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RESEARCH MEMORANDUM

APPLICATION OF STATISTICAL THEORY TO BEAM-RIDER
GUIDANCE IN THE PRESENCE OF NOISE.
iI - MODIFIED WIENER FILTER THEORY

By Elwood C. Stewart

SUMMARY

A study has been made of the application of Newton's modification
of the Wiener filter theory to the optimization of a beam-rider guidance
system operating in the presence of glint noise. Target and missile
motions are assumed to be coplanar.

- The theory has been applied using a typical variable-incidence mis-
sile by placing a realistic restriction on the mean-square surface deflec-
tion so that the system operation is confined to the linear range. The
transfer functions of the optimum guidance system are derived and an
example missile-control system is synthesized. It is shown that the
minimum attainable error corresponding to a realistic control restriction
is close to that for the Wiener theory. Performance of the system versus

noise magnitude is given.

It is shown that the most critical saturable quantity is control
deflection since constraining control deflections to realistic values
can prevent saturation of other important quantities. Servo energy
requirements are also greatly reduced in comparlson with systems in
which saturation is allowed to occur.

INTRODUCTION

Noise effects in missile-guidance systems impose one of the most
serious limitations on the effectiveness of a missile. Noise signals in
general have the effect of adding to the system false information which
cannot be distinguished from true information. Thus the missile responds
to the noise signals as well as to the true signal; the miss distance is
thereby increased. Since many sources of noise (such as angular scintil-
lation) are inherent in the physical mode of operation and cannot be
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" removed, it is important that missile systems be designed to minimize
the miss even though the noise is present. Statistical filter theory is
useful in performing this minimization. '

-

, One of the most valuable theories has been developed by Wiener

(refs. 1 and 2). A previous report has considered the application of this
theory to the minimization of the effects of radar glint noise in a beam-
rider guidance system (ref. 3). It was found there that the optimum per-
formance specified by the theory could not be obtained because of certain
practical restrictions, as for example limiting of control deflection.
Further study showed, however, that even in the presence of limiting, the
optimum performance could be approached by the addition of network filter-
ing to the guidance system. On the other hand, the optimum form for the
added filtering could not be determined from this study since the system
design was based on a theory which did not take into account the finite
range of operation of the saturable quantities. In the present report an
attempt is made to overcome this deficiency by determining the optimum
transfer function under this last restriction. The theory for such an
approach was made available in a paper by G. C. Newton (ref. L) on a modi-
fication of the Wiener theory. '

In the application of this theory to the missile guildance problem it
is necessary to make certain assumptions. The main assumption made in
reference 3, that is, the assumption that the target and missile move in
the same plane, also will be made here. Other assumptions, such as those
relating to the class of target maneuvers and noise, are discussed in the
text.

SYMBOLS
"Heo transfer function of optimum'compensating network
Hp transfer function of the fixed network
N noise magnitude or zero frequency spectral density, ftz/radian/sec
TN time constant of the noise spectrum shaping filter, sec
Y, optimum closed-loop transfer function
a ‘acceleration of target maneuver, ft/sec®
k twice the average switching rate of target acceleration, l/sec
yi target displacement from a space reference, ft
YN apparent target displacement from true target center due to noise,

ft
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M missile displacement from a space reference, ft
®ig cross-spectral depsity of the input signal with the desired oufput
d41 - " spectral density of- the input signal
ON spectral density of noise displacement YN ftz/radian/sec
& | spectral density of target displacement yT: ftg/radian/sec
€ error between target and missile position, yqp - ¥yyus ft
€p component of error € due to target motion, ft
€y componént of error € due to noise, Tt
o) . Lagrangian multiplier
o) lcontrol-surface deflection, radians
g angle of yaw, radians
Lo optimum open-loop transfer function
1 open-loop transfer function of system approximation to uHo
w angular frequeﬁqy, radians/sec

~—~
~—r

complex conjugate of ( )

GENERAL CONSIDERATIONS

¢lint noise is a term that is used to describe a shift in the appar-
ent target location as determined by a radar. It is due basically to the
variable reflection characteristics of aircraft targets and arises from
the relative movement of the various reflecting surfaces. Since the radar
utilizes the reflected signal %o determine target location, variations in
the reflected signal are interpreted by the radar as shifts in the target
location. Of the many sources of noise which may exist in a missile-
control system, glint noise is one of the most serious since it has a
physical origin which cannot be eliminated, imposing a fundamental limi-
tation on missile effectiveness. The situation in regard to glint noise
is illustrated in figure l(a) where the true target position is indicated
as Yy and the glint noise is represented by the displacement yy-
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The present report is restricted to a two-dimensional study in which
the target and missile move in a horizontal plane.l The guidance system
is considered to be of the beam-rider type illustrated in figures 1(a) and
l(b). It should be noted here that displacements are referred to a
fixed space reference. The general problem of the guidance system is to
make the missile position coincide as closely as possible with the true
target position yp. The difference yp - yv 1s indicated on this figure
by the error e, which obviously should be minimized. The criterion of
merit which will be used here is the conventional mean-square time average
of the error. This criterion is particularly appropriate in the case of
the beam-rider system because the target-to-missile range is not normally
transmitted to the missile; since the missile never knows when the target
will be reached, it is reasonable to minimize the error for all values
of time.

The design of a system normally depends on the inputs to be encoun-
tered, in this case the target motion and the noise. Because of their
random nature neither of these quantities can be conveniently described
explicitly as functions of time, and statistical descriptions are more
suitable. In the following paragraphs the target motion and noise are
briefly described.

The glint noise can be defined by specifying both the power spectrum
or power spectral density as a function of frequency, and the amplitude
distribution. Many measurements have been made on the characteristics of
glint noise. (For a brief bibliography see ref. 3.) Although these meas-
urements are somewhat complicated and uncertain, it is generally found
that the amplitude distribution is approximately Gaussian and that the
spectral density can be adequately represented by

N
o C FEF T ()

An examination of glint noise spectra indicates that the break point
(l/EuTN) is generally on the order of several cycles per second and as
in reference 3 will be taken to be 6 cps, corresponding to Ty = 0.0265
second. The magnitude of the spectrum, N, of equation (1) depends on
factors such as target size and target aspect so that the guidance system .
is generally forced to operate over a wide range of magnitudes. This
range may extend from 7 fta/radian/sec for small targets up to around
30 ftz/radian/sec for large bombers. For this range of magnitudes it
might be thought that it would be neéessary to optimize the system for
each noise magnitude. As shown in reference 3, however, this was not the
case for the method used therein since near-optimum results were obtained
by optimizing only for a mid-range value called the design value. It is

1The complete three-dimensional problem would require a more complex”
analysis than used herein. Possibly either the present theory or Wiener's
theory for multiple time series (ref. 1) could be applied to this case.
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not unreasonable to believe that the same will hold for the method of the
present report. As in reference 3, a design value of 15 ft2/radian/sec
will be used here.

