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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM 

APPLICATION OF STATISTICAL THEORY TO BEAM-RIDER 

GUIDANCE IN THE PRESENCE OF NOISE. 

II - MODIFIED WIENER FILTER THEORY

By Elwood C. Stewart 

A study has been made of the application of Newton's modification 
of the Wiener filter theory to the optimization of a beam-rider guidance 
system operating in the presence of glint noise. Target and missile 
motions are assumed to be coplanar. 

The theory has been applied using a typical variable-incidence mis-
sile by placing a realistic restriction on the mean-square surface deflec-
tion so that the system operation is confined to the linear range. The 
transfer functions of the optimum guidance system are derived and an 
example missile-control system is synthesized. It is shown that the 
minimum attainable error corresponding to a realistic control restriction 
is close to that for the Wiener theory. Performance of the system versus 
noise magnitude is given. 

It is shown that the most critical saturable quantity is control 
deflection since constraining control deflections to realistic values 
can prevent saturation of other important quantities. Servo energy 
requirements are also greatly reduced in comparison with systems in 
which saturation is allowed to occur. 

INTRODUCTION 

Noise effects in missile-guidance systems impose one of the most 
serious limitations on the effectiveness of a missile. Noise signals in 
general have the effect of adding to the system false information which 
cannot be distinguished from true information. Thus the missile responds 
to the noise signals as well as to the true signal; the miss distance is 
thereby increased. Since many sources of noise (such as angular scintil-. 
lation) are inherent in the physical mode of operation and cannot be 
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removed, it is important that missile systems be designed to minimize 
the miss even though the noise is present. Statistical filter theory is 
useful in performing this minimization. 

One of the most valuable theories has been developed by Wiener 
(refs. 1 and .2). A previous report has considered the application of this 
theory to the minimization of the effects of radar glint noise in a beam-
rider guidance system (ref. 3). It was found there that the optimum per-
formance specified by the theory could not be obtained because of certain 
practical restrictions, as for example limiting of control deflection. 
Further study showed, however, that even in the presence of limiting, the 
optimum performance could be approached by the addition of network filter-
ing to the guidance system. On the other hand, the optimum form for the 
added filtering could not be determined from this study since the system 
design was based on a theory which did not take into account the finite 
range of operation of the saturable quantities. In the present report an 
attempt is made to overcome this deficiency by determining the optimum 
transfer function under this last restriction. The theory for such an 
approach was made available in a paper by G. C. Newton (ref. it-) on a modi-
fication of the Wiener theory. 

In the application of this theory to the missile guidance problem it 
is necessary to make certain assumptions. The main assumption made in 
reference 3, that is, the assumption that the target and missile move in 
the same plane, also will be made here. Other assumptions, such as those 
relating to the class of target maneuvers and noise, are discussed in the 
text.

SYMBOLS 

Uco	 transfer funôtion of optimum compensating network 

Hf	 transfer function of the fixed network 

N	 noise magnitude or zero frequency spectral density, ft2/radian/sec 

TN	 time constant of the noise spectrum shaping filter, sec - 

Yo	 optimum closed-loop transfer function 

a	 acceleration of target maneuver, ft/sec2 

k	 twice the average switching rate of target acceleration, 1/sec 

target displacement from a space reference, ft 

YN	
apparent target displacement from true target center due to noise, 

ft
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, ft 

id	 cross. -spectral density of the input signal with the desired output 

Oii	 spectral density of-the input signal 

ON	
spectral density of noise displacement 7N1 ft2/radian/sec 

OT	 spectral density of target displacement y, ft2/radian/sec 

€	 error between target and missile position, y -	 ft 

ET	
component of error € due to target motion, ft 

EN	 component of error € due to noise, ft 

P	 Lagrangian multiplier 

5	 control-surface deflection, radians 

angle of yaw, radians 

optimum open-loop transfer function 

open-loop transfer function of system approximation to .'o 

angular frequency, radians/sec 

( )	 complex conjugate of ( ) 

GENERAL CONSIDERATIONS 

Glint noise is a term that is used to describe a shift in the appar-
ent target location as determined by a radar. It is due basically to the 
variable reflection characteristics of aircraft targets and arises from 
the relative movement of the various reflecting surfaces. Since the radar 
utilizes the reflected signal to determine target location, variations in 
the reflected signal are interpreted by the radar as shifts in the target 
location. Of the many sources of noise which may exist in a missile-
control system, glint noise is one of the most serious since it has a 
physical origin which cannot be eliminated, imposing a fundamental limi-
tation on missile effectiveness. The situation in regard to glint noise 
is illustrated in figure 1(a) where the true target position is indicated 
as YTand the glint noise is represented by the displacement y• 
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The present report is restricted to a two-dimensional study in which 
the target and missile move in a horizontal plane.' The guidance system 
is considered to be of the beam-rider type illustrated in figures 1(a) and 
1(b). It should be noted here that displacements are referred to a 
fixed space reference. The'general problem of the guidance system is to 
make the missile position coincide as closely as possible with the true 
target position y. The difference YT - YM is indicated on this figure 
by the error €, which obviously should be minimized. The criterion of 
merit which will be used here is the conventional mean-square time average 
of the error. This criterion is particularly appropriate in the case of 
the beam-rider system because the target-to-missile range is not normally 
transmitted to the missile; since the missile never knows when the target 
will be reached, it is reasonable to minimize the error for all values 
of time. 

The design of a system normally depends on the inputs to be encoun-
tered, in this case the target motion and the noise. Because of their 
random nature neither of these quantities can be conveniently described 
explicitly as functions of time, and statistical descriptions are more 
suitable. In the following paragraphs the target motion and noise are 
briefly described. 

The glint noise can be defined by specifying both the power spectrum 
or power spectral density as a function of frequency, and the amplitude 
distribution. Many measurements have been made on the characteristics of 
glint noise. (For a brief bibliography see ref. 3 . ) Although these meas-
urements are somewhat complicated and uncertain, it is generally found 
that the amplitude distribution is approximately Gaussian and that the 
spectral density can be adequately represented by 

I" 

NTN2w2+l	 (1) 

An examination of glint noise spectra indicates that the break point 
( 1/2rN) is generally on the order of several cycles per second and as 
in reference 3 will be taken to be 6 cps, corresponding to TN = 0.0265 
second. The magnitude of the spectrum, N, of equation (1) depends on 
factors such as target size and target aspect so that the guidance system 
is generally forced to operate over a wide range of magnitudes. This 
range may extend from 7 ft2/radian/sec for small targets up to around 
30 ft2/radian/sec for large bombers. For this range of magnitudes it 
might be thought that it would be necessary to optimize the system for 
each noise magnitude. As shown in reference 3, however, this was not the 
case for the method used therein since near-optimum results were obtained 
by optimizing only for a mid-range value called the design value. It Is 

'The complete three-dimensional problem would require a more complex 
analysis than used herein. Possibly either the present theory or Wiener's 
theory for multiple time series (ref. 1) could be applied to this case. 
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not unreasonable to believe that the same will hold for the method of the 
present report. As in reference 3, a design value of 15 ft2/radian/sec 
will be used here. 

