example under discussion, evaluation of
equation (8) gives: : j

Neg? = 13.7 feet

JeT? = 6.7 feet
Je = 15.4 feet
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The later figure represents, then, the theoretical lower limit of rms
error that can be achieved by a linear constant-coefficient transfer
function corresponding to the assumed terget and noise characteristics.

For later use, the integrands of equation (8) for the previous
example are plotted in flgure 3. Physically, these curves can be inter-
preted as the frequency distribution of the energy in the components of
error, It is seen that the error energy is concentrated in the frequency
range below 2 cps.

As mentioned earlier, 1t is important to consider a lerge range of
noise magnitudes for a number of reasons. For example, measurements of
glint noise are subject to considerable discrepancy and may cover a wide
range of megnitudes. Likewise, the noise msagnltude may vary due to
different sized targets or different attack aspects. In order to assess
these effects the minimum error has been determined as a function of the
zero frequency noise magnitude N of equation (1) by a procedure identical
to that sbove. This requires the determination of a different transfer
function Y, for each value of N, as in Appendix A for N = 15 £t2
radian/sec, and the evaluation of the resultant error by equation (8).

The result is shown in figure U by curve A. Each polint on this curve
corresponds to a different optimum transfer function and it is possible
to use this transfer function as a gulide in designing the guidance system.
The value of this curve is that it can be used as a standard with which
to compare the performance of any system,

Also indicated in figure 4 is the operating range of noilse magnitudes
corresponding to the class of targets and aspects previously mentioned.
At first 1t might appear that each noise level would require & change in
the filter or system so as to maintaln optimum performance. However, as
indicated by curve B, 1f a system is optimized only at the mid-value of
the noise range shown here &s the design value, the performance of this
system for other nolse levels will deviate to a negligible extent from the
optimum over the range of interest. Thus, to obtain near optimum perform-
ance over the range of noise magnitudes likely to be encountered it is
necessary to optimize only for the design value of noise. This is a very
fortunate fact, and one of obvious practical importsnce. In & similar
manner it cen be shown that a change in the break point of the nolse
spectrum would not greatly affect the minimum error curve shown in figure 4
as long as the noise spectrum is essentially flat over the bandwidth of the
optimum transfer function of figure 2.

It is interesting to compare these results with the performance
obtained by disregerding noise theory in the design, that is, by designing
the system for the fastest possible response. Two exsmples are shown,
Curve C illustrates the performance sgainst noise which is obtained for a
system with perfect response characteristics (unity transfer function).
Curve D illustrates the performance ggainst noise for a more realistic
system given in reference 11 (varisble-incidence missile). For this case
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the important saturating elements were simulsted, and the system was
designed for the fastest possible response to a setep in the beam of

100 feet. The comparison with the optimum of the curves for both of these
example systems shows that the performance is significantly poorer than
the optimum performance indicated by theory.

Application of Wiener Theory to the
Beam-Rider Guidance System

To achieve the optimum results indicated by the Wiener theory it is
necessary to design the guldance system with frequency characteristics
approximating the optimum specified by figure 2. The difficulties in
accomplishing this as well as the modifications which are required are
discussed 1n the followlng sections.

Limitetions in the spplication of the Wiener theory.- There are
several restrictions on the possible forms of the transfer function which
can be achieved in practice. The foremost of these is manifested by a
congideration of the accelerations required of the missile. For the
optimum system, Yo, the mean square of the required acceleration YM is
expressed by

TF = [ Irots) Futeneian + [ Tro(w) Futogiss @)

-0 -0

It is easy to see that for the form of noise spectrum given by equation (l)
and the optimm transfer function of equation (4) the spectral demsity of
the acceleration required by the noise increases with frequency at the high
frequencies, giving rise to an infinite called-for acceleration. Obviously
finite values of acceleratlon can be obtained only if the trensfer func-
tion Yo falls off at high frequencies like l/w2 or some greater power.

To the control designer, this restriction is perhaps more readily
interpreted in terms of & control-deflection restrietion. Assuming, for
the sake of the argument, that the aerodynamic transfer function S/y
were everywhere linear (which, of course, it 1s not, since practically,
control deflections cannot increase without limit), the analog of equa-
tion (9) would become

= - . F - 5

2
Ox(w)dw (10)

2 co
& (w)dw +f Yo (1) Iz‘y%(iw)

=j; |¥o(1w) |2|§’ﬁ(im)

—-—
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It can be seen from equations presented in later sections that S/y
epproaches & constant multiple of «® at high frequencies. Thus, e
conclusion can be drawn from equation (10} that finite values for the
control deflectlion will be obtained for any practlcal system which mey be
designed only if the system transfer function differs from the optimum at
high frequencies.