Consider now the target maneuver. It is difficult to say exactly
how a target will maneuver when under attack. A reasonable situation
might be one in which the target maneuvers in some random manner to avoid
being hit. As in reference 3, it is assumed that the target maneuvers
laterally with maximum acceleration alternately in opposite directions.
The duration of each acceleration is.a random function determined by some
distribution. A reasonable distribution which leads to an_easily handled
spectral density is the Poisson distribution [(1/T)exp(-T/T)], where T
represents the time and T the average time between switches of the
acceleration. The spectral density of the target acceleration for this
maneuver is described by

Qoo = —1{8'2_
Jr m(w® + k)

Here the quantity a represents the magnitude of the target acceleration
normal to the beam, and k 1s twice the average switching rate or

2/T. The spectral density of the target displacement is then given
by

_ _ ka2 :
T = % T AR 59 (@)

Because of the w* in the denominator it would appear that there is a
problem here concerning the existence of this spectral density. However,
it can be shown that it is possible to use this representation for pur-
poses of computations (see Appendix A). For the typical tail-chase maneu-
ver to be used in a later example the target is assumed to maneuver with
.+l g acceleration at an average period of 5 seconds, which gives

= 32.2 ft/sec® and k = 0.4 switch/sec.

It should be pointed out that an optimum design based on the above
target maneuver will operate efficiently against this class of maneuver
as a whole, although not necessarily efficiently against one particular
target maneuver such as a single target turn. However, as indicated in
reference 3, this design will be essentially optimum for the s1ngle -turn
maneuver as well.
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' ANALYSIS, RESULTS, AND DISCUSSION

The Modified Wiener Theory

The primary objective of the modified Wiener theory is to arrive at
-an optimum transfer function in which the effects of certain saturating
elements are considered. Ideally it would be desirable to determine this
optimum transfer function without any assumptions about whether or not the
system would operate in these saturation regions. However, no such theory
is available at present. The approach considered herein is one in which
the transfer. .functions.of certain available elements are chosen so that
saturation does not occur. Thus the system is forced to remain linear
and -linear methods are immediately applicable. "Although it-is not appar-
ent at first glance, there are certain indications that this approach may
lead to desirable results. First, it appears intuitively that saturation
is undésirable because of the loss of both intelligence and ability to
control the missile when in the saturated regions. Second, it is indi-
. cated in reference 3 that the undesirable effects of saturation can be
reduced by the addition of filtering without undue increase in the error;
this method in effect tends to keep the operation of the system in the
linear range. These are only indications, however, and the real justi-
fication in the completely linear approach depends on the resultant error
performance which can only be established by investigation. :

The theory to be used in this approach follows Newton's modification
of the Wiener filter theory. To describe the essentials of the theory it
will be convenient to refer to figure 2 where the block diagram corre-

" sponding to. the general filter problem is given. It should be noted that
the notation here corresponds to that in reference k., 1In the general
situation there are usually certaln elements that are given and may not
be altered in the design of the system. These elements are denoted by
the transfer function He . in the figure. . In particular cases the fixed
elements might represent missile aerodynamics, servo motors, and so forth,
depending on the application. 'To describe the limiting or saturating
quantities it is necessary to express them in terms of the fixed elements -
and either the input or output of the system.' Which choice is made de-

" pends on the location of the fixed elements - if the output element is
fixed, as is usually the case, it is desirable to express the saturating
quantities in terms of the output. Figure 2 illustrates a situation
wherein the output element is fixed. At this point it is necessary to
know the saturating quantities. For this purpose we introduce a ficti-
tious situation. Since in the general case the saturating quantities are
different from the input to the fixed network, the input to He 1in
figure 2 is imagined to be fed through certain transfer functions Hgp
which act as recording elements and whose outputs are the saturating
quantities @gp. It should be pointed out that according to this formu-
lation of the problem the outputs of the saturating elements do not feed
into the system but are used merely for the purpose of evaluation. From
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the above discussion, then, it is clear that by specifying both the fixed
and saturating networks, the saturating quantities can be related to the
output. The remainder of the system, indicated in figure 2 by the compen-
sating network H,, 1is unknown and must be determined according to a
specified criterion of merit.

By way of comparison, the original Wiener theory considers only the
problem of choosing the over-all transfer function so as to result in
minimum mean-square error, O¢, between the actual output, 6o, and the
desired output, 64 The modified theory, however, considers the minimi-
zation of this same mean-square error with a side restriction on the
available range of operation of the limiting quantities; for mathematical
reasons it is convenient to consider this restriction to be in the form
of a mean-square limitation. According to the method of Lagrange (ref. 5)
this means that the quantity to be minimized is of the form

N .
% + ) oudan (3)

n=1

where the. pn's represent Lagrangian multipliers which must be chosen
properly to restrict the operation of the saturable quantities 6gn to
very nearly the linear range.

In most cases it is possible to control saturation by an appropriate
choice of the mean-square value of the saturating quantities 6g,. In the
simple case when a quantity has a Gaussian distribution of amplitudes the
relation between the mean-square value of this quantity and the probability
of its limiting is well known and particularly simple. The distribution of
the saturating quantity in the actual case may not be Gaussian for either
of two reasons: First the input may not be Gaussian or, second, there may
be several saturating quantities which interact. On the other hand, even
in these cases the distribution is frequently near enough to Gaussian that
saturation can be readily controlled by an appropriate choice of mean-
square value. % )

The derivation of the solution for the optimum compensating network
which minimizes the expression (3) is beyond the scope of this report,
but as shown in reference 4 an expression for this network is

oo (o] H . ®. (a)eiat )
Hco(iw) = ai—(w')- l e-iwtfm‘ 3 = A];(z.d,) da dt
whére ' ? (%)
_ N
AMw) = |Hp(iw)Hp(iw) + ) ppEgn(iw)Hg,(1w) o4 (w)
[ ‘ gi; s s ]® i
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In this equation the & quantities represent certain combinations of
target motion and noise spectral densities (see Appendix A), He refers

to the fixed network transfer function, Hgp refers to the transfer func-
tion of the nth saturating component, and p, represents the correspond-
ing Lagrangian multiplier. Of these quantities, all will normally be
known with the exception of the p,. This means that only the form of

Heo 1is known from this equation since the numerical constants depend on
the values of pp. The p,, however, are implicitly related (ref. ) to
the mean-square restrictions on 6gn by the following equation

052 =\/p Hco(iw)Hco(iw)Hgn(i“)Hsn(iw)Qii(m)dw (5)

e 0]

Here it is to be noted that the integrand in equation (5) is dependent
on the P1sP25 5Py by virtue of the dependence of Hep oOn these quan-

tities (eq..(4)). It can be shown that in many cases of interest the ppt's
are uniquely determined by the equations (4) and (5) when a suitable mean-

square value, 0sn®, is chosen. This quantity is to be chosen so as to
1imit the probability of saturation to a small value according to a cri-
terion given later. In most practical applications the complexity of the
operations involved in solving these equations does not permit the general
solution to be cbtained explicitly in terms of the input characteristics
and fixed networks. In spite of this a great deal can be learned from
certain numerical solutions, as will be shown.

