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PERFORMANCE CHARACTERISTICS OF SEVERAL
DIVERGENT~SHROUD AIRCRAFT EJEGTORS

By William K. Greathouse and William T. Beale

SUMMARY

Ten divergent- and two cylindrical-shroud ejectors were investiga-
ted to determine internal ejector performance over a range of pressure
ratios and expansion area ratios representative of flight Mach numbers
up to about 3. Cold dry air was used for both the primary and secondary
flows.

Experimental data and camputed net-thrust characteristics indicate
that variable shroud geometry is necessary for an ejector to attain
near-optimum thrust performance over a typical range of flight condi-
tions of current interest. An ejector installation having a fixed pri-
mary nozzle could maintain near-optimum net thrust if the shroud were
variable from a cylindrical shape at low subsonic Mach numbers to a di-
vergent shape at supersonic Mach numbers. A practical ejector for an
afterburning turbojet is perhaps the conventional double-iris design
modified so that the shroud could be either conical, cylindrical, or
divergent.

INTRODUCTION

The ejector has shown merit as an aircraft jet-exit configuration
because of its ability to expand the engine gases efficiently and to
provide cooling from the flow of secondary air. As part of an over-all
program to study various jet exits, several types of model and full-size
ejectors have been investigated at the NACA Lewis laboratory. Published
reports present performance data for conical ejectors (refs. 1 to 7)
cylindrical ejectors- (refs. 8 to 11), double-shroud ejectors (refs. 12
to 15); and divergent ejectors of low divergence angles (ref. 16). In
addition, various ejector configurations have been investigated with
external flow (refs. 17 to 21).
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A desirable jet exit, of course, is one that can maintain high
thrust performance over a wide range of operation. Such could be re-
alized if the high thrust of the convergent-divergent nozzle at design
pressure ratios could be combined with ejector thrust characteristics
at below-design pressure ratios. Thus, it is reasoned that divergent-
shroud ejectors might have good thrust performance over a certain de-
gsired range of operation. Analysis of divergent-ejector data in ref-
erence 16 indicates slightly better thrxust for divergent shrouds than
for cylindrical shrouds, even though the divergence angles were only
about 3°. However, the data were limited to only four divergent ejec-
tors, representing expansion ratios for flight Mach numbers up to about
1.3. Therefore, the purpose of this investigation is to determine and
study the internal performance of ejectors with divergence angles up to
about 12° and expansion ratios for flight Mach numbers up to about 3.

Ten divergent-shroud ejectors were investigated, and two cylindri-
cal ejectors are included for comparison. -Exit diameter ratios of about
1.23, 1.45, and 1.82 were selected for the divergent ejectors to repre-
sent design Mach numbers of about 1.5, 2.0, and 2.8, respectively. For
each exit diameter ratio, the shroud divergence angle and annular
secondary-flow area were varied, while shroud length (spacing ratio)
was constant. A divergent ejector of 1.70 exit diameter ratio is also
included to simulate a geametry that may be encountered with a fixed-
shroud ejector when the primary nozzle of a turbojet is positioned for
nonafterburning operation. Exit diameter ratios of the two cylindrical
ejectors were 1.10 and 1.46. For most configurations, primary pressure
ratio ranged from 1.5 to above 20, and the weight-flow ratio ranged from
0 to about 0.20. Dry air (-20° F dewpoint) at about 540° R (80° F) was
used for both primary and secondary flows. -

Jet-thrust and air-handling performance data are presented for each
configuration. Net thrust of certain configurations is shown at typical
operating conditions to indicate the internal performance of fixed and
variable ejector geametry at design and off-design Mach numbers.

APPARATUS AND INSTRUMENTATION
Ejector Configurations

The geometries of the ten divergent and two cylindrical ejectors .
used in the investigation are listed in table I. The three groups of
- divergent ejectors having exit diameter ratios De/Dp of about 1.23, .