At first it would appear that any departure of the system transfer
function from the optimum Y, would result in increased rms error per-
formence. However, an examination of the error spectrum indicates that,
since the power contained In frequencies ghbove 2 cps is small, attenuating
the transfer function above this frequency will not affect the error
appreciably. On the other hand, the control motion spectrum of figure 5
shows that attenuation in the transfer function above 2 cps will greatly
reduce the requlred control motion since the major portion of control
motion power is concentrated in the higher frequencles. From these con-
siderations 1t 1s obviocusly desireble to attenuate the transfer function
Yo Zfor all frequencies above the bandwidth of apprecisble error spectrum.

The attenuation might be supplied in a variety of ways. However,
if it is assumed that asn idesl filter could be inserted in the system so
as to supply infinite attenuation for all frequencies above 2 cps without
affecting the response to frequencies below 2 cps, it is still found that
for missiles similar to the one studied here deflections required for this
frequency band are larger than are available, Specifically, for the
missile used herein the control deflection required is about 15° rms;
since the control deflection is physically limited to about 14° (ref. 11),
the called-for control motlons are larger than are available. Thus it
is impossible for the actual control motion to follow the regquired pro-
gram and the optimum missile motions cannot be achieved. Actually the
value of 15° is quite optimistic since the 1desl filter does not exist
and cannot even be approached very closely. Consequently, the simultane-
cus achievement of the optimum error spectrum and called-for control
motions which do not exceed the limited values are conflicting require-
ments. The importence of this conflict end the solution of the problem
posed by it are considered 1n the following sectionms.

Optimum filtering with limiting.- Because of the sbove restrictions
in the spplication of the Wiener theory, it is generally necessary to mske
certain modifications in the practical case. In what follows, the effects
of limiting &nd the consequent modifications required are discussed.

Effects of limiting: There are many limiting-type nonllnearities
which may exist in a guidence system. Those of the most importance in
the beam-rider system are (a) control motion limiting due to mechanical
limitations, (b) rate of control motion limiting due to restrictions on
servo capability, and (c) radar receiver voltage limiting due to cir-
cuit restrictions. Typical values which are used in these studies are
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0.25 redian, 5 radians/sec, and 100 volts, respectively. The effects of
these limits can be severe and need to be considered in the filtering

problem.

By means of Booton's recent theory (ref. 12) it is possible to evalu-
ate the effects of nonlinearities on the over-all system performance. As
applied to the beam-rider system, the theory shows that it is possible to
approximate each of the saturable elements by a simple galn which can be
suitably chosen so that for increased rms inputs to the saturable element
this gain is reduced. Analysis shows that in terms of the over-sll sys-
tem. characteristics the effects of this gain reduction are: (l) to reduce
the open~loop system gain or (2) to increase the time constants in the
open-loop transfer function. In general, both effects result in a reduc-
tion in bandwidth of the closed-loop frequency response, In this respect,
then, limiting effectively results in additional filtering which, of
course, extends further into the low-frequency ranges as the rms inputs
increase. Thus the system response can become 80 slow as to result in a
large increase in error due to the missile's inability to follow the tar-
get motions. Furthermore, inspection of figure 2(b) shows that the Wiener
transfer function 1s conditionally stable; for large rms inpubts the Wiener
transfer function may become unstable. - That this does occur in examples
to be discussed later has been demonstrated Auring REAC studies. Conse-
quently the large gain reductions and phase lags introduced by limiting
cannot be tolerated. '

Additional filtering: 1In generel, the energy of the saturating quan-
tities contained in the higher frequencles is much larger than that in the
lower frequencies. TFor this reason, purposely lntroducing filtering into
the system so as to attenuate the response at the higher frequencies can
be effective in reducing the effects of limiting. This can be accomplished
in either of two ways: by inserting additional networks in the guidance
system, or by changing those inherent time constants which exist in any
actual system and which are not required far the optimum filtering.
Because of the complexity of the beam-rider guidance system there are a
great number of places vhere the additional fiitering can be introduced.
These possibilities are discussed later.

The selection of the desired frequency characteristics of the added
filtering is more difficult than the selection of filtering location. In
general, the choice of the desired emount will involve a compromise between
two extremes: (1) The first extreme is one in which the added filtering is
too severe. As the added Tiltering is extended intoc the lower frequencies,
limiting effects are reduced but, as previously mentioned, the results of
limiting can only be eliminated at the expense of increased error. (2) The
other extreme is one in which the added filtering is insufficient to avoid
serious limiting effects. This extreme is similar to the previous one
inasmuch as the effects of limiting are also equivalent to additional fil-
tering. For serious limiting, this equivalent Piltering is too severe and
results in Incressed error and poseibly instability.
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It is apparent that the effects of limiting end of added filtering
by means of networks are closely related, in that both are equivalent to
the introduction of additionsl filtering into the system. Extremes of
either type reduce the performance of the system sufficiently that the
error increases due to the inability of the missile to follow the target.