Application of Modified Wiener Theory to the
Beam-Ridgr Guidance System

' The validity of the application of the modified Wiener theory to the
beam-rider guidance problem depends on vwhether or not several restrictions
inherent in the theory are met. In general, they are no stricter than are
those of the unmodified Wiener theory. First, the input quantities, target
motion and noise, must be stationary random series (see ref. 6 for a
detailed definition) and defined by corresponding power spectra which are
continuous. It is generally believed that displacements at the target are
approximately stationary random series (ref. 3). Since the beam-rider
system operates from these displacements, the inputs to the beam-rider
system are also stationary random series. Second, the transfer function
. of the system must have constant coefficients. In general, however, the
kinematic loop of guidance systems involves a time-variable range factor.
In particular, for the beam-rider system the time-variable factor is the
ratio of the launcher-to-missile and the launcher-to-target ranges. On
the other hand, because the miss is determined primarily by what happens’
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near the end of flight during which the variation in this ratio is small,
it is reasonable to assume that the requirement of constant coefficients
is approximately met. Third, the transfer functions of the fixed and
_saturating components must be known.

Simplifications.- There are many quantities which may saturate in the
beam-rider system; the most important are (1) control motion, (2) rate of
control motion, and (3) radar receiver voltages. To apply the theory to
all these nonlinearities simultaneously would be a tremendous task. How-
ever, there are indications that only one limiting quantity need be con-
sidered in the present problem.

One indication is that of the three types of limiting not all are of
equal severity so that one type tends to predominate. Intuitively, it
might be felt that control-motion limiting is the most serious type and
that placing a restriction on the control motion will satisfactorily reduce
the other types of limiting. Of course the validity of this presumption
would require verification.

Another indication is that of the three types of limiting one is more
fundamental in that it is more difficult to remove than the others. It
will be noted that items (2) and (3) above are both control-system limita-
tions while (1) is essentially an aerodynamic or mechanical limitation.
Since control systems are relatively versatile and can be designed to cover
a wide range of characteristics, it appears that control-motion limiting
is the most fundamental to the problem.

From these indications it appears reasonable to consider only control-
motion limiting. The validity of the assumption that reducing this one
type of limiting will reduce the other types sufficiently will then be
verified. In terms of figure 2 this simplification means that only one
saturating-component transfer function, Hg, is involved. If the fixed
network is chosen to be the aerodynamic transfer function so that the
control motion is the input to the fixed network, then Hg equals unity.
Thus, a block diagram more suited to the specific case of the beam-rider
system would appear as in figure 3. It will be noted in figure 3 that the
input quantity called 65 in figure 2 has been split into the two parts
which exist in the actual case,- target motion yp and noise yy- Like-
wise the desired output 63 of figure 2 is represented in figure 3 by the
target motion ym. The box Hep, then, is that portion of the guidance
system which is to be chosen to minimize the expression (3). It may be
noted that in the form given the diagram does not bear a direct resemblance
to the form of an actual guidance system since the latter will involve
feedback loops. The form shown, however, typifies that of the general fil-
ter problem and is better suited to calculation. The solution of this
problem can be readily converted to that of the actual beam-rider system.
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A few additional remarks are appropriate concerning the two quanti-
ties ®@iq and ¢ii in equation (4). If oii is defined as the autocor-
relation function of the input in figure 2, then

1 T
q)ii("') = lllilo ﬁf

p1(t)ei(t + T)dt
Ty - 4

In terms of the input of figure 3, this becomes

- L FT : _
0r1 (1) = 1im [ Tyg() + yp(9)]lon(t + 1) + (s + Dae
Tyco - :

g (™) + @y(T) + Opy(T) + Ppp(7)

It is normally assumed that there is no correlation between target motion
and noise so that QTN(T) and @NT(T) are zero. It follows that the Fourier

transform of @34(T) is
055 (w) = op(w) + oy(w)

Since in the present case the target moticn and the deéired output are
identical it is easy to show in a similar fashion that. '

21a(w) = ogl(w)

General solution with control motion restriction.- By virtue of the
simplifications discussed in the previous paragraphs the application of
the theory to a beam-rider-type guidance system becomes feasible. For the
case illustrated by figure 3, the optimum compensating network, H.,, is

given by }
: iat
1 fme'iwtfw He(1a)op(a)e
(w) 0o

Heo (iw) = S (o) = A () da dt
: : (6)
where
Aw) = [Hfiiwiﬁf(iw) + pJ@ii(w)

In the above equation the quantities &p and ;i are known from the tar-
get motion and noise characteristics as previously discussed. The transfer
function Hy of the missile aerodynamics was chosen for this study to
represent that for a typical vayi&ble-incidence missile. The significant
transfer functions for this missile are given by the following conventional
equations (ref. 7T) ‘ '
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y 1 Tys + 1
5~ T3 s(Ta?s® + 20,T,s + 1) (7
YM  Tq Tp®s® + 20Tys + 1
VT T : (8)
¥ s s(Tys + 1)
from which the fixed.network becomes
g oM _ 1 Tpost +2fTps + 1
£ =% " T2 s2(Ta%s2 + 20 Tas + 1) (9)

Table I summarizes the parameters for this particular missile at a given
flight condition. It should be pointed out for later comparison purposes
that these aerodynamics correspond to those used in the previous noise
study, reference 3. The remaining parameter p is not known so that
equation (6) can only be used to give the general form of Hepo. To
illustrate this, the form of Heo 1s derived in Appendix A where it is
shown that

s2(Tq2s2428 Tas+1) (Ta®s2+2¢ Tas+1)
(TBs+l)(T72s2+2§7Tys+l)(Tu2s2+2guTus+l)(Tv2s2+2§vTvs+l)
' (20)

Heo(s) = Tg?

Many of the factors involved in this equation are:functions of the. unknown
parameter p. The exceptions are (1) the aerodynamic factors, that is,
the gain T2 and the second quadratic in the numerator, and (2) the terms
due to target motion and noise characteristics, that is, the first two
denominator factors. The remainder of the terms can only be evaluated
after the proper value of p has been established. This value can be .
determined from the restriction placed on the mean-square control motion.
The analog of equation (5) in the present case is ’

= =_f°° Hco(m)ﬁco(iw)_[%(w) A oy(w) Jaw o (11)

[o0]

In theory, equations (10) and (11) can be solved for the compensating
network, H.,, corresponding to an arbitrary mean-square control motion,
EE. In this application, however, because of the complexity of the fixed
network and the input quantities, the computation is unwieldy. Alter-
natively the following procedure will be used here: First calculate the
function Heo from equation (10) for a selected value of p. After the

result is inserted in equation (11), evaluation of the integral gives a
- value of 52. By repetition of this process for a few judiciously
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selected values of p it is possible to determine the value of o
corresponding to the desired mean-square restriction &=,

As mentioned previously, Heo does not exist, as such, in the beam-
rider guidance system. The relationship between the filter problem being
solved and the actual beam-rider system is illustrated by a comparison of
figures 3 and 4. From figure 3 it is apparent that if the entire guidance-~
system transfer function is represented by Yo, then

Yo = Heolr (12)

Thus the solution for the compensating network Hep determines the desired
over-all transfer function Yy for the actual form of beam-rider system
shown in figure k.