Consider now the target maneuver. It is difficult to say exactly 
how a target will maneuver when under attack. A reasonable situation 
might be one in which the target maneuvers in some random manner to avoid 
being hit. As in reference 3, it is assumed that the target maneuvers 
laterally with maximum acceleration alternately in opposite directions. 
The duration of each acceleration is-a random function determined by some 
distribution. A reasonable distribution which leads to an easily handled 
spectral density is the Poisson distribution [(l/T)exp(-T/T)], where T 
represents the time and T the average time between switches of the 
acceleration. The spectral density of the target acceleration for this 
maneuver is described by

ka2 
- lt(w2 + k2) 

Here the quantity a represents the magnitude of the target acceleration 
normal to the beam, and k is twice the average switching rate or 
k = 2/T. The spectral density of the target displacement is then given 
by

ka2 
OT	 'DYT = rw4 (w2 -+ k2) 

Because of the w4 in the denominator it would appear that there is a 
problem here concerning the existence of this spectral density. However, 
it can be shown that it is possible to use this representation for pur-
poses of computations (see Appendix A). For the typical tail-chase maneu-
ver to be used in a later example the target is assumed to maneuver with 
±1 g acceleration at an average period of 5 seconds, which gives 
a = 32.2 ft/sec 2 and k = 0.4 switch/sec. 

It should be pointed out that an optimum design based on the above 
target maneuver will operate efficiently against this class of maneuver 
as a whole, although not necessarily efficiently against one particular 
target maneuver such as a single target turn. However, as indicated in 
reference 3, this design will be essentially optimum for the single-turn 
maneuver as well.

(2) 
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ANALYSIS, RESULTS, AND DISCUSSION 

The Modified Wiener Theory 

The primary objective of the modified Wiener theory is to arrive at 
an optimum transfer function in which the effects of certain saturating 
elements are considered. Ideally it would be desirable to determine this 
optimum transfer function without any assumptions about whether or not the 
system would operate in these saturation regions. However, no such theory 
is available at present. The approach considered herein is one in which 
the transfer.functionsof certain available elements are chosen so that 
saturation does not occur. Thus the system is forced to remain linear 
and linear methods are immediately applicable. Although it-is not appar-
ent at first glance, there are certain indications that this approach may 
lead to desirable results. First, it appears intuitively that saturation 
is undesirable because of the loss of both intelligence and ability to 
control the missile when in the saturated regions. Second, it is indi- 
cated in reference 3 that the undesirable effects of saturation can be 
reduced by the addition of filtering without undue increase in the error; 
this method in effect tends to keep the operation of the system in the 
linear range. These are only indications, however, and the real justi-
fication in the completely linear approach depends on the resultant error 
performance which can only be established by investigation. 

The theory to'be used in this approach follows Newton's modification 
of the Wiener filter theory. To describe the essentials of the theory it 
will be êonvenient to refer to figure 2 where the block diagram corre-
sponding to . the general filter problem is given. It should be noted that 
the notation here corresponds to that in reference Ii. . In the general 
situation there are usually certain elements that are given and may not 
be altered in the design of the system. These elements are denoted by 
the transfer function H. in the figure. In particular cases the fixed 
elements might represent missile aerodynamics, servo motors, and so forth, 
depending on the application. 'To describe the limiting or saturating 
quantities it is necessary to express them in terms of the fixed elements 
and either the input or output of the system. Which choice is made de-
pends on the location of the fixed elements - if the output element is 
fixed, as is usually the case, it is desirable to express the saturating 
quantities in terms of the output. Figure 2 illustrates a situation 
wherein the output element is fixed. At this point it is necessary to 
know the saturating quantities. For this purpose we introduce a ficti-
tious situation. Since in the, general case the saturating quantities are 
different from the input to the fixed network, the input to Hf in 
figure 2 is imagined to be fed through certain transfer functions Hsn 
which act as recording elements and whose outputs are the saturating 
quantities °sn• It should be pointed out that according to this formu-
lation of the problem the outputs of the saturating elements do not feed 
into the system but are used merely for the purpose of evaluation. From 
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the above discussion, then, it is clear that by specifying both the fixed 
and saturating networks, the saturating quantities can be related to the 
output. The remainder of the system, indicated in figure 2 by the compen-
sating network Hco is unknown and must be determined according to a 
specified criterion of merit. 

By way of comparison, the original Wiener theory considers only the 
problem of choosing the over-all transfer function so as to result in 
minimum mean-square error, O, between the actual output, 00' and the 
desired output, 0d The modified theory, however, considers the minimi-
zation of this same mean-square error with a side restriction on the 
available range of operation of the limiting quantities; for mathematical 
reasons it is convenient to consider this restriction to be in the form 
of a mean-square limitation. According to the method of Lagrange (ref. 5) 
this means that the quantity to be minimized is of the form 

e. + X Pnesn
	

(3) 

where the. Pn' S represent Lagrangian multipliers which must be chosen 
properly to restrict the operation of the saturable quantities esn to 
very nearly the linear range. 

In most cases it is possible to control saturation by an appropriate 
choice of the mean-square value of the saturating quantities 0sn• In the 
simple case when a quantity has a Gaussian distribution of amplitudes the 
relation between the mean-square value of this quantity and the probability 
of its limiting is well known and particularly simple. The distribution of 
the saturating quantity in the actual case may not be Gaussian for either 
of two reasons: First the input may not be Gaussian or, second, there may 
be several saturating quantities which interact. On the other hand, even 
in these cases the distribution is frequently near enough to Gaussian that 
saturation can be readily controlled by an appropriate choice of mean-
square value.	

. 

The derivation of the solution for the optimum compensating network 
which minimizes the expression (3) is beyond the scope of this report, 
but as shown in reference 4 an expression for this network is 

	

1re-1t r 
Hf( ia)ld(a)et	 1 

11co( i )) =
2itA(w) J0	 J	

dcL dt 

where
(.) 