Design of the Guidance System

In gpplying the modifications discussed in the preceding parsgraphs
to the design of the guidsnce system it is found convenient to consider
two separate stages: The first stage involves the design of the system
on a linear basis to approximate the optimum Wiener transfer funcition,
while the second involves supplying the additional filtering terms to
minimize the limiting effects. The optimum Wiener transfer function may
be designed into the missile-control system, or into the tracking radar,
or may be apportioned between the two, with the additional filtering in
either place. Thus, there are a number of possibilities. Obviously, for
linear systems all approaches could be designed so ss to produce identical
results., In general, this does not hold for nonlinear systems, that is,
systems in which limiting occurs, so that in the prectical case it is
necessary to consider the effect of the filtering location on performance.
The relative merits of placing the optimum Wiener flltering first in the
missile-control system and second in the tracking rader are discussed Iin
the next two sections.

Missile-control system designed for optimum Wiener filtering.- For
the case of missile~caontrol-system filtering it is necessary that the
tracking radar be designed fast enough to follow the target motion and
the noise, since the missile-control system performs the optimm filter-
ing operation. The first step in the design of the missile-control system
is the synthesis of a linear system which matches the optimum Wiener
transfer function. It has been shown thet it is only necessary to approx-
imate this transfer functlon over the frequency range of apprecisble error.
This can be accamplished in many ways, but to achieve this design by a
system of conventional form, the design is most easlly made by cut-and-try
procedures, In this procedure 1t is desirable to select the aserodynamics
as a starting point since the design of the airframe is relatively inflexi-
ble compared to the design of the control system. The characteristies of
a typical variable-incidence missile were chosen from reference 11. The
transfer functions in the yaw plane for this misslle are given by the fol-
lowing equations:

¥ Tys + 1
%~ 136(TaPs2 + 20 Tgs + 1)
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M _ Tp2a2 + 2§ths + 1
5  T4252(Te®s® + 2{,Tgs + 1)

Table I summarizes the values of the parameters for this missile for a
given operating condition which is held fixed 1n this report., For this
missile it is possible to synthesize a linear system to approximate
closely the optimum transfer function. One possible system 1s 1lJustrated
in figure 6 and the corresponding over-all open-loop transfer functlon is

kokgV (T108 + 1)} (Tes + 1) (Tp2s% + 243 Tps + 1)

H = Tq + kgks 82(T11s + 1) (Tgs + 1)(as® + bs? + cs + 1) (12)

The derivation of this transfer function is given in Appendix B. It
should be noted that the transfer function of equation (11} differs from
that of equation (5); however, by choosing the parsmeters as given in
Appendix B and as tabulated in table II, column CD, the two transfer
functions can be closely matched over the frequency range of interest as
illustrated by the dotted curves of figures 2 and 3. It might be noted
thet the only restrictlon on the parameter Tg in order to keep the two
transfer functions closely matched is that it be amall. Thus Ts mey

be vearied somewhat without much penalty.

The particular design discussed gbove has been chosen only for optimum
nolse performance so that other comsiderations important 1n an over-all
design might dictate certain modifications. These possibilities are dis-
cussed later. It is also apparent that since the design of the above
system has been based on assumptions of linearity the performance indicated
above camnot be achieved in practice due 1o limiting effects. As indicated
earlier these limiting effects may result in instability. Hence modifica-
tione are required. These modifications in the two cases of additional
filtering, first in the tracking radar and second in the missile-control
system, are dlscussed in the following paragraphs.

Additlonal fiitering in tracking rader: The simpler means of intro-
ducing =dditional filtering into the guidence system in order to reduce
limiting is to place 1t in the tracking radar since the added filtering
and optimm Wiener filtering are achieved separately by the tracklng radar
and missile-control system, respectively. This separatlion has the adven-
tage of allowing the additional filtering to be altered without affecting
the optlmum filter design of the missile-control system.