Unfortunately, the theory does not give the performance of this opti-
mum system directly in terms of the resultant error. The minimum error can
be found, however, from the following relationship (ref. 7)

— ————

€= = er” + &

fw |1 - Yo(i_w)lgcpT(w)dw +f°o |Yo(im)']2q>Ndm (13)

-0 - 00

Effects of control-deflection restriction.- The procedure discussed
in the above paragraphs has been carried out for a range of values of the
Lagrangian multiplier p. The results of this study are presented in
figure 5 where the errors due to target motion and noise, the total error,
and the control deflection are given as functions of p. These curves
illustrate the nature of the restriction of the control deflection. Large
values of p here correspond to a large restriction and therefore small
control deflections. It is apparent from the expression (3) that as »p
decreases the restriction on control deflection is reduced until at p =0
the Wiener case is reached. By cross-plotting these curves so as to elimi-
nate the variable p +which has no significance in itself, the curve of
figure 6 is obtained. This curve is fundamental to the problem in that it
illustrates the dependence of error on available surface deflection. Here
the minimum obtainable error according to Wiener theory is indicated by
the horizontal line off to the right. The curve is shown dotted in this
region in order to indicate that these values of error would require unob-
tainable control deflections.

The importance of the curve of figure 6 is that it represents the theo-
retical lower limit of error corresponding to any restriction on root-mean-
square control motion. Each point on the curve would be achieved by a dif-
ferent guidance-system transfer function. The interesting feature of this
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curve is that as the surface deflection is reduced from large values, the
minimum error increases relatively slowly over an appreciable range of
obtainable control deflections. To determine the best operating point on
the curve it is necessary to specify the degree to which limiting will be
allowed to occur. Since in this linear case the control deflection is
Gaussian, an rms control deflection of half the maximum allowable deflec~
tion would then restrict it to within these limits about 95 percent of

the time (ref. 8). For the specific missile being used in this study the
maximum control deflectlon is .about 150 which would put the desired opera-
ting point at 7. 5 as indicated in figure 6. It can be seen from figure 6
that for this operating point the effect of this restriction is an increase
in error of about six feet above that of the Wiener theory. It is a some-
what surprising result that the increase in error is so small for such a
great reduction in surface deflection. The significance of this is, then,
that the optimum Wiener result can be approached closely even: with the
operation confined to a realistic linear range.

Characteristics of the optimum transfer functions.- It is of interest
to consider in greater detail the transfer functions corresponding to the
desired operating point in figure 6. This operating point corresponds
very closely to a value of p = 10% (see fig. 5) which will therefore be
used as an example. In Appendix A the transfer functions of the compen-
sating network, closed-loop system, and open-loop system have been derived.
The results are given below; the numerical values of the parameters are
summarlzed in table II.

_ T 282428 Tos+1 1 7.2 52 (Ta2s2428  Tys+1)
07 (Tps+1) (TyPs242L,Tys+l) T 262420 T s+l ©  TyPs242f,T s+l
(14)
_ T 252428 Tos+l 1 Ty, 25242 £y, Ty s+1
To = (Ts+1) (TyPsZ428yTys+1) T, Zs242(, T s+1 T, 25Z+2 ¢y Tys+1
(15)
25242( TS+l 1 A Ty, 25242, Ty s+1
= k
Ho a s2(Tys+1) Tx?sZ+28, Txs+1 Ty2sZ+2tyTys+1
(16)
— _— - - \, J/
4 oV ~
Due to Wiener Due to control Due to
theory restriction ’ aerodynamics
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It is illuminating to trace to their origin the various factors com-
prising these optimum transfer functions. Analysis shows that terms due
to the basic Wiener theory also appear in the modified theory. In addi-
tion, other terms due to the aerodynamics and the control-deflection
restriction also appear in the solution. This situation is illustrated
by the grouping of terms in equations (14), (15), and (16). It can be
said that the terms which arise from basic Wiener theory correspond in
form to the first group of terms. However, certain constants are some-
what altered, as can be seen from table IT by a comparison of the param-
eters given for the two theories for identical target motion and noise
characteristics. The second group of terms in the equations indicates
that the optimum form of the filtering term due to control-motion restric-
tion is quadratic.2 The last group of terms in the transfer functions can
be traced to the aerodynamics. In fact, the numerators are identical with
terms in the aerodynamic transfer function.

The transfer functions are illustrated in figures 7(a), 7(b), and
7(c); these curves represent the optimum transfer functions in the pres-
ence of the control-motion restriction. For comparison purposes the cor-
responding transfer functions obtained from the Wiener theory are also
plotted on these figures. It can be seen that, in general, the transfer
functions for these two cases are similar at the very low frequencies and
separate to a greater extent_as the frequency is increased. The difference
is primarily due to filtering terms which are required to satisfy the
restriction on control motion.

The added complexity has certain effects on the control motion and
error. These effects can best be illustrated by means of the correspond-
ing power spectra, that is, by the integrands in equations (11) and (13).
These spectra have been plotted in figures 8 and 9, and for comparison the
corresponding curves for the Wiener theory are shown. It can be seen from
figure 8 that the spectrum of the control deflection for the more complex
system attenuates far more rapidly than does that for the Wiener theory.
It is as a result of this fact that the modified system does not limit.

As for the error, it is seen from figure 9 that over the important fre-
guency range the error due to noise is not altered too seriously so that
most of the increase in the total error is due to an increase in the tar-
get motion component.

Effect of noise magnitude on performance.- The preceding results were
determined on the basis of a design noise magnitude which lay between the
expected extremes. The noise magnitude may vary because of targets of
different size, aspect, ‘and turning rate. For this reason the error per-
formance for the optimum transfer function has been determined and is

2Tt is interesting to note that from calculations not presented here
it has been observed that the damping ratios of these quadratics always
lie between 0.7 and 0.8 over the entire range of control motion presented
in figure 6.
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shown in figure 10 (curve A) as a function of the zero frequency noise
magnitude, N. The error performance shown is optimum only at the design
value of noise. Shown for comparison is curve B, which represents the
error performance derived from the Wiener theory, corresponding to the
same design condition (see ref. 3). The difference between these two
curves, then, is the increase in the error as a result of the rms restric-
tion on the control deflection.