1.45, and 1.82 represent typical expansion ratios for design Mach num-~
bers of about 1.5, 2.0, and 2.8, respectively. Shroud divergence angle
B, approach angle a, and secondary diameter D_. were varied within
each group. Shroud length L was increased with exit diameter ratio
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to keep the divergence angle under 120 and thereby avoid rapid expansion
within the ejector shroud. The ejector with 1.70 exit diameter ratio
represents a geametry that could occur in a fixed-shroud divergent ejec-
tor designed for afterburning but operating at nonafterburning condi-
tions (closed primary nozzle). Two. cylindrical ejectors (De/Dp of 1.10

and 1.46) are included for comparison with divergent-ejector performance.

Test Facility

The ejectors were installed in the test chamber photographed in
figure 1(a) and shown schematically in figure 1(b). The ejector and
air-supply lines were freely suspended in the chamber by four flexure
rods. The resultant axial force acting on the ejector installation was
transmitted through a flexure-plate-supported bell crank and linkage to
a null-type force-measuring cell. Any pressure gradient on the diffuser
portion of the primary-air line was prevented by a vent between the
labyrinth seals that kept air flow through the second seal at a minimum.
Details of this nozzle test facility are presented in reference 22.

Instrumentation

Pressures and temperatures were measured at the various stations
indicated in figures 1(b) and 2. The type of measurement at each lo-
cation is given in table II. Ambient exhaust pressure was measured in
several places near the outside of the ejector exit.

-

PROCEDURE

The performance of each ejector was obtained over a range of pri-
mary pressure ratios Pp/po at various constant values of corrected -

weight-flow ratio (ws/wb) Ts/Tp' For most configurations the range
of Pp/po was from 1.5 to above 20, with (ws/wp) Ts/TP fram O to
~ about 0.20.

Preliminary tests indicated no essential difference between average
total pressure measured at station p and station 3. Also, there was no
difference between plenum-chamber pressure and total pressure at station

s. Therefore, primary total pressure PP and secondary total pressure

Py were evaluated for'subseqﬁent tests from measurements at station 3
and the plenum chamber, respectively.
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Ejector thrust ratio Fej/Fip is defined herein as the ratio of

the actual ejector jet thrust to the thrust available from the primary
stream if primary mass flow were ideally expanded to exhaust pressure.
Actual ejector jet thrust Fej was obtained from the measured force

after accounting for inlet momentum forces, bellmouth forces, and
labyrinth-seal forces. The ideally expanded primary thrust Flp

computed as the product of measured primary mass flow and isentropic
velocity at the existing primary pressure ratio and temperature. The
accuracy in obtaining thrust ratio Fej/Fip was about +1.5 percent.

DI

P

Details of the conventional computation method used for reduction
of the test data are given in reference 22. - Symbols and nomenclature
used herein are defined in appendix A. ~

was

RESULTS AND DISCUSSION
Jet-Thrust and Air-Handling Characteristics

Jet-thrust and air-handling characteristics for the ten divergent
ejectors investigated and for the two cylindrical ejectors are presented
in figures 3 and 4, respectively. A calibration of the primary nozzle
in figure 5 indicates the consistent thrust and welght flow measurements
obtained during the investigation.

Jet thrust. - Thrust characteristics in figure S(a) are typical of
all the ejectors investigated. EFach jet-thrust curve peaked at a cer-
tain value of Pp/PO’ which indicates that the flow was fully expanded.

These peaks occurred at lower values of P /pb for the higher weight-

flow ratios simply because less flow area was available for expans1on
of the primary stream. Consequently, the design pressure ratio P /po

for peak thrust) of an ejector depends upon both the physical size of
- the shroud and the amount of secondary flow.

Air-handling. - Typical air-handling characteristics of the ejec-
tors investigated are also shown in figure S(a). For any given weight-
flow ratio, the ejector total-pressure ratio became a function of only
the upstream flow conditions (stations p and s) over a wide range of
primary pressure ratios. This is characteristic of aircraft ejectors
and can result with a stable supersonic primary flow and a "choked"
secondary flow before or at the ejector shroud exit (ref. 8). A di-
vergent ejector operates in a similar manner; but, when the secondary
passage is small enough, the flow can choke at the shroud entrance
(station s) rather than farther downstream as for a cylindrical or
conical ejector.
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Such a choked-shroud entrance existed for most of the divergent
ejectors investigated, and the approximate weight-flow ratio at which
choking occurred is noted for each configuration on the graphs of air-
handling performance. Also, a method of computing the air-handling per-
formance of a choked-shroud ejector is described in appendix B, and com-
puted and experimental results are compared. Thus, for a divergent
ejector, it appears that the secondary flow can be limited to a desired
value by sizing the annular passage at the shroud entrance.