The additional filtering in the tracking rsdar may take innumerable
forms. For this study the closed-loop transfer function of the tracking
radar was assumed to be of the following form:

B _ _ Ti8 + 1
Ip * Iy Ti2s2 + T18 + L (12)
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This transfer function was chosen to provide both simplicity and a zero-
velocity error system and 1t can be approximated by properly shaping the
networks 1n the tracking radar. With this system, the amount of filtering
cen conveniently be varied by & change in the time constant T3;. At the
one extreme for which 71 1is very small the filtering provided by the
tracking radar is negligible, thus resulting in an unstable missile-control
system because of limiting effects. As the time constant of the radar is
increased, however, more filtering is provided and limiting effects are
reduced. By verying T3 figure 7 was obteined; it shows the variation

of rms error with the natural frequency, l/EﬁTl, of the tracking radar,
For comparison, the minimum error obtalned from Wiener theory is also
shown. As would be expected from previous discussion, the optimum opera-
ting point occurs at & tracking redar frequency which is within the pass-
band of the missile-control system. At this frequency limiting effects
g8till exist but are not too serious. The inerease iIn error above the
Wiener theory result can be attributed to the additional filtering intro-
duced in the tracking radar and to the limiting effects in the missile-
control system. The rms error performance of the system defined by the
optimum operating point is given by curve E in Pigure 8 against a varisgble
noise level.

Additional filtering in missile-control system: An alternatlive place
to Introduce gdditionsl filtering into the guldance is the missile-control
system, This could be introduced by an additional network in the radar
receiver. However, since it has been pointed out that the choice of time
constant Tg was somewhat arbitrary, 1t is possible to increase Ts to
provide thls additional filtering. Thus limiting effects can be reduced.

The introduction of added filtering into the missile-control system
has the disadvantege that the added filtering also affects the system
stability since an increase in a time lag is destabilizing. Hence, added
stability is required. This could be provided by altering any of the
besic parameters which are responsible for the conditlional stability
characteristic of the Wiener transfer function. To preserve the low-
frequency charscteristics of the optimm system as few changes as possible
are desired. The parameter Ti; 1s & convenient one with which to intro-
duce this stability.

The effects of the sbove changes were investigated by means of analog
slmulation, Sinee in the case of missile-control-system filtering the
tracking radar is not required to filter, it should be designed to respond
quickly. For this purpose the radar transfer function of the form of
equation (12) was utilized by choosing the constants so as not apprecigbly
to alter the input spectra. This was accomplished by the choice of =&
tracking radar natural frequency of 6 cps. The paremeters in the missile-
control system were altered sccordingrto the gbove discussion. Typical
results obtained for the system optimized only at the design value of
noise are illustrated by curve F in figure 8. The optimum Wiener perform-
ance 1s repeated here., TIn general, results similar to curve F can be
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obtalned by several different combinations of parameters. One of these
combinations requlring the fewest modifications from the Wiener system is
glven by the parameters in column C) of teble ITI. It can be seen that
the additional filtering is supplied by an increased radar recelver net-
work time constant Ts while the added staebllity is introduced by a
decrease in the time comstant Ti3;. In this case the increase in error
above the optimum is duvue to the added filtering introduced by the network
and limiting, and to the slight alteration in the Wiener system time con-
stant Ti;. : : - -

Tracklng radar designed for optimum Wiener filtering.~- In this section
are considered the results obtainable when all of the optimum filtering is
located in the tracking radar. Here the desired optimum tracking radar
transfer functions are given by equations (4) and (5), and ideally the
missile~control system should have a transfer function of unity. However,
for many reasons, principally those arising from nonlinear effects, the
latter may be expected to depart considerably from the ideal. Consequently
it is deslrable to design the missile-~control system for the fastest pos-
sible transient response within the limitations of these nonlinearities.
Two such missile-~control systems were considered. The flrst was a con-
ventional system chosen from reference 11 in which the response time to
8 step of 100 feet in the beam was minimized, The second was a system
optimized for minimum response time to a small enough step so that lin-
earity was not exceeded., The control-system parameters for these systems
ere given in columns (3) end ® , respectively, in table II.

The rms error performence obteinable for tracking-radsr filtering
is summarized in figure 8 by curve G. It was found that both the
miggile-control systems gave essentlally the same results. In this case
the increase in error sbove the Wiener optimum is due to slowness of the
missile-control system and its failure to follow the beam perfectly
because of limiting effects.

It might appear thet these limiting effectis could be reduced by addi-
tional flltering in the tracking rader. This poselbility was explored by
the addition of a simple first-order filter to the optimum open-loop trans-
fer function given in equation (5). By increasing the time constant of
the added filter the tracking-radar performasnce 1s deteriorsted from the
theoretical optimum while the error of the missile-control system 1s
decreased because of a reduction of limiting effects. Results of these
combined effects are shown In figure ¢ from which 1t can be seen that the
added filtering results in progressively poorer over-all performance. Thus
the beneficlal effects of decreased limiting are overbalanced by the detri-
mental effects of altering the tracking-radar transfer function fram the
optimum,
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Comparisons and Other Considerations

The results of various flltering arrangements are compared in fig-
ure 8 on the basis of the rms error. ITf it were not for the nonlinearities
the performance for both missile-control system filtering snd tracking-
radar filtering could be made ldentical with the performance of the optimum
Wiener system, However, it 1s interesting to f£ind that even in the non-
linear case all arrangements can result in comparsble error performance.
Some advantage in tracking-radar filtering-is apparent from the figure.
For comparison, again, the performence of a typical missile-control system
which was optimized for fast response in the ebsence of noise is repeated.