As a further comparison two additional curves obtained from refer-
ence 3 are shown. First, curve C illustrates the performance of a system
(with certain saturable elements) which was optimized for the fastest pos-
sible response to a step input in the absence of noise. The performance
can be seen to be significantly poorer than the optimum performance given
as curve A. BSecond, the best result that could be obtained in reference 3
is shown as curve D in the figure. The system corresponding to this curve
was not optimum because the linear Wiener theory used in this approach was
not capable of evaluating all of the various filtering terms discussed in
preceding paragraphs. For example, terms due to Wiener theory were not
altered, and terms dué to aerodynamics were not used. Terms due to con-
trol restriction were included but the performance was limited by the
arbitrarily assumed form. Thus the system was not optimum and limiting
occurred; the performance deteriorated accordingly.

System synthesis.- To achieve the results which have been presented
it is necessary to design the guidance system shown in figure 4 to have
the optimum transfer function Yp. This can be done in many different
ways since the actual beam-rider system consists of two distinct parts:
the tracking radar and the missile-control system. For example, the opti-
mum transfer function Yo might be split up and apportioned between these
two parts of the guidance system. Or, on the other hand, the missile-
control system alone might be designed to approximate the optimum Yo in
which case the tracking radar should be designed to have a relatively fast
response. - In a similar manner the tracking radar could be optimized, in
which case the fast response should be designed into the missile-control
systen.

To investigate ‘all these possibilities is beyond the intended scope
of this report. As an example, however, of one possible design the choice
of missile-control-system filtering was investigated. For this case it is
desired to design the missile~-control system to match the optimum transfer
function Yo. This procedure is not unique; the analysis used herein is
based primarily on cut-and-try procedures. It has been found that the
desired system could be synthesized in a conventional fashion illustrated
in figure 11. .To show how this system is capable of supplying the optimum
filtering the open-loop transfer function has been derived in Appendix B
where it is shown that with certain assumptions
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. =‘Z& _ kpkgV (T108 + 1)(Tyas + 1)(Tp®s® + 20pTps + 1)

E Ty + kgkg  52(Tyy8 + 1)(Tss + 1) (as® + bs? + cs + 1)
(17

Comparison with the optimum pg in equation (16) shows that certain dif-
ferences in form exist. However, equation (16) can be expressed in another
form by factoring approximately certain quadratic terms which have large
damping ratios. Equation (16) can be written then as

. " (Tgs + 1)(Tas + l)(Tb2sé_+ 26, Tys + 1)
Ho = K §2(Tys + 1)(Txs + 1)[(Txs + 1)(Ty®s® + 2¢yTys + 1)]

(18)

It is now possible to choose the parameters in equation (17) to match those
of equation (18); the specific values are given in table III.

The remainder of the system consists of the tracking radar whose
response should be made relatively fast for this design approach. Further,
from the plots presented in figures 8 and 9 it is apparent that the track-
ing radar should be designed so as not to alter appreciably the spectral
distribution of error or control moticns. Thus a break point or natural
frequency of several cycles per second would be satisfactory.

Comparisons and other considerations.- In a REAC simulation of this
system its operation was examined in further detail. Of particular impor-
tance in this examination was the control deflection and the associated
servo energy. It was found that the control deflections were effectively
restrained to within the linear range and as a result the servo.energy was
greatly reduced. For a given servo the power expended is proportional to
the time average of the sum of the absolute displacements of control
motion. Thus the average servo power over a sufficient time interval of
duration t can be determined from

slas)
n

average Servo power «~

For this system there is more than a two-thirds reduction in required servo
energy over that for the system with smallest servo energy requirement dis-
cussed in reference 3. The saving in servo energy becomes even greater
when compared to systems for which the error performance becomes progres-
sively worse than the optimum. The control-deflection time history
obtained from the REAC was used to show that the required control rates

are easily attainable since they rarely exceeded 3 to 3.5 radians/sec.

This system has other virtues, For example, there is.also a reduction

of voltages within the circuit to reasonable and easily obtainable values.
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From this simulation work, then, two facts are apparent. First, it
is clear that the validity of applying only a control-motion restriction
in the analysis has been verified, since the control rate and system vol-
tages did not saturate. Second, it is apparent that in comparison with
systems of reference 3 in which limiting occurred, the present system not
only produced a smaller error but was accompanied by other desirable
effects such as decreased servo energy and circuit voltage requirements,

The missile~-control system discussed in the above paragraphs is
intended only as an example designed to achieve optimum performance
against noise. It is clear that since the system operation is essen-
tially linear, all designs which approximate the desired . Yo would give
approximately the same performance. However, it is often necessary to -
satisfy other requirements which are related to the specific design objec-
tives of the system and which may favor certain designs or system con-
figurations. Because of the freedom in choice in distributing the opti-
mum filtering in the system, the optimum characteristics specified by the
theory do not, in general, place an inherent limitation on satisfying other
requirements. For example, requirements on transient response during the
beam entry phase may dictate a design in which more of the optimum filter-
ing is located in the tracking radar. Similarly, requirements of simpli-
city on certain parts of the system may dictate yet a different design.
Because these and similar requirements are related to the detailed design

objectives, an investigation of such factors is beyond the scope of this
report.

CONCLUDING REMARKS

This study has considered the application of Newton's modification
of the Wiener filter theory to the choice of optimum transfer function
for the beam-rider guidance system. The analysis has been applied to a
typical variable-incidence missile at a given flight condition attacking
a maneuvering target in the presence of glint noise. By minimizing the
mean-square error with a side restriction on the mean-square value of
certain quantities, limiting effects, of primary importance in missile
guidance, are largely eliminated.

Although many limiting-type nonlinearities are of importance, this
study has shown that the critical nonlinearity is due to contrcl-deflection
limiting, since a restriction applied to the {eflection sufficient to con-
fine control motions to within the linear range also satisfactorily pre-
vented other types of limiting. Results have been given which illustrate
the effect of the control-motion restriction on the minimum rms error,

Zero restriction corresponds to the Wiener theory whose results are
unattainable since impossibly large control motions are demanded. How-
ever, as the surface deflection is reduced by means of an increasing
restriction, the minimum error increases slowly until at a realistic
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value of the control deflection the error has increased only a few feet.
Thus it is clear that the optimum performance predicted by the Wiener
theory can still be approached closely by confining operation of the sys-
" tem to a realistic linear range.

The transfer functions of the optimum guidance system have been given
and have been compared to the corresponding transfer functions from the
Wiener theory. Differences were shown to be the result of added filtering
terms demanded by the restriction on control motion. The various filtering
-factors can be traced to their origin. It was shown that terms due to
basic Wiener theory appear in the solution, and that the additional terms
can be associated with the control-motion restriction and the missile aero-

dynamics.