Net-Thrust Performance

Net-thrust performance of an ejector system should include the in-
herent drag imposed by taking secondary air aboard the aircraft.
Secondary-air drag could be full free-stream momentum or some fraction
thereof, depending on the source of air. Only a fraction of free-stream
mamentum would be chargeable to the ejector system if energy of the sec-
ondary air were partly expended for some other purpose. However, subse-
quent net-thrust evaluations charge the ejector with full inlet momentuni .
drag, which tends to make the results conservative. Other factors be-
yond the scope of this report are the effects of external flow, inlet-
scoop drag, and drag due to fuselage or nacelle shape near the ejector
exit. )

Assumed operating conditions. - Net-thrust performance was based on
the operating schedule shown in figure 6. The curve of primary pressure

ratio Pp/pO typically represents accelerating climb to 35,000 feet and

0.8 Mach number and then operation above 35,000 feet at Mach numbers
from 0.8 to 3.0. The curve of (P / p)max represents an upper limit of

ejeéctor operation (maximum ejector total-pressure ratio) with assumed
pressure losses through the secondary system. Secondary air was consid-
ered to enter at free-stream total temperature and to experience a tem-
perature rise before reaching the ejector. Complete details of the
method used in evaluating net-thrust ratio are given in appendix C.

Performance at design Mach number. - Net-thrust performance of the
various ejectors at design Mach numbers of 1.5, 2.0, and 2.8 is shown in
figure 7 for afterburning conditions (Tp = 3500° R). Each curve repre-

sents operation over a range of secondary flows and total-pressure ra-

tios from ws/wp =0 to (Ps/Pp) at the respective design Mach num-

ber. As shown by the sketches and curves in figure 7, the highest net-
thrust ratio at each design Mach number was attained by the divergent

ejector having the largest divergence angle and the smallest secondary-
flow passage (configurations 3, 5, and 10). 1In other words, a higher
net thrust occurred as the ejector geometry approached that of a 51mple
convergent-divergent nozzle.
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At maximum total-pressure ratio (PS/Pp)méx, ejectors 3, 5, and 10

could handle small secondary flows (kws/wp)ﬁ/Ts/Tp from 0.02 to about

0.04) and maintain a net thrust of only about 1 percent less than that
of a’good uncooled convergent-divergent nozzle (velocity coefficient of
0.98). Cooling a convergent-divergent nozzle would certainly produce a
net-thrust decrease (about l-percent thrust decrease for each percent
of compressor air used). Thus, it appears that, for a fixed jet-exit
configuration at design Mach number, a divergent-shroud ejector design
could produce a net thrust equal to or slightly higher than a cooled
convergent-divergent nozzle. However, if for some reason cooling of a
convergent-divergent nozzle were unnecessary, the convergent-divergent
nozzle would of course be superior to the ejector charged with full
free-stream inlet momentum of the secondary air.

The net-thrust performance of the Mach 2.0 design cylindrical ejec-
tor is lower than for any of the divergent ejectors (fig. 7(b)), because
the cylindrical ejector requires greater secondary flows (and hence a
larger inlet momentum drag) for efficient expansion of the primary
stream. The peak shown in the cylindrical-ejector thrust curve indi-
cates that, for corrected weight-flow ratios above 0.04, the inlet mo-
mentum drag exceeded any jet-thrust increase produced by flowing addi-
tional secondary air. .