N 

A(w)	 [Hf(i(j)Hf(iw).+ X PnHsn (iw)Hsn ( 'W) ii(w)

n=i 

CONFIDENTIAL



	

.. S.. S •.. • •S	 •S	 •	 S	 •	 •S•	 •S 
• .	 . S	 • •	 S	 S S S	 S • S	 S S • 
• S	 •• S	 •S •	 I	 S	 S •	 •	 •	 •S S • 

	

8 .: ..: :	 : : •	
.. :: •• IE1TL,	 NACA RM A55E11a 

In this equation the	 quantities represent certain combinations of 
target motion and noise spectral densities (see Appendix A), Hf refers 
to the fixed network transfer function, Hsn refers to the transfer func-
tion of the nth saturating component, and p n represents the correspond-
ing Lagrangian multiplier. Of these quantities, all will noriiially be 
known with the exception of the pn . This means that only the form of 
Hco is known from this equation since the numerical constants depend on 
the values of p. The p, however, are implicitly related (ref. ii. ) to 
the mean-square restrictions on esn by the following equation 

e _Sn  
2 = /	 Hco(i)Hco(1)Hsn - (iW)Hsn (J) ii (t)dW	 (5) 

I 

U - 

Here it is to be noted that the integrand in equation (5) is dependent 
on the P1,P2, ... ,P by virtue of the dependence of Hco on these quan-

tities (eq.. (4)). It can be shown that in many cases of interest the pt8 

are uniquely determined by the equations (4) and (5) when a suitable mean-
square value, e5 2 , is chosen. This quantity is to be chosen so as to 
limit the probability of saturation to a small value according to a cri-
terion given later. In most practical applications the complexity of the 
operations involved in solving these equations does not permit the general 
solution to be obtained explicitly in terms of the input characteristics 
and fixed networks. In spite of this a great deal can be learned from 
certain numerical solutions, as will be shown. 

Application of Modified Wiener Theory to the 
Beam-Rider Guidance System 

The validity of the application of the modified Wiener theory to the 
beam-rider guidance problem depends on whether or not several restrictions 
inherent in the thebry are met. In general, they are no stricter than are 
those of the unmodified Wiener theory. First, the input quantities, target 
motion and noise, must be stationary random series (see ref. 6 for a 
detailed definition) and defined by corresponding power spectra which are 
continuous. It is generally believed that displacements at the target are 
approximately stationary random series (ref. .3). Since the beam-rider 
system operates from these displacements, the inputs to the beam-rider 
system are also stationary random series. Second, the transfer function 
of the system must have constant coefficients. In general, however, the 
kinematic loop of guidance systems involves a time-variable range factor. 
In particular, for the beam-rider system the time-variable factor is the 
ratio of the launcher-to-missile and the launcher-to-target ranges. On 
the other hand, because the miss is determined primarily by what happens 
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near the end of flight during which the variation in this ratio is small, 
it is reasonable to assume that the requirement of constant coefficients 
is approximately met. Third, the transfer functions of the fixed and 
saturating components must be known. 

Simplifications.- There are many quantities which may saturate in the 
beam-rider system; the most important are (i) control motion, (2) rate of 
control motion, and (3) radar receiver voltages. To apply the theory to 
all these nonlinearities simultaneously would be a tremendous task. How-
ever, there are indications that only one limiting quantity need be con-
sidered in the present problem. 

One indication is that of the three types of limiting not all are of 
equal severity so that one type tends to predominate. Intuitively, it 
might be felt that control-motion limiting is the most serious type and 
that placing a restriction on the control motion will satisfactorily reduce 
the other types of limiting. Of course the validity of this presumption 
would require verification. 

Another indication is that of the three types of limiting one is more 
fundamental in that it is more difficult to remove than the others. It 
will be noted that items (2) and (3) above are both control-system limita-
tions while (i) is essentially an aerodynamic or mechanical limitation. 
Since control systems are relatively versatile and can be designed to cover 
a wide range of characteristics, it appears that control-motion limiting 
is the most fundamental to the problem. 

From these indications it appears reasonable to consider only control-
motion limiting. The validity of the assumption that reducing this one 
type of limiting will reduce the other types sufficiently will then be 
verified. In terms of figure 2 this simplification means that only one 
saturating-component transfer function, H, is involved. If the fixed 
network is chosen to be the aerodynamic transfer function so that the 
control motion is the input to the fixed network, then Hs equals unity. 
Thus, a block diagram more suited to the specific case of the beam-rider 
system would appear as in figure 3. It will be noted in figure 3 that the 
input quantity called Oi in figure 2 has been split into the two parts 
which exist in the actual case,-target motion YTand noise N. Like-
wise the desired. output 9d of figure 2 is represented in figure 3 by the 
target motion y. The box Hco, then, is that portion of the guidance 
system which is to be chosen to minimize the expression (3). It may be 
noted that in the form given the diagram does not bear a direct resemblance 
to the form of an actual guidance system since the latter will involve 
feedback loops. The form shown, however, typifies that of the general fil-
ter problem and is better suited to calculation. The solution of this 
problem can be readily converted to that of the actual beam-rider system. 
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A few additional remarks are appropriate concerning the two quanti-
ties Oid and 1jj in equation ( Ii). If oii is defined as the autocor-
relation function of the input in figure 2, then 

i(T) 
=	 1	 T 1 

o(t)e(t + T)dt 
T. 

In terms of the input of figure 3, this becomes 

i(T)	 11T [YT(t) + y(t)ffy(t + T) + yN( t +

+ N( T) + TN (T) + cp(T) 

It is normally assumed that there is no correlation between target motion 
and noise so that cpTN(T) and q(T) are zero. It follows that the Fourier 

transform of cp( .r) is

ii( W) = T(W) + 

Since in the present case the target motion and the desired output are 
identical it is easy to show in a similar fashion that. 

id(W) = 

General solution with control motion restriction.- By virtue of the 
simplifications discussed in the previous paragraphs the application of 
the theory to a beam-rider-type guidance system becomes feasible. For the

	

case illustrated by figure 3, the optimum compensating network,	 is

given by  

-1 P 	 ______ 

	

llco(1W) = 2tA(w)J0 e
	 _____ da dt

(6) 

where

A(w) = [nf (iw)Hf (iw) + P]1i(W) 

In the above equation the quantities OT and 0ii are known from the tar-

get motion and noise characteristics as previously discussed. The transfer 
function Hf of the missile aerodynamics was chosen for this study to 
represent that for a typical variable-incidence missile. The significant 
transfer functions for this missile are given by the following conventional 

equations (ref. 7)
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'V	 1	 TMs +l	
() =	

s(Ta2s2 + 2 aTas + 1) 

M Td 
;2s2 

+ 2 bTbs + 1 

	

5(TMS+l)	 (8) 

from which the fixed network becomes 

M	 i	 Th 
2 
s + 2bP,S + 1 

Hf =	 =	 s2(Tas2 + 2aTas + 1) 

Table I summarizes the parameters for this particular missile at a given 
flight condition. It should be pointed out for later comparison purposes 
that these aerodynamics correspond to those used in the previous noise 
study, reference 3. The remaining parameter p is not known so that 
equation (6) can only be used to give the general form of 11co. To 
illustrate this, the form of Hco is derived in Appendix A where it is 
shown that 

I \ _m2 nCOSI - IS
S2(T2S2+2T5+1) (Ta2 s +2aTas+l) 

(Ts+1) (T72 s2+2 7Tys+l) (T2s2+2Ts+
1

) (Tv2 52+2 vTvs+l)
(10) 