For the optimum system, performance against variable noise magnitude
was given and was compared to Wierer theory. As an example of one possible
design which achieves these results, a missile-control system was synthe-
sized to match the optimum transfer function. In a REAC simulation the
operation of this sytem was examined in further detail. It was found that
the magnitude of circuit voltages, and control-motion rates are greatly
reduced in comparison with systems in which limiting occurs. Similarly,
the required servo energies are appreciably reduced, resulting in about
a two-thirds saving.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., May 11, 1955
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APPENDIX A
DETERMINATION OF THE OPTIMUM MODIFIED WIENER FILTER

The solution for the optimum compensating network Hgo 1illustrated
in figure 3 is given by equation (6) in the text as follows:

\
iat

' ) -iwt [° He(ia)or(a)e
Heo(iw) = nA+(w) Jf i Jf N da dt

vhere - _ ? (A1)

Alw) = [Hf(iw)Hf(iw) + é]¢ii(w)

In this equation @&jj 1is defined &s

®ji = o7 + Oy (a2)

where &g and Oy represent the spectral density of the target motion and
noise, respectively. The quantities At and A~ are defined as the factors

of A with poles and zeros in the upper and lower half-planes, respec-
tively. Thus

A= A*‘A" (a3)

For the case to be considered here the target motion and noise will be
taken as

ka2

T = 7% (2 + k2) (Ak)

oy = N (45)

It will be noted that the noise spectrum has been approximated here by a
constant in order to reduce the complexity of the calculations. As shown
in reference 3, this approximation is valid because the noise defined by
equation (1) is essentially flat compared to the passband of the optimum
system. It should also be pointed out that use of equation (Ak) leads to
certain mathematical difficulties which occur in the process of evaluating
the right-hand side of equation (Al), because the theory requires that the
poles of &p not be located on the real axis. To avoid these difficulties

o
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1t is necessary to modify the target-motion spectral densit&_fo‘the
following

_ ka?
T T M@ 4 0 2) (P + 02 (F 4 kD) (46)

where M, and Mo are‘any small real numbers. The solution to equation
(A1) will then be a function of iw, U and Ny The desired answer is

obtained by taking 1lim Yq (iw,nl,nz) as 1, and n, = 0. However, it can

be shown (see ref. 3) that the same answer can be obtained more simply by
taking L and n, equal to zero as would be obtained from the rigorous

process described above.

Now by combining equations (42), (Ak), and (A5),
@ii(@) = (DT(G.) + (I)N(G)

o® + x2a? + (ka2/mN)
af(az + k3)

=N

N (a - Olpl)(OL - apz)(a "aps)(a + dpl)(a + sz)(a +—ap3)
‘ a*(a + ik)(a - ik)

_ {p(a) [ -p(-a)] | .
=N at(a + ik) (o - ik) ' (a)

where the apm represent roots in the upper half-plane. The.polynomial
p(a) is

3
pla)-= T (a- o)
= o + bsa® + bra + bo (A8)
where
by = =(apy + aps + aps)
by = Qapidps + Gpi0p3 + Apolps — (A9)
bo = -ap1%p2Ap3
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In a similar manner
-p(-a) = a® - boa? + bya - bo (A10)
An expression to be used later can be obtained from these preceding
equations as follows
2
o® + k2a? + %%r = (@ + bpa® + bja + bo)(a® - bpa® + bya - bo)
from which
ka?
H2 = 22 .
bo Y (A11)

The quantity Hf 1in equation (Al) represents the fixed network or
aerodynamics and its general form (ref. 7) is given by

o1 10 - 12e?) 412G na)] ,
Hr(ia) = 5 - T T2 a®[(1 - Tg20?) + i(28yTaa)] (A%Q)
and
. 1 (1 - B2a®) - i(26,Te) ]
He(ia) = - TsZ a2[ (1 - Ta2a2) - i(2€agaa)] (813)
Thus

i . 1 [Tb4a4 + (ugbquz - 2Tb2)a2 + 1]
g (10)Be (1a) = Ts* a*[Ta%a? + (4£,2T,2 - 2T,2)a2 + 1] (A1%)

Accordingly it can be shown that in equation (Al)

He(ia)He(ia) + p

~ pT5 4T 20B+pTs % (4t a2Ta2-2T52) aC+(Tpt+0Ts?) at+ (4 tp2TH2-2Tp2) aP+1
Tsw?[Tatat+(4852T52-2T52)a®+1]

4 4
. ngi (Q‘an)ggl (atagn)

= pTa

a[ Ty *at+(4 e, 2T, 2-2T 2) aP+1]

4 a(a)a(-a)
pTa ATy 2a®+ (4, 2T, 22T, 2) B 41] (AlS?
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where the Agn represent roots in the upper half-plane. The polynomial

Q(&)-above is

4
Q(a) = I (m - C‘-qn)
n=1 -
= a* + cga® + coad® + cha + co © (A16)
where
\
cg = - (aqy +agz + ags + aq4)
Co = G,qlCqu + CquaqS + (1qu.(}4 + (quaqs + aq2Qq4 + CLqSCIq4
> ()
cy = - (quaqzaqs + Qgi0go0ge + Ag1Q0gatge + “qz“q30q4)
Co = aqlaqéaqsaq4
/
In a similar manner,
a(-a) = a® - caa® + cxa® - cya + co (a18)

—

An expression to be used later can be obtained from these preceding equa-
tions as follows

N\

Tt Tt aBepTt (42T, 2-2T,2) al+( Tyt +pTg Ja*+( k62T 2-2T, 2) 0?41

pTg*Ta*a(a)a(-a)

\
Ol Tat (o +cga>+epaP+ciateo) (df -cga®+cp0®-crateo)

- from which

1
2 _ -
o AT (A19)

The second egquation in (Al) can now be found by combining equations (A7)
and (A15)
a(a)a(-a)p(a)[-p(-a)]
aB[Tatat + (4£,2T,2 - 2T.2)o® + 1](a + ik)(a - ik)
- (420)

Ala) = pTa*N
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This expression can be split into two factors with poles and zeros in the
upper and lower half-planes. From the preceding definitions q(a) and
p(a) both have their zeros in the upper half-plane. Thus

_ q(a)p(a)
A*(a) = oTa* N o#(1 - To2a® + 120, d) (o - ik) KAzl)
o a(-a)[-p(-a)]
Ale) = T,2a? - i2(,T,a)(x + ik) (422)

Now, let us consider the evaluation of the first integral in equa-

tion (Al). This integral can be evaluated by combining equations (AL),
(A13), and (A22) as follows: :

I, = re HfZGSQT(a)eiat

= da
1= -
-0 A (a)

_ ka? L/‘oo (1 - sza?.— J'.2§b']?bon)ei°‘)C
T Ten U, oB(a - ik)a(-a)[-p(-a)]