Up to this point only the error performance has been considered.
Other factors which are of importence in the over-zsll evaluation of a guid-
ance system will now be discussed. One such factor is the servo energy
required to achieve a given error performance. For a servo system already
designed to meet the meximum expected hinge moment, the servo power is
proportional to the time average of the sum of the absolute displacements
of & between values at which & changes sign. Thus the average servo
power for e time t is

average sServo power -~ E—L?;I

Evaluation of the servo power for the systems discussed gbove has shown
that both methods of missile-control-system filtering require about

22 percent more power than does tracking-radar filtering. Thus in an
over-all evaluation based both on rms error performance and servo energy
requirements it is apparent thet tracking radar filtering is siightly
superior. '

There msy be still other factors of importance in guidance system
design even within the framework of the assumptions discussed earlier.
Usually these requirements are related to the specific design objectives
of the system and may dictate certain modifications such as the choice of
filtering locdaetion or alterations in certain individual transfer functions
of the system., For example, for short-range missiles in which lasunching
errors are not prevernted from bullding up, capture of the beam in minimum
time may be important enough that tracking-radar fliltering would be pref-
erable to missile-control-system filtering because of the fast response
which can be designed into the missile-control system. In other cases
it may be desirable to alter the design of the system somevwhat for any of
e number of reasons. Requirements of simplicity on certain parts of the
system or the necessity of using certain fixed and unaltersgble elements in
the design are examples. Another possibility 1s that for flight conditions
in ¥Which serious atmospheric turbulence exists it might be necessary to
meke certaln alterations to minimize the response to gusts. An investigsa-
tion of such factors is beyond the scope of this report.
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CONCLUDING REMARKS

This study hes considered the application of Wiener filter theory to
the optimization of a beam~rider system operating in the presence of nolse,
The Wiener theory hes been used to establish both the theoretical lower
1imit of error and the desired transfer~function characteristics. Although
these transfer-function charsacteristics might be expected to vary with
noise megnitude, it has been found that when the transfer function is cho-
sen to be optimm for only a mid-value of nolse the performance for other
nolse levels deviates to a negligible extent from the optimum.

In general, linear beam-rider systems can be synthesized to produce
theoretical optimum performance, but the practical achievement of these
results is restricted.by limiting of control deflections, rate of control
deflections, and radar recelver voltages. With suitable modifications,
however, the theory can be useful as a guide in system design. Optimize-
tion in the actual nonlinear case is shown to involve two considerations:
limiting and additional filtering. It 1s shown that the important types
of limiting tend to result in system Instebility. However by appropriste
placement of additional network filtering it is possible to minimize these
limiting effects without serious deterioration. of the error performence.

The deslign of a guidence system is most convenlently accomplished in
two stages: The first consists of designing the system on a linear basis
to approximate the Wiener transfer function, and the second of supplying
the additional filtering terms to minimize the limiting effects. The
application of the Wiener theory and the modifications required to arrive
at an optimum system design have been illustrated in this report by con-
sidering systems in which the optimum Wiener filtering is designed into
either the missile-control system or the tracking radar, and additional
network filtering supplied in elther place. It was found that comparable
error performance can be achieved by any of the methods. Considersation
of both rms error and servo energy requirements for the cases studied
indicates that optimum filtering in the tracking radar 1s slightly superior

to that in the missile-control system.

In modifying the results of the Wiener theory in order to minimize
the effects of limiting, the best results were, in general, obtained when
the additional filtering was added in such a way as to tend to keep the
operation of the system in the linear range. This has suggested the pos-
sibility of seeking an optimum solution based on the stipulation that the
filtering should restrict the operstion of the system to within 1ts linear
range. In reference 13 the resulis of such an analysis are presented and
compared ta those of the present report.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., May 11, 1955
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APPENDIX A
DETERMINATION OF THE OPTIMUM WIENER FILTER

Wiener's solution for the optimum transfer function Y5 can be
expressed by the following equation:

© o ) (CL) eid-'t
2nd " (w) vo Yoo e \a)

where Op represents the target motlon spectrasl density, and the quanti-
ties @T and o~ are defined as the factors of a certain functiom & with
poles and zeroes located in the upper and lower half-planes, respectively;
the factor ¢ 1is defined &s equal to O + &g so that

® = &p + O = OFO" (a2)

For the case to be consldered bere, the target motion end noise are
defined by
- — ka2 A
or nw® (w2 + K=) (43)

o =N (ak)

It will be noted that the nolse spectrum has been approximsted here by a
constant in order to reduce the complexity of the ecalculations. This
approximation is valid because the more exact form of the noise spectrum
(eq. (1)) is essentially flat over the bandwidth of the optimum transfer
function. Use of the more exact form of the noise spectrum affects only
the response at the high frequencies which are beyond the range of inter-
est. It should also be pointed out that the use of equation (A3), as
such, leeds to certain mathematlcel difficulties in evaluating the right-
haend side of equation (Al), because the theory requires that the poles
of ®p not be located on the real axis. Rigorously, to avoid these
difficulties, it is necessary to modify the target motion spectral density
to the following:

- ka?
Op = (e + 112) (@ + 122) (W + k2) (45)

where 13 and 1z are any small real mmbers. Thus the solution of equa-~
tion (Al) is & function of iw, 71, and M. The desired answer is then
obtained as the limit of Yo(iw,f1,M=2) @8 71 and 12 epproach zero.
However, it can be shown that the same answer can be obtained more simply
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by teking 1, and nz equal to zeroc as would be obtained fram the rigor-
ous process described above. It will be convenlient to retaln the 1n's
for a few lines; subsequently they will be dropped. According to equa-
tion (A2) +then,

af + k2qt + (ka2/7N)

(ou + in)(a + 1n2) (@ - in2) (o - 112) (0@ + k2)
(A6)

¢ (a)

¢T+¢N

(@ - a1)(a ~ ap)(a - ag) (o + a1)(a + o) (o + oa) (A7)
(@ + 1n2) (o + 112) (o - in1) (@ - inz)(a + ik)(a - 1k)

o{a) =

where a3, oz, &nd aa represent roots in the upper half-plane, It should
be noted that none of these roots are real. Froam equation (A2) also, it
follows that '

ot (a) = N o=z ox)(e - a)la - 0oa) _ p(a)
(@ =~ in1) (e - inz)(a - ik) (m - in1) (@ - inz)(a - 1k)
(a8)
o= (a) = (o + a1)(a + ap) (o + aa) ~p(~a)
(@ + 1n)(a + 1n2) (@ + 1k) ~ (o + 1n1) (@ + inz)(a + 1k)
(A9)
According to the definitlon given above
pla) = (@ - a1} (o - az2)(a ~ ag)
= o¢® + bza? + bia + bg (A10)
and
-p(-a) = a3 - b=0? + by - bg (A11)
where
by = ~(ay + az + oa)
b1 = x10z + w10a + G20 (A12)

bo = ~a10zus
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The inner integral of equation (Al) is

® ppla)eliaty,  yp2 17 elat
I, = == _ =&
) oo o () T Uy (e - ik} (o + a1} (o + az) (e + aa)

- k,;ii; £ (a)do (813)

In the above expression it should be noted that it has been assumed 13
and 1, are zero in order to simplify the following expressions. Now if
a 1s considered to be a complex varisble, the above integration is
equivalent to integration over the contour shown below.

Tmag(a)

4 a=ik Iz

1

Here the only two poles involved are a second-order pole at the origin
(actually at in1 and in, in the rigorous case) and a first-order pole
at o = ik since, a8 indicated above, -a1, -ap, and -ag lie in the
lower half-plane., The pertinent reslidues can be found in the ususl man-
ner as shown below:

Res(o) = lim 4 [o2P(a)]
aQ >0 dex
_ t_ _ ikb; + be
-+ - Ea (a1h)

Res (ik) 1im [(o - ix)f(a)]

o > ik

o-kt e-kt

2 (1k + o) (ik + a2) (1k + c@)  ~K2[-p(-ik)] (815).
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Hence the integral in equation (Al3) becomes
ikby + b t e~kt
Ekazi{- - Q j}
k2b2 Kbo -k2[-p(-ik}]

2 t -k£
ke, 1[71 + FEs t 720 _} (A16)

I;

where the definitions of 7, and y, are apparent.