Many of the factors involved in this equation are functions of the-unknown 
parameter p. The exceptions are (i) the aerodynamic factors, that is, 
the gain T 52 and the second quadratic in the numerator, and (2) the terms 
due to target motion and noise characteristics, that is, the first two 
denominator factors. The remainder of the terms can only be evaluated 
after the proper value of p has been established. This value can be 
determined from the restriction placed on the mean-square control motion. 
The analog of equation (5) in the present case is 

b 
=i: 

Hco( iW) Hco(i )[T(W) •+ N( w)1 	 (ii) 

In theory, equations (10) and (11) can be solved for the compensating 
network, H 0 , corresponding to an arbitrary mean-square control motion, 

T. In this application, however, "because of the complexity of the fixed 
network and the input quantities, the computation is unwieldy. Alter-
natively the following procedure will be used here: First calculate the 
function 11co from equation (io) for a selected value of p. After the 
result is inserted in equation (11), evaluation of the integral gives a 

value of T. By repetition of this process for a few judiciously 
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selected values of p it is possible to determine the value of p 

corresponding to the desired mean-square restriction F. 
As mentioned previously, Hco does not exist, as such, in the beam-

rider guidance system. The relationship between the filter problem being 
solved and the actual beam-rider system is illustrated, by a comparison of 
figures 3 and Ii. From figure 3 it is apparent that if the entire guidance-
system transfer function is represented by Y 0 , then 

Yo = Hcollf	 (12) 

Thus the solution for the compensating network 11co determines the desired 
over-all transfer function Y0 for the actual form of beam-rider system 
shown in figure . L.• 

Unfortunately, the theory does not give the performance of this opti-
mum system directly in terms of the resultant error. The minimum error can 
be found, however, from the following relationship (ref. 7) 

+	 EN  

= I	 Ii - Yo( iw)I 2 T( u ) dw + 
J_ I I Yo( iw)12dc	 (13) 

Effects of control-deflection restriction.- The procedure discussed 
in the above paragraphs has been carried out for a range of values of the 
Lagrangian multiplier p. The results of this study are presented in 
figure 5 where the errors due to target motion and noise, the total error, 
and the control deflection are given as functions of p. These curves 
illustrate the nature of the restriction of the control deflection. Large 
values of p here correspond to a large restriction and therefore small 
control deflections. It is apparent from the expression (3) that as p 
decreases the restriction on control deflection is reduced until at p = 0 
the Wiener case is reached. By cross-plotting these curves so as to elimi-
nate the variable p which has no significance in itself, the curve of 
figure 6 is obtained. This curve is fundamental to the problem in that it 
illustrates the dependence of error on available surface deflection. Here 
the minimum obtainable error according to Wiener theory is indicated by 
the horizontal line off to the right. The curve is shown dotted in this 
region in order to indicate that these values of error would require unob-
tainable control deflections. 

The importance of the curve of figure 6 is that it represents the theo-
retical lower limit of error corresponding to any restriction on root-mean-
square control motion. Each point on the curve would be achieved by a dif-
ferent guidance-system transfer function. The interesting feature of this 
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Ta2S2 +2  aTa5+l

s2 (T2s+l)

1
	

Tb2 s2+2 bTb s-i-1 

Tx2 S2+2 xTxS+l	 Ty2s2+2yTys+l
tLo =k

(16) 
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curve is that as the surface deflection is reduced from large values, the 
minimum error increases relatively slowly over an appreciable range of 
obtainable control deflections. To determine the best operating point on 
the curve it is necessary to specify the degree to which limiting will be 
allowed to occur. Since in this linear case the control deflection is 
Gaussian, an rms control deflection of half the maximum allowable deflec-
tion would then restrict it to within these limits about 95 percent of 
the time (ref. 8). For the specific missile being used in this study the 
maximum control deflection is about 15 which would put the desired opera-
ting point at 7.5 as indicated in figure 6. It can be seen from figure 6 
that for this operating point the effect of this restriction is an increase 
in error of about six feet above that of the Wiener theory. It is a some-
what surprising result that the increase in error is so small for such a 
great reduction in surface deflection. The significance of this is, then, 
that the optimum Wiener result can be approached closely even' with the 
operation confined to a realistic linear range. 

Characteristics of the optimum transfer functions.- It is of interest 
to consider in greater detail the transfer functions corresponding to the 
desired operating point in figure 6. This operating point corresponds 
very closely to a value of p = lO (see fig. 5) which will therefore be 
used as an example. In Appendix A the transfer functions of the compen-
sating network, closed-loop system, and open-loop system have been derived. 
The results are given below; the numerical values of the parameters are 
summarized in table II. 

Ta2 52+2 aTa5+1 
Hco =

(Ts+l) (T72s2-i-27Tys+l)

1 

Tu252+2 uTu5+l

2 (T2s2+2Ts+l)

Tv2 82+2 vTvS+l

(i1i) 

-	 Ta2S2+2Ta5+l 

Yo - (Ts+l)(Ty2s2+2yTys+l)

1

Tu252+2 uTu s+l

Tb2 s2+2bTbs+l 

T2s2+2 vTvs+l

(15) 

Due to Wiener	 Due to control
	

Due to 

theory	 restriction	 aerodynamics 
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It is illuminating to trace to their origin the various factors com-
prising these optimum transfer functions. Analysis shows that terms due 
to the basic Wiener theory also appear in the modified theory. In addi-
tion, other terms due to the aerodynamics and the control-deflection 
restriction also appear in - the solution. This situation is illustrated 
by the grouping of terms in equations (i ii. ), (15), and (16). It can be 
said that the terms which arise from basic Wiener theory correspond in in 
form to the first group of terms. However, certain constants are some-
what altered, as can be seen from table II by a comparison of the param-
eters given for the two theories for identical target motion and noise 
characteristics. The second group of terms in the equations indicates 
that the optimum form of the filtering term due to control-motion restric-
tion is quadratic. 2 The last group of terms in the transfer functions can 
be traced to the aerodynamics. In fact, the numerators are identical with 
terms in the aerodynamic transfer function. 

The transfer functions are'illüstrated in figures 7(a), 7(b), and 
7(c); these curves represent the optimum transfer functions in the pres-
ence of the control-motion restriction. For comparison purposes the cor-
responding transfer functions obtained from the Wiener theory are also 
plotted on these figures. It can be seen that, in general, the transfer 
functions for these two cases are similar at the very low frequencies and 
separate to a greater étenta the frequency is increased. The difference 
is primarily due to filtering terms which are required to satisfy the 
restriction on control motion. 

The added complexity has certain effects on the control motion and 
error. These effects can best be illustrated by means of the correspond-
ing power spectra, that is, by the integrands in equations (11) and (13). 
These spectra have been plotted in figures 8 and 9, and for comparison the 
corresponding curves for the Wiener theory are shown. It can be seen frOm 
figure 8 that the spectrum of the control deflection for the more complex 
system attenuates far more rapidly than does that for the Wiener theory. 
It is as a result of this fact that the modified system does not limit. 
As for the error, it is seen from figure 9 that over the important fre-
quency range the error due to noise is not altered too seriously so that 
most of the increase in the total error is due to an increase in the tar-
get motion component. 