[0}

_ _ ka® Jf
TN Jeco

ka® /““ fa)da

(1 - T4 2a® - 126 Tpa)el®t

4 3 da
o(a - ik) O (a + agn) II (a + apm)
n=1 m=1

m
]

Tsz‘n \J._oo (A23)

vhere f(a) is defined as the integrand. By considering a« to be a com-

plex variable, the integral can be evaluated by a contour integration indi-.
cated by the following sketch:

Imag(a)

Real(a)
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2k

There are two poles within this contour, a second-order pole at the' origin
and a simple pole at a = ik, as indicated. The residues are

Res(o) = (]i_i)xg ada [oPf(a)]

ot kboco2tpTy, + ik(boci + bico) + boco
- kboCo k2'b02002

t (a2

Res (ik) =0&§?k (a - ig)f(a)

(Tp2k2 + 28, Tk + 1)e F
-k®q(-1ik) [ -p(-ik)]

Il

-kt
7s€ (A25)

]

Now,.by means of the residue theory, the value of the integral is given

by

. 2 R
I, = - 2;1{2’ [Res(o) + Res(ik)]
s

Thus from equations (A24) and (A25),

2ika? t -kt A26
= - —— + m—— e
La Tg? <7l kboco 72 ) ( )

The second integral in equation (Al) is denoted by I, and is merely

the Fourier transform of I;. Hence
o .
I, =Jp T,e twhgg
5 . .

. 2 o L + . A
. - 2l k/“ [7le-1wt b g e 4 e (k+1w)t}dt
8
o (A27)
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Thus it can be shown that
I . 2ika2 (71 + 72)boco(iw)2 + [kyiboco + (1/k)Jiw + 1
2 TszboCO (iw)z(k + ih))

_ _2ika? T,2(10)2 + 26,7 (iw) + 1
Ts®boco (iw)3(x + iw) ~ (428)

n

It should be noted that since the n's were assumed to be zero, questions
concerning the existence of the above integral arise. However, as indi-
cated in reference 3, when the analysis is made without this assumption,
the integral in equation (A27) does exist, and the limit of this integral
as the n's approach zero becomes precisely equation (A28).

The coefficients can be expressed in a more convenient form by elimi-
nating the intermediate parameters 7y, and 7, by means of definitions

given in equations (A24) and (A25). The following results are then
obtained:

1
28Ty = ky boco + X

. boCy + bico
= -2§bT-b - 1 _—_————boCo (A29)
Also

To® = (75 + 75)boCo
boco(Tp?k? + 201, T K + 1) Kboco2ty Ty, + ik(bocy + byco) 1
k2q(-ik)[-p(-ik)] : k®boco k2
| (430)

For the missile parameters of table T and the value of k given on page 28

T 2kZ + 2t Tk + 1~ 1
so that very nearly

boCo L 2alg | 1

Ry s roe s s R (431)
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Now, from equation (Al) the optimum compensating network can be
determined as follows:

Ly Lo
HCO ( 1w) - 21[A+( w) (A32)
Substituting equations (A21) and (A28) into (A32) gives
Hco(i(&)) .
_ ka? (1w)Z[ T2 (iw) 2428, T, (iw) +1][ T2 (1w)24+2¢, T, (1w) +1]
WpTs2Ta *boco p(w)q(w)
(A33)

To reduce this expression to a more standard form it can be seen from
equation (A16) that

4
a(w) = 8 (u - agn)
Bl wo, |
= €0 = <}aaﬁ * (A3h)'

Similarly from equation (A8)

3
p(w) = ﬁEl (0 - apm)
3 .
= bo Il (—a‘fﬁ + 1> - (a35)

Also by using the definitions given in equations (All) and (A19) the com-
pensating network can be shown to reduce to

) o> (iw)3[T, 2(10)2 + 28T (iw) + 11[Ta2(iw)2 + 2¢,Ty (iw) + 1]
Heo(iw) = :
2 -—+l)n_ <-m+l)
. . ‘ (A36)

By the substitution of the conventional complex frequency s  for iw

—lw

52(T 252 + 2; o5 + 1) (T282 + 26,5 + 1)

Heo(s) = Tg? m— <f__ . l)nn <}__ - {)

CONFIDENTTAL
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It is shown‘léter in the numerical examples that certain terms combine to
give quadratic factors as shown below

Hoo(s) = Tg2 — 82(T 252420 T s+1) (T,ZsZ 426, T, s+1)
co\s8) = 1s l
(TBs+l)(T7232+2§7T75+l)(Tu252+2§uTus+l)(Tvzs2+2§vTvs+l)_
(A38)
where
i . 1
= —— o= S — -
TB ap1 - Tu - aqiaqz
T72 1 ot T = 1 Gél + agza
Gp=20p3 Culy = dq10ga
. Qpz2 + Up3 1
2¢, T, = 1 ——m— 2 _
C7 Y Qp2Qp3 Ty= = - aqzdq4
: s ZIqs + g4
vy = 1 —qgage -

The compensating network given in equation (A38) can be used to deter-
mine the over-all transfer function Yo. From figure 2 -

CYo(s) = Heo(s)Ee(s) - (az9)

Substitution of equations (Al2) and (A38) into (A39) gives

Yo (s) = (T 2sZ+2( Tos+1) (Ty,2s2+28 Ty s+1)
© (Tps+1) (Ty2s2+28yTys+1) (T, 25242, T s+1) (T, 2s2+2¢, T, 5+1)

(Ako)

If Y, 1is considered to fepresent a unity feedback system, the equivalent

open-loop transfer function is shown in the later specific example to be
of the following form: '

bo(s)

) (T 2s® + 2¢,Tos + 1) (Ty%s® + 26, Tys + 1)
2 2.2 2,2
s%(Tys + 1) (Ty®s® + 2¢,Tys+1) (T, %% + 2¢,Tys + 1)

(Ak1)
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Because ({, and {, are close enough to unity (table II) it is possible
to factor the corresponding terms approximately to give

- (Tgs + 1)(Tys + 1) (Ty2s® + 24, Tps + 1)
T s2(Tys + 1) (Txs + L)[(Txs + 1)(Ty3s2 + 2tyTys + 1)]
' (AL2)

to (s)

The numerical evaluation of the optimum system has been carried out
for the following values of target motion and noise:

k = 0.k a=1g

T

5 sec N = 15 £t2/radian/sec

From this example p ‘will be taken to be 10* since, as shown in the text,
this value results in a near-optimum restriction on control deflection.