The second integration in equation (Al) is merely a Fourier transform
and is found as follows: '

[o2])
I, = f e-iwtT,at
C

= 2ka2i / [71§-imt + E%S emiwt 4 5 o=k + iw)t}dt (ALT)
o

Thus,

= 2ke2i L
[ kbo(iw)2 k + iw

(7, + 72) (1w)® + <kyl + E%3>1“’ " .bL

(iw)2(k + iw)

o
n
|

2ka?i (418)

It should be noted that because 131 and 72 were assumed to be zero for
simplieity, questions concerning the existence of the above integral

arise, However if the snalysis 1s msde without this assumption, 1t can
be shown that the integral in equation (Al7) does exist, and that the
limit of this integral as 7; and nz go to zero becomes precisely equa-
tion (A18). The coefficients in this equation can be simplified to =
more useful form by the following development. From the definitions
given earlier in equations (A6) through (A9),

a® + K2a* + £- = [p(a) I[-p(~a)]

which at o = 1k ‘becches

K82 - 02 = [p(ik) 1 -p(~1k)] ]

N
L
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When thig relation is substituted in the definition of 7, g&iven in
equation (Al6),

5 = 1 _ p(ik)
2 T B[-p(-1k)1  (-k3)(-bo)

-1k® - bok? + ibik + bo
kZbg2

Thus the coefficients in equation (A18) simplify to

ik + b
ib
ERS -~ >

The transfer Pfunction Yo can now be found from the preceding
equations as

2ﬂ°+ (: o %)(j =+ lzx: + ¥> (19

which, in terms of the conventional complex frequency 8 = iw, reduces %o
the followlng altermative forms:

Yo(iw) =

1(<>(sss)=< ik+b>s (11’-&)9+1> (A20)

T 282 + 20 Tys + 1
(Tgs + 1) (7,252 + 2L, Tys + 1)

Yo(s)
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where
ik + ba
2 - a2 2 _ .
e Ty rery
ib . + as
26Ta = - Bt 2tyTy = 1 B
IIB = "%

In terms of the equivalent open-loop transfer function, ugy, of a unity
feedback system,

Yo(s)
1 - Yo(s)

(.2%2824_(.&)54.1
bg o bo
= Tk

32<§ + #)

To®82 + 26, Tgs + 1
= ky 32('1‘7\5 c:‘— 1) . | (A21)

uo(s) =

where

b
kp = 72

The coefflicients of the transfer function of the optlimum system have
been evaluated for the following velues of target motion and noise:

k = 0.1
T =5 gec
a=1g

N

15 £t2/radian/sec

Evaluation of the numerator of equation (A6) gives
2
.3 B 4 = 8 4
a® + ¥Ba®* + %ﬁr a® + 0.16 «* + 8.8

= (@ - ai)(a - ag)(a - aa)(a + a1) (o + aa)(a + ag)
L
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where
Gy = i l.ll-56

1.127 exp(i 0.543)

n

o]
<1427 exp(-1 0.543)

as

which are all located in the upper half-plane, These roots are then
sufficient to determine the optimum transfer function. The constants in

equation (A12) give
by = =1 2.9%
by = =4.201
b = 1 2.97

Then evaluating the parameters below equetion (A20) and in equation (A21)
gives the following values:

Parameter Value

Ta, 0.925
ta -T65
Tg .687
Toy .T700
Ey 519
A 2.50
ky, 7.h2

From these parameters the optimum transfer function of equation (420)
becomes

(0.855 82 + 1.41 8 + 1) (a22)
(0.687 s + 1)(0.490 82 + 0.727 s + 1)

Yo(s) =

and from equation (A21) the equivalent open-loop transfer function becomes

(0.855 88 + 1.41 & + 1)
s2(2.50 8 + 1) (423)

ro(s) = 7.k2
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APPENDIX B -

MISSITE-CONTROL~SYSTEM APPROXIMATION TO THE OPTIMUM
TRANSFER FUNCTION

An optimum linear deslgn 1s illustrated in figure 6, and in the fol-
lowing the system equations are derived. From figure 6,

(&) = kg (Tys+1) (Tas+1)
T Tgs(Tis+l) (Te2824+28 Tgs+l) (Tas+l)+kgkas (Tys+1) (Tos+1)

EL
N
(B1)
To simplify equation (Bl) it is convenient to meke Tag = Ty. This cholce
is not essential but 1ts use leads to more easlily handled equations. In
certain cases where gust disturbances are seriocus it may be more desirable
to choose Tg small, With the former assumption, however,

R
£ ()
- kg (Tys+1)
[ (TaTe>T1) 8%+(TaTa®+Ta2¢ g TaT1) 82+ (TaT1+Tq2{ g Ta+kska T ) 8+ (Ta+keka ) ]
_ kg Tms+1
= Ta+kgks B(asc+bs2+cstl) (82)
where
_ _TgTe®Ty o _ }
T T3 + kgka
p - Jalfe” ¥ 2TaTy) (83)
Tq + keks
_ 28,TaTq + T1Tq + kegksTo
¢ = T3 + Kgka
J
Thus the entire open-loop transfer function can be written as
_ M kpksV (Tes + 1) (Tios + 1)(TpZs2 + 28, Tps + 1) (84)