Effect of noise magnitude on performance.- The preceding results were 
determined on the basis of a design noise magnitude which lay between the 
expected extremes. The noise magnitude may vary because of targets of 
different size, aspect, 'and turning rate. For this reason the error per-
formance for the optimum transfer function has been determined and is 

21t is interesting to note that from calculations not presented here 
it has been observed that the damping ratios of these quadratics always 
lie between 0.7 and 0.8 over the entire range of control motion presented 
in figure 6.
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shown in figure 10 (curve A) as a function of the zero frequency noise 
magnitude, N. The error performance shown is optimum only at the design 
value of noise. Shown for comparison is- - curve B, which represents the 
error performance derived from the Wiener theory, corresponding to the 
same design condition (see ref. 3). The difference between these two 
curves, then, is the increase in the error as a result of the rms restric-
tion on the control deflection. 

As a further comparison two additional curves obtained from refer-
ence 3 are shown. First, curve C illustrates the performance of a system 
(with certain saturable elements) which was optimized for the fastest pos-
sible response to a step input in the absence of noise. The performance 
can be seen to be significantly poorer than the optimum performance given 
as curve A. Second, the best result that could be obtained in reference 3 
is shown as curve D in the figure. The system corresponding to this curve 
was not optimum because the linear Wiener theory used in this approach was 
not capable of evaluating all of the various filtering terms discussed in 
preceding paragraphs. For example, terms due to Wiener theory were not 
altered, and terms due to aerodynamics were not used. Terms due to con-
trol restriction were included but the performance was limited by the 
arbitrarily assumed form. Thus the system was not optimum and limiting 
occurred; the performance deteriorated accordingly. 

System synthesis.- To achieve the results which have been presented 
it is necessary to design the guidance system shown in figure 14 to have 
the optimum transfer function Y0 . This can be done in many different 
ways since the actual beam-rider system consists of two distinct parts: 
the tracking radar and the missile-control system. For example, the opti-
mum transfer function Y0 might be split up and apportioned between these 
two parts of the guidance system. Or, on the other hand, the missile-
control system alone might be designed to approximate the optimum Yo in 
which case the tracking radar should be designed to have a relatively fast 
response. In a similar manner the tracking radar could be optimized, in 
which case the fast response should be designed into the missile-control 
system. 

To investigate a11 these possibilities is beyond the intended scope 
of this report. As an example, however, of one possible design the choice 
of missile-control-system filtering was investigated. For this case it is 
desired to design the missile-control system to match the optimum transfer 
function Y0 . This procedure is not unique; the analysis used herein is 
based primarily on cut-and-try procedures. It has been found that the 
desired system could be synthesized in a conventional fashion illustrated 
in figure 11. To show how this system is capable of supplying the optimum 
filtering the open-loop transfer function has been derived in Appendix B 
where it is shown that with certain assumptions 
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YM	 k2k5V	 (T10s + 1)(T4s + 1)(Tb2 s2 + 2bS + 1)

- T - Td + k5k3 s2 (T11s + 1)(T5s + 1)(as3 + bs2 +cs + 1)

(17) 

Comparison with the optimum p.o in equation (16) shows that certain dif-
ferences in form exist. However, equation (16) can be expressed in another 
form by factoring approximately certain quadratic terms which have large 
damping ratios. Equation (16) can be written'then as 

11
0
	 k1

(Tas + l)(Tas + 1)(Pb 2s2 + 2 bTbs + 1) 
Ts + l)(Txs + l)[ ( Txs + 1)(Ty2s2 + 2Tys + 1)]

(18) 

It is now possible to choose the parameters in equation (it) to match those 
of equation (18); the specific values are given in table III. 

The remainder of the system consists of the tracking radar whose 
response should be made relatively fast for this design approach. Further, 
from the plots presented in figures 8 and 9 it is apparent that the track- 
ing radar should be designed so as not to alter appreciably the spectral 
distribution of error or control motions. Thus a break point or natural 
frequency of several cycles per second would be satisfactory. 

Comparisons and other considerations.- In a REAC simulation of this 
system its operation was examined in further detail. Of particular impor-
tance in this examination was the control deflection and the associated 
servo energy. It was found that the control deflections were effectively 
restrained to within the linear range and as a result the servo, energy was 
greatly reduced. For a given servo the power expended is proportional to 
the time average of the sum of the absolute displacements of control 
motion. Thus the average servo power over a sufficient time interval of 
duration t can be determined from 

average	
IL2bI servo power -
	 - 

For this system there is more than a two-thirds reduction in required servo 
energy over that for the system with smallest servo energy requirement dis-
cussed in reference 3.	 The saving in servo energy becomes even greater 
when compared to systems for which the error performance becomes progres-
sively worse than the optimum. The control-deflection time history 
obtained from the REAC was used to show that the required control rates 
are easily attainable since they rarely exceeded 3 to 3.5 radians/sec. 
This system has other virtues. For example, there is.also a reduction 
of voltages within the circuit to reasonable and easily obtainable values. 
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From this simulation work, then, two facts are apparent. First, it 
is clear that the validity of applying only a control-motion restriction 
in the analysis has been verified, since the control rate and system vol-
tages did not saturate. Second, it is apparent that in comparison with 
systems of reference 3 in which limiting occurred, the present system not 
only produced a smaller error but was accompanied by other desirable 
effects such as decreased servo energy and circuit voltage requirements. 

• The missile-control system discussed in the above paragraphs is 
intended only as an example designed to achieve optimum performance 
against noise. It is clear that since the system operation is essen-
tially linear, all designs which approximate the desired Y 0 would give 
approximately the same performance. However, it is often necessary to 
satisfy other requirements which are related to the specific design objec-
tives of the system and which may favor certain designs or system con-
figurations. Because of the freedom in choice in distributing the oti-
mum filtering in the system, the optimum characteristics specified by the 
theory do not, in general, place an inherent limitation on satisfying other 
requirements. For example, requirements on transient response during the 
beam entry phase may dictate a design in which more of the optimum filter-
ing is located in the tracking radar. Similarly, requirements of simpli-
city on certain parts of the system may dictate yet a different design. 
Because these and similar requirements are related to the detailed design 
objectives, an investigation of such factors is beyond the scope of this" 
report.

CONCLUDING REMARKS 

This study has considered the application of NewtOn's modification 
of the Wiener filter theory to the choice of optimum transfer function 
for the beam-rider guidance systemT. The analysis has been applied to a 
typical variable-incidence missile at a given flight condition attacking 
a maneuvering target in the presence of glint noise. By minimizing the 
mean-square error with a side restriction on the mean-square value of 
certain quantities, limiting effects, of primary importance in missile 
guidance, are largely eliminated. 