Evaluation of the numerator in equation (A7) gives

2
o8 +k?a4+% - o® + 0.16 «* + 8.8

il

3 3
ﬁEl (a - apm) ﬁgl (¢ + pm)

‘Where .
G.pl =1 l.)'l'56
apz = l.’-|-27 exp(i O¢5h3)
aps = -1.427 exp(-i 0.543)

which are all located in the upper half of the complex a« plane. Then
from equation (A9)

bp = -i 2.9k
by = -k.201
bo = i 2.97

CONFIDENTTAL



:o. :oo .'. : :.: 0:. :. E :. : :o E E
R AL TV TV 1 JPOLIPOL S-S SR PO D
NACA RM A55Ella ** CONH'IDENTIAL 29

Similarly from equation (Al5) for p = 10%,

PTg*Ty 2o +pTg (18521 % 2Ty 2) o®+( Ty 40T *) a4 (4 £, 2Ty 2-2T 2 ) aP+1

(22.58x1078)a®- (7.475%1075)af+(6.267x1073)a - (0.00609% ) a2 +1

4 4
pTs*Ta* ﬁgl (“‘Qqn) ﬁEl (G+aqn)

Solving for the roots gives
agy = 3.593 exp(0.80k)
age = -3.593 exp(-0.80k)
aga = 12.92 exp(0.80k)
age = -12.92 exp(-0.80k4)

which again are all in the upper-half «a plane. From the definitions in
equation (Al7),

-i 6.677

ca =
co = -187.61
cy = i 883.40
co = 2155

Now from the values of the roots opm and agn as well as the b and c
coefficients, the optimum compensating network can be calculated by means
of equation (A38). For this purpose it is necessary to evaluate the left-
hand sides of equations (A29), (A3l), and the parameters following equa-
tion (A38). Results of these calculations are given in table II in terms
of damping ratios and undamped natural periods. Substitution of these
parameters in equations (A38) and (ALO) gives
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(cHv) :
(T + 8 LOBOO"0 + 28 6T900°0)(T + S 992°0 + 28 GEEO°0)(T + s G°2) S 2 = (s)or
(T + 8 E4200°0 + 28 GOEO0°O)(T + 8 28°T + 28 §2°T)
ST yotus ((THY) °b3)
noﬂponsm JI9JSuBIY) QOOH uado quesTeATInbs oy} Jo sgogsureaed mﬂp aJ8 9T(BY} STYJ UT pPSpnIdUl 0STV
(V) : . . _ _ -
(T+s 600°0+z8 900"0) (T+8 TOR"O+2S GLLO®0)(T+S LaL°0O+z8 06%°0)(T+s L§9°0) _ (s)%%
(T+8 E4200°0tzs COE00°0) (T+S 28°T+=8 g2°T)
(€4v)

(T+s 600°0+z8 900°0) (T+s TO"OtzS mwpo.oVAH+m LaL o+zs 06%°0)(T+s Lg9°0) OTXTE"L = (8)%%H
(T+s 0EQO0°0+zS 20900°0) (T+s 29° T+zS §2°T)z8 ¥-
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APPENDIX B

MISSILE-CONTROL-SYSTEM APPROXIMATION TO

THE OPTIMUM TRANSFER FUNCTION

The optimum linear system is illustrated in figure 11. In the follow-
ing section the system equations are derived.
Using figure 11 it can.be shown that

v ' kg(Tys + 1)(Tgs + 1)
Ey  Tgs(Tys + 1)(Ta®s® + 2¢,Tgs + 1)(Tgs + 1) + kgkgs(Tys + 1)(Tzs + 1)

(B1)

To simplify equation (Bl) it is convenient to make Tg = Ty. This assump- |
tion is not essential but its use leads to simpler equations. In certain -
cases where gust disturbances are serious it may be more desirable to
choose Tg small. With the former choice

v kg (Tys+1)

By  s[(TgT,2T,)s3+(TqTaB+Tq2¢,ToT, ) s2+(ToT, #1328 T +k kT, ) s+(Tg+kokg) ]

kS (TMS+1) .
T Ta+kgks s(asS+bsP+cs+l) | _ (B2)
where . I N\
2
A

- Ta(Te2 + 26,TT,) , > (83)
Ta + kgkg _

| 2t ToTy + T,Ty + kkoT,
Tg + ksks

CONFIDENTIAL -
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Thus the entire open-loop transfer function can be written as

M koksV (T105 + 1)(Tas + 1) (Tyu2s® + 28pTys -+ 1)

HE T T g+ kskg 82(Ty18 + 1)(Tgs + 1) (as® + bs? + cs + 1)
(B4)

By comparison with equation (A42) it can be seen to be of the same form as
the optimum transfer function. Thus the following correspondences between

quantities in equations (B4) and (AL2) are appropriate:

)

T11 e Ty
Ts e Tx
> (85)

Tio0 > Ta

Te & To

Also it is apparent that
a € TyTy?

b € Ty® + Ty2fyTy g (B6)

c «>Tx + QCyTy

For these values of a, b, and ¢, equations (B3) can be solved for the

remaining parameters to give - \
aT A
T, = —_—a
bT, - a2ty
TqTa2T, - aTg
kska = 3 ) (87)
T CTd + Ck'sks - 2CaTaTd - Tle
2 = : ‘

kgka, . J

-~ CONFIDENTTAL



[ LA J e® ® 9008 LN 'Y X I X J
ee o0 L ] L ] o e o b b : :
: : :. : * : e o [ ] .. : :. : :. pA
2 oin > s :.: 'oo. (X . e ooe oo
NACA RM A5S5Ella 2 +CONFEDENTIAL ‘ 23
The value of kpokg 1is determined from the desired gain:
Ts + kgk
koks ¢ ky d_v_s_s_ , (28)

Since only kpkg and kgka are specified, one of the three gains kp, kg,
or ks may be chosen arbitrarily, subject to the condition that voltage

limiting does not occur. From the above equations the system parameters
have been determined and are tabulated in table III. .
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TABLE I.- SUMMARY OF AERODYNAMIC PARAMETERS FOR EXAMPLE MISSILE

Paraméter Value
Ty 0.0775
Ty, .0552
Tg 2.087
Tg2 .0007911
Ty .846
ta .0536
ty .0220

TABLE II.- SUMMARY OF PARAMETERS OF OPTIMUM TRANSFER FUNCTIONS

Modified Wiener

‘Wiener theory

Farameter theory value value
To 1.13 0.925
to .805 765
Tg .687 .687
Ty .700 .T700
Cy 519 -519
T\ 2.5 2.5
k, 3.2 7.42
Ty .278’ -—
€ -T20 ---
Ty LO7TTh ---
tv .0581 ---
Tx .184 -
tx .722 ---
Ty .0787 -
&y .0513 ---

CONFIDENTIAL
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TABLE ITI.- SUMMARY OF PARAMETERS OF OPTIMUM SYSTEM

Parameter Value
ko 0.0538
Ty .1.13
T10 1.13
Tia 2.5
To .184
kg .0k63
Ty .186
ka -.67h
T> -373
Ts .846
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Figure 3.- Block diagram of filter problem for the beam-rider system.

Missile-control system

N\
yN i 1
+ _
Tracking |’B Q— 8| Missite . Im
radar , aerodynamics

Figure 4.- The beam-rider system.
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