H =% T Tg + keka s2(Tas + 1) (T218 + 1)(as> + bs2 + c8 + 1)

It is desirable to choose the parameters in this equation so as to match
the optimum transfer function given in eguation (A21). Since the system
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equation (B4t} is of much higher order then the optimum, 1t is apparent
that the matching cannot be accomplished perfectly. However, as shown

in the text it 1is only necessary to approximste the optirmm transfer func-
tion over a limited frequency band. This can be sccamplished by choosing
certain terms in (B4) to correspond to terms in (A21). The remaining
terms should then be chosen to have negligible effect on the optimum error
spectrum,

There are many ways the design can be accomplished. No attempt will
be made to investigate all the possibilitles. One design, however, is
based on the following correspondences:

Ty <—> To
Tio0 €= Ty
T11 <> Ty

The remalning terms can be chosen in eny menner as long as their effect
is small over the optimum error spectrum. One of the many possible
choices is to factor the cubic to epproximate the aserodynamic term in the
mmerator as follows:

as® + b82 + c8 + 1 = (Tp®s2 + 2L, Tps + 1) (Tps + 1) (B5)

where Ty 1s arbitrarily chosen to be small. This factoring is not
essential to the design but it leads to simple equations for the control-
system paremeters. For example, for given aerodynamics and choice of

T;, the coefficients of the left side of (B5) are determined by

a = TLTba
b = Ty2t,Tp + Tp> (86)
c = TL + Engb

Solving equation (B3) then for the control-system parsmeters gives

_— Ty Th2Tg, . h
1 = BLToTTa + Too(Ta - BL,T) U
2 T2 - 2
oko = Iy (PR ) : (=)
o 2
Tp = E;EE%-EEE (LpTp = LgTa) + T2 + 28,Tp )
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Then the value of kpkg 18 determined from the desired geln:

k2k5=kqu+ksk3

It will be noted that gince only kzkg end kgks are specified, one of

the three may be chosen arbitrarily. The numerical values of the above
parameters have been calculated and are listed in column () , table II.
It should be polnted out that this design 1s only one of many poseible

designs. In any parilcular case certaln modifications may be necessary
as discussed in the section on comparisons and other considerations.
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TABLE I.- SUMMARY OF AFRODYNAMIC PARAMETERS FOR EXAMPLE MISSTLE

TABLE II.- SUMMARY OF CONTROL-SYSTEM PARAMETERS

Parameter Value
Tg, 0.0775
Tb 0552
T 2.087
g2 .000791.
Tm 846
ta 0536
t .0220

@ @ ©) ®
TIinear Nonlinear Nonlinesr Linear
Peremeter| migsile-control | missile-control missile-control missile-control
system optimum system optimm system opbtinum system optimum
with noise with nolse for 100-foot step yp for step "yp
ko 0.25 0.25 1.0 0,60
Ty 912 .912 .32 . 125
Ts .01593 .2kg .0559 .02
Tio .912 012 - -~ - -
Ty 2.5 .80 --- - -
kg .Ol62 .0k62 .0358 .0358
Ty .01603 .01603 025 .025
ka by 2 hh 2 Ly, 2 55
Ts 0122 0122 0721 .018
Ts 846 846 816 .86

ot
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(b) Block diagram,

Figure 1.- Beam-rider guidance system.
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Log amplitude response, log;q | Yo|, lorus
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Figure 2.~ Optimum transfer functions.
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Log,o spectral density of error components, lorus

NACA RM AS5SE1Ll

|
——— Wiener theory

——— System approximation

- Noise component

Target motion
component

\
\
\

\

\
\
1

) I F I T T 1 1 I | % 1

.0l

A 1.O
Frequency, cps

Figure 3,- Spectral density of error components.
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Figure 4.~ Optimum performance by Wiener theory.
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Log,, spectral density of control-motion components, lorus
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Figure 5.~ Spectral density of control motion components.
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Figure T.~ Effect of additional filtering in tracking radar; missile-
control system designed for cptimum Wiener filtering.
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£. Missile—control system designed for optimum Wiener
filtering with additional filtering in tracking radar

F. Missile-control system designed for both optimum
Wiener filtering and additional filtering

G. Tracking radar designed for optimum Wiener filtering
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Figure 8.~ Effect of practical iimite on minimum error; optimum for
desgign value.
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Figure 9.- Effect of additional filtering in tracking radar designed for
' optimum Wiener filtering.
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