Although many limiting-type nonlinéarities are of importance, this 
study has shown that the critical nonlinearity is due to control-deflection 
limiting, since a restriction applied to the eflection sufficient to con-
fine control motions to within the linear range also satisfactorily pre-
vented other types of limiting. Results have been given which illustrate 
the effect of the control-motion restriction on the minimum rms error. 
Zero restriction corresponds to the Wiener theory whose results are 
unattainable since impossibly large control motions are demanded. How-
ever, as the surface deflection is reduced by means of an increasing 
restriction, the minimum error increases slowly until at a realistic 
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value of the control deflection the error has increased only a few feet. 
Thus it is clear that the optimum performance predicted by the Wiener 
theory can still be approached closely by confining operation of the sys-
tem to a realistic linear range. 

The transfer functions of the optimum guidance system have been given 
and have been compared to the corresponding transfer functions from the 
Wiener theory. Differences were shown to be the result of added filtering 
terms demanded by the restriction on control motion. The various filtering 
factors can be traced to their origin. It was shown that terms due to 
basic Wiener theory appear in the solution, and that the additional terms 
can be associated with the control-motion restriction and the missile aero-
dynamics. 

For the optimum system, performance against variable noise magnitude 
was given and was compared to Wiener theory. As an example of one possible 
design which achieves these results, a missile-control system was synthe-
sized to match the optimum transfer function. In a REAC simulation the 
operation of this sytem was examined in further detail. It was found that 
the magnitude of circuit voltages, and control-motion rates are greatly 
reduced in comparison with systems in which limiting occurs. Similarly, 
the required servo energies are appreciably reduced, resulting in about 
a two-thirds saving. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., May 11, 1955 
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APPENDIX A 

DETERMINATION OF THE OPTIMUM MODIFIED WIENER FILTER 

The solution for the optimum compensating network Hco illustrated 
in figure 3 is given by equation (6) in the text as follows: 

Hf(ict)T(a)e iat
da dt 

A(a)

} (Al) 

(A2) 

1	 ' ettf 11C0(iw) = 2&(w) J0co 
where

= [ + P] (Dii M 

In this equation Oii is defined as 

ii = OT +

where OT and ON represent the spectral density of the target motion and 
noise, respectively. The quantities A+ and A are defined as the factors 
of A with poles and zeros in the upper and lower half-planes, respec-
tively. Thus

A=A+A
	

(A3) 

For the case to be considered here the target motion and noise will be 
taken as

ka2 
= ,tw4 (w2 + k2)	

(Alt.) 

(A5) 

It will be noted that the noise spectrum has been approximated here by a 
constant in order to reduce the complexity of the calculations. As shown 
in reference 3, this approximation is valid because the noise defined by 
equation (1) is essentially flat compared to the passband of the optimum 
system. It should also be pointed out that use of equation (A 1 ) leads to 
certain mathematical difficulties which occur in the process of evaluating 
the right-hand side of equation (Al), because the theory requires that the 
poles of OT not be located on the real axis. To avoid these difficulties 
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odify the target-motion spectral density to the 

ka2 

	

= ic( 2 +	 2)()2 + Ti2 )(( + k2) 

where and Ti2 are any small real numbers. The solution to equation 
(Al) will then be a function of iw, T1 1 and ri2. The desired answer is 

obtained by taking urn Y 0 (iw,111,Ti2) as T1 1 and Ti2 -, 0. However, it can 

be shown (see ref. 3) that the same answer can be obtained more simply by 
taking TI1 and TI2 equal to zero as would be obtained from the rigorous 

process described above. 

Now by combining equations (A2), (A lt-), and (A5), 

jj(cL) = T (° ) +ON(M) 

- N 
a8 + k2 .a4 + (ka2/itN) 

-	 + k2) 

= N (a - api)(a - ap2 )(a - aps)(a + api)(a + ap2 )(a +ap3) 

a4 (a + ik)(a - 1k) 

=N	
[p((X)][-p(-a)] 

-. a4 (a. + ik)(a - ik) 

where the aprn represent roots in the upper half-plane. The polynomial 

p(a) is
3 

p(a)= 11 (a - am)
in=i 

a3 + b2a2 + b 1a + b0	 (A8) 

where

= -(api + ap2 + cLps) 

	

= apiap2 + ctpiaps + ap2aps	 (A9) 

bo = -ap1ap2aps	 I
S 
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In a similar manner

-p(-a)	 as - b2ct2 + b 1a. -
	

(Alo) 

An expression to be used. later can be obtained from these preceding 
equations as follows 

a6 + k2ct4 +	 = (a3 + b2cx2 + b 1a + bo) (a3 - b2a2 + b 1a - bo) vN 

from which

The quantity Hf in equation (Al) represents the fixed network or 
aerodynamics and its general form (ref. 7) is given by 

1 
Ts 

	[(i - Tb2a2 ) + i(2bTba))	
(Al2) YMHf(ia) = T = a[(1 - Ta2a2 ) + i(2aTaa)I 

and

1	 [(1 - Tb2a2 ) - i(2bTba)]  H(ia) = -	
a2(1 - T,a2a2)	

(A13) 
 - i(2aTaa)] 

Thus

1	 ['Pj-4a4 + ('b2'i2 - 2Pi 2 ) a2 + 11	
(All-) Hf(ia)Hf(ia) =	

a4[aa4 + (a2Ta2 - 2Ta2 ) a2 + 1] 

Accordingly it can be shown that in equation (Al) 

Hf(ia)Hf(ia) + p 

- 

-	 m 4 41m 4 4 Il f' 2ri, 2_rp  2) a2+1]  
±5 W i-I-a a +\ 1- Sa -a	 -a  

4	 4 
H (a-a.qn) II (a+aqn) 

=  4 
pTa a4{Ta4a4+(la2Ta2-2Ta2)a2+l] 

pTa4	
q(a)q(-a) 

a [Ta4a4+('a2Ta22Ta2)a2+1}	
(A15) 
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--

where the a.qn represent roots in the upper half-plane. The polynomial 
q(a) above is

4 
q(a) = TI (x - aqn) 

n=1 

ma4 +c3a3 +c2a2 +c 1a+c0	 (A16)

where

CS = - (ctqi +	 + aqs + ctq4) 

C2 = aqlaq2 + aqlaq3 + cXq1Oq4 + CLq 20Lqs + aq2cLq4 + aqscLq4
(Al7) 

C1 = - ( ctqiaq2aqs + q1aq2aq4 + aq1aq3aq4 + 0q2aq3c1q4) 

C O = aq1aq2aqsaq4 

In a similar manner, 

q(-a,) = a4 - c3a3 + c20L2 - c 1a + co	 (A18) 

An expression to be used later can be obtained from these preceding equa-
tions as follows 

pT54 Ta4a8+pT: ( a2Ta2_2Ta2 )a6+(Tb4 +pT )a4+(1b2Tb2_2Tb2)a2+l 

= PTs4 T4q(a)q(-ct) 

= PTs4Ta4 (+c8 3+c2a2+c la+co) (t c3aS+c2a2cia+co) 

from which

2 _	 1 
Co - ,m n' 44 l-'-s -'-a

(Al9) 

The second equation in (Al) can now be found by combining equations (A7) 
and (A17)

4	 q(i)q(-a)p(ct)[-p(-a)] 
A(m) = pTa N 

a8[ Ta4a4 + (' a2Ta2 - 2Ta2 ) a2 + l](a. +.ik)(a - ik) 
(A2o) 
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This expression can be split into two factors with poles and zeros in the 
upper and lower half-planes. From the preceding definitions q(a) and 
p(a) both have their zeros in the upper half-plane. Thus 

A+ (a) = pTa4N
q(cL)p(.a) 

a,4 (1 - Ta2ct2 + i2 aTaa ) ( a - ik)
(A21) 

A(a.) = q(-(x)[-p(-(t)]
a, 4(l - Ta2a2 - i2 aTacL)( cL + ik)

(P22) 

Now, let us consider the evaluation of the first integral in equa-
tion (Al). This integral can be evaluated by combining equations (All.), 
(A13), and (P22) as follows: 

Ii Hf(a)T(a.)eat da 
J
r

o3
	

A- (cc) 

-	 ka2 r
00 (1 - Tb2ct2 - i2bTba)et 

- - T52 J	 a.2(a - ik)q(-a)[-p(-a)] da 

_ 	 (i - Tb2a.2 - i2bTba)et I	 4 
-	 ka2	 ____ dct 

3 
- - T52t - 

a2 ( 'a - ik) II ( a. + aqn) 11 ( a + pm) 
fl1	 111=1 

- ka2 r 00 r(a)aa.	 (P23) 
=	 T52it LJ...Q 

where f(a) is defined as the integrand. By considering a. to be a com-
plex variable, the integral can be evaluated by a contour integration indi-
cated by the following sketch:

çOI'IFIDENTIAL



.. •.. I ••s s • •	 S I	 S I • I	 •5, •	 •• • • S	 S S	 S I I, • S• S	 • • 

24

IS	 c	 •	 • • a	 • • •	 I S I	 S S S I	 S	 5 5	 •	 •	 S. S S .	 S	 •s,	 •	 •	 • • , ••	 II S S 555 ) 
CONFIDMfJtL	 NACA RM A55E11a 

There are two poles within this contour, a second-order pole at the' origin 
and a simple pole at a = ik, as indicated. The residues are 

Res(o) = lim - [ct2f(ct)] 

- t — kboco2 bTb + ik(boc 1 + b 1co) + b0c0 
- kb0c0 

t 

	

1th0c0 + i	 (A24) 

Res(ik) = lim (a — ik)f(a) 
ct4jk 

- (Pi 2k2 + 2Tbk ± l)et 
-	 -k2q(-ik)[-p(-ik)] 

= l2 et	 (A25) 

Now,.by means of the residue theory, the value of the integral is given 
by

2ika2 

	

= — T	 [Res(o) + Res(ik)J 

Thus from equations (A24) and (A25), 

2ika2 (Yj + - t + 72ekt)	 (6) I i = - _____ T52	 kb0c0 

The second integral in equation (Al) is denoted by 12 and is merely 
the Fourier transform of I. Hence 

12 =f IieWtdt 

2ika2 r [7,e-'Wt ____
I	 + kb0c0 e

t + 72e_(1)t]dt 
T52 (7) 
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Thus it can be shown that 

= - 2ika2 (71 + y2 )b0co(iw) 2 + [ky1boco + (1/k) Jiw + 1 
2	 T52b0c0	 (lw)2(k + 1w) 

= - 2ika2 Ta2 ( iw) 2 + 2Ta( iw) + 1

	

- T52b0 c 0	 (iw)2(k + 1w) (P28) 

It should be noted that since the Ii's were assumed to be zero, questions 
concerning the existence of the above integral arise. However, as Indi-
cated in reference 3, when the analysis is made without this assumption, 
the integral in equation (A27) does exist, and the limit of this integral 
as the i's approach zero becomes precisely equation (A28). 

The coefficients can be expressed in a more convenient form by elimi-
nating the intermediate parameters y j and 72 by means of definitions 
given in equations (P24) and (P25). The following results are then 
obtained:

2aTa = ky1b0c0 + 1 
 j 

-' = -2 bTb - I 

Also

b0c1 + b1c0
b0 Co

(P29) 

	

Ta2 =	 + y2)boco 

- - b0 c0 ( 2k2 + 2 bTbK + 1) kbo co2 bTb + ik(boc 1 + b 1 co) - 

	

-	 k2q(-ik)[-p(-ik)]	 k2boco	 k2 

(A3o) 

For the missile parameters, of table I and the value of k given on page 28 

Tb2 k2 + 2 bT.bk + 1 1 

so that very nearly 

T 2 - -
	 b0c0	

+ 
2 a,Tct	 1

a
-	 k2q(-ik)[-p(-ik)]	 k	 - k2

(A31) 
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Now, from equation (Al) the optimum compensating network can be 
determined as follows:

- 12 

Hco(iw) -  2%A+(w)
(A32) 

Substituting equations (A21) and (A28) into (A32) gives 

Ho(iw) 

- -	 ka2 

-	 tNpTs2Ta4boCo	 p(w)q(w)

(A33) 

To reduce this expression to a more standard form it can be seen from 
equation (A16) that

4 
q(w) = nHi (w - ctqn) =

4 
= CO H (+ '\ 

n7-1 OLqn ,i 	 (A34) 

Similarly from equation (A8)

= mi (w - ctpm) 

3 

m=i ( pm ) 

	

=b0 II ----+l	 -(A35) 

Also by using the definitions given in equations (All) and (A19) the com-
pensating network can be shown to reduce to 

2 
(iw)2[ 

Hco(iW) = T5
+ 2T(i) + 

H(---+l) H 
m=i\ pm	 Jn=i

+ 2aTa(i(A)) + lJ

(A36) 

By the substitution of the conventional complex frequency s for iw 

ilco(s)	
T52 S(TS + 2Tps + 1)(Tp2 s2 + 2 aTas + i) 

4 (is 

( +l) m=i	
11 

n=1 
11

(A37) 
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It is shown later in the numerical examples that certain terms combine to 
give quadratic factors as shown below 

co(s) = Ts2	
S(Ta+2aaS+)(Ta5+28.Tas+) 

(Ts+l) (T72s2+2yT7s+l) (Tu2s2+2Ts+l) (Tv2s2+2vTvs+l) 

(A38) 

2_ ____ T7 - - ap2aps 

2 7T7 = 
01P2 + aps 

ap2aps

2uTu = aqi. + aq2 
aqiaq2 

ni2_	 1 
- -. ctqsaq4 

cc q + aq4 
= 1 aqsaq4 

The compensating network given in equation (A38) can be used to deter-
mine the over-all transfer function Y 0 . From figure 2 

Y0 (s)	 Hco(s)Hf(5)	 (A39) 

Substitution of equations (Al2) and (A38) into (A39) gives 

, .	 (Ta2s2+2Ts+l)(Tb2s2+2bTbs+l) 
Yo(s) - -

(Ts+l) (Ty2s2+2yTys+l) ( Tu2s2+2 uTus+1 ) ( Tv2 s2+2 vTv5+l)

(Ali.0) 

If Y0 is considered to represent a unity feedback system, the equivalent 
open-loop transfer function is shown in the later specific example to be 
of the following form: 

-	 Y0(s) 

ho(s) - 1 - Ye(s) 

- k
(Ta2S2 + 2aTaS + 1 ) ( Tb2s2 + 2 bTbs + 1) 

- h 
s2 ( TAS + 1)(Tx2s2 + 2Ts+l)(Ty2s2 + 2 yTyS + i)

(Al) 
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Because	 and	 are close enough to unity (table II) it is possible 
to factor the corresponding terms approximately to give 

.to(s)	 k	 (Tas + l)( Tas + 1 ) ( Tb2s2 + 2 bTbs + i) 

s2 (Ts + l)(Ts + l)[(Ts + 1)(Ty 2 s2 + 2yTys + 1)] 

(A14.2) 

The numerical evaluation of the optimum system has been carried out 
for the following values of target motion and noise: 

k=O. lI.	 a  

T = 5 sec	 N ' = 15 ft2/radian/sec 

From this example p will be taken to be 104 since, as shown in the text, 
this value results in a near-optimum restriction on control deflection. 

Evaluation of the numerator in equation ( A7) gives 

On +k2a4+=cL6+Q.16ct4+8.8 

3	 3 
= fl (a -apm) m=i (a + apm) m=1 

where

api =i 1.456 

= 1)427 exp(i 0.513) 

ap3 = -1.427 exp(-i 0.543) 

which are all located in the upper half of the complex a plane. Then 
from equation (A9)

= -i 2.91i-

= 

bo = 1 2.97 
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Similarly from equation (A15) for p = 

pTs4Ta4aB+pTs4(a2Ta2_2Ta2)a6+(Tb4+pTs4)a4+(1b2Tb2_2Tb2)cL2+l 

= (22.58xlo8)a8_(7.5xlo5)a6+(6.26(lo_3)a4_(o.006o91)a2+1 

4	 4 
= pTs 4Ta4 ri (a-a ) H (cL+cLqn) 

Solving for the roots gives 

qi = 3.593 exp(O.804) 

= -3.593 exp(-0.804) 

= 12.92 exp(O.804) 

a 4 = -12.92 exp(-0.804)

which again are all in the upper-half a. plane. From the definitions in 
equation (A17),

cs = -i 6.677 

C2 = -187.61 

c = i 883.10 

Co = 2.155 

Now from the values of the roots a.pm and a.qn as well as the b and c 
coefficients, the optimum compensating network can be calculated by means 
of equation (A38). For this purpose it is necessary to evaluate the left-
hand sides of equations (A29), (A31), and the parameters following equa-
tion (A38). Results of these calculations are given in table II in terms 
of damping ratios and undamped natural periods. Substitution of these 
parameters in equations (A38) and (A Ii-O) gives 
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APPENDIX B 

MISSILE-CONTROL-SYSTEM APPROXIMATION TO 

THE OPTIMUM TRANSFER FUNCTION 

The optimum linear system is illustrated in figure 11. In the follow-
ing section the system equations are derived. 

Using figure 11 it can.be shown that 

* -	 kS(TM5 + 1)(T3s + i) 

EN 	 Tds ( Tls + 1)(Ta2s2 + 2 aTa5 + 1)(T9s + i) + kSkSS ( TMS + 1)(T2s + i)

(Bi) 

To simplify equation (Bi) it is convenient to make T3 = TM. This assump-
tion is not essential but its use leads to simpler equations. In certain 
cases where gust disturbances are serious it may be more desirable to 
choose T3 small. With the former choice 

•	 k 

- s [( TdTa2Tl ) sS+(TdTa2+Td2 aTaTl +(TdTl+Td2 aTa+ksksT2 ) s +(Td+ksks) I 

-	 ks	 (TMs+1) 
- Td+kskS s(as3+bs2+cs+l) 

where

Td m 

Td 
a=

+ k5k3 

b = 
Td( Ta2 + 2aTaTj,) 

Td + k5k3 

= aa 'd + TlTd + k5k3T2 

Td + k5k3

(B2) 

(B3) 
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Thus the entire open-loop transfer function can be written as 

-	 - k2k5V	 (T10s + 1)(T4s + 1)(T- 02S2 + 2 bTs + 
- T + k5k3 s2 (T11s + 1)(T5 s + 1)(as3 + bs2 + Cs + 1)

(BIl) 

By - comparison with equation (A42) it can be seen to be of the same form as 
the optimum transfer function. Thus the following correspondences between 
quantities in equations (Bl-) and (A42) are appropriate: 

T11 -,T 

T5 -.,Tx

(B5) 
T10 

T4 4-Ta 

Also it is apparent that

a —5 TxTy2 

b ( Ty2 + Tx2	 (B6) 

C +_4 Tx + 

For these values of a, b, and c, equations (B3) can be solved for the 
remaining parameters to give

aTa 1 
T1=bTa_a2a	 I 

TdTa2T 1 - aTd	 I k5k3 =

	

	 ( B7) a 

T	
cTd + ckk3 — ? aTaTd - T1Td 

2 = J 
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cl gain: 

k2ks(k1j
Td + k5k3	

(B8) 
V 

Since only k2k 5 and k5k3 are specified, one of the three gains k2 , k3, 
or ks may be chosen arbitrarily, subject to the condition that voltage 
limiting does not occur. From the above equations the system parameters 
have been determined and are tabulated in table III.

2 
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TABLE I. - SUMMARY OF AERODYNAMIC PARAMETERS FOR EXAMPLE MISSILE 

Parameter Value 

Ta 0.0775 
Tb .0552 

Td 2.087 

Ts .0007911 
TM

.0536 

.0220 

TABLE II. - SUMMARY OF PARAMETERS OF OPTIMUM TRANSFER FUNCTIONS 

Parameter Modified Wiener 
theory value

Wiener theory 
value• 

Ta 1.13 0.925 
.805 .765 

T .687 .687 
T7 .700 .700 

.519 .519 
T 2.5 2.5 

3.2 7.12 

T .278 
720 - - - 

Tv .07711. --- 

tv .0581 

Tx .184 --- 

.722 

Ty .0187 
.0513
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Y OF PARAMETERS OF OPTIMUM SYSTEM 

Parameter Value 

0.0538 
T4 .1.13 
T10 1.13 

2.5 

.1814. 
ks 014.63 
T 1 .186 

-.6711. 

.373 

.81i.6
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Figure 1. - The beam-rider system. 
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(a) Compensating network H0. 

Figure 7.- Optimum transfer functions. 
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