Performance over range of Mach numbers. - Net-thrust performance of
the three divergent ejectors that previously showed the best net thrust
at design Mach numbers of 1.5, 2.0, and 2.8 (configurations 3, 5, and
10, respectively) is presented in figure 8(a) over a range of flight
conditions up to design Mach number. For each configuration, peak net
thrust occurred very near the design Mach number, and large overexpan-
sion losses are indicated at below-design Mach number. Thus, the high
net-thrust characteristics of a fixed-shroud divergent ejector are re-
alized only for operation near design conditions. This undesirable
characteristic could not be relieved by control of secondary air but
could be eliminated by use of variable shroud geometry.

Net-thrust performance of the two cylindrical ejectors investigated
is shown in figure 8(b) over a range of Mach number. Ejector 11 shows
good net-thrust characteristics up to Mach number of about 1.0, above
which underexpansion losses became excessive as in the case of a simple
conical nozzle. Ejector 12 shows higher net thrust than a comparable
divergent ejector (configuration 5, fig. 8(a)) up to Mach number of
about 1:2. Above Mach 1.3 the secondary air handled by the cylindrical
. ejector increased rapidly and thus produced a. sharp net-thrust decrease
due to excessive inlet momentum drag. By progressively throttling the
secondary flow to a corrected weight flow of about 0.04 at Mach 2.0, the
net thrust could be maintained at about 91 percent, as shown by the
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dashed curve in figure 8(b). Throttling the flow below 0.04 would de-
crease the net thrust at Mach 2.0 below 91 percent, until at zero sec-
ondary flow the net thrust would be about 86 percent.

It has long been realized that fixed-shroud ejector characteristics
are in direct contrast to those desired when primary-nozzle area is mod-
ulated for an afterburning turbojet engine. To further illustrate this
point for the case of a fixed-shroud divergent ejector, the net-thrust
performance of such an installation is represented in figure 9. The
comparison is between a divergent ejector (configuration 5) representing
a design for afterburning (3500o R) at Mach 2.0 with a corrected weight-
flow ratio of about 0.04, and the ejector resulting from closing the
primary nozzle (configuration 7) for nonafterburning operation (1600° R).
The very low net thrust at nonafterburning is the combined result of
overexpansion and excessive secondary inlet momentum drag. Throttling
the secondary flow in this case would reduce the net thrust even more,
pecause the overexpansion losses would increase more than the inlet mo-
mentun drag would decrease.

Variable ejector geometry. - Fram previous curves of fixed-ejector
performance, it is apparent that variable geometry is required for an
ejector to maintain near-optimum net thrust over the range of operating
conditions of current interest. ,

An ejector installation using a fixed primary nozzle could attain
near-optimum thrust if the shroud could be varied from cylindrical at
low Mach number to divergent at high Mach number. The performance of
such an ejector is illustrated in figures lO(a) and (b) for afterburning
(3500° R) and nonafterburning (1600° R), respectively. The curves are
the locus of net thrust at design pressure ratio for several fixed ejec-
tors investigated and thus represent maximum ejector thrust performance
over the assumed flight schedule. The over-all shroud variation indi-
cated (fig. 10(a)) for the typical schedule used herein would be from a
cylindrical ejector with 1.10 diameter ratio at low subsonic Mach num-
bers to a divergent ejector with 1.82 exit diameter ratio at Mach 2.8.
For a different flight schedule, the over-all shroud variation will, of
course, depend on the schedule itself and on the upper Mach number
limit, since the divergent shroud must provide the proper expansion ra-
tio for the combined flows. At the largest expansion ratio (largest
shroud exit), the shroud divergence angle should be small enough to pre-
vent rapid expansion of the flow. Divergence angles for the ejectors
investigated were less than 12°, but a shorter ejector resulting fram
angles up to 15 or 20° might represent a reasonable design compromise
with respect to weight and size.

To attain near-optimum net thrust for a turbojet-afterburner ejec=
tor installation, both a variable shroud-inlet diameter ratio DS/Dp
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and a variable exit diameter ratio De/Dp would be necessary. However,

such a configuration might be impractical because of complex mechanical
design. A more practical design would be the conventional double-iris
conical ejector modified so that the shroud could further expand to form
cylindrical and divergent shrouds when the afterburner is in operation.
General trends that can be expected for this type of installation are
illustrated by the curves and sketches in figure 10(c). The curve abc
is for conical-ejector shroud variation between an exit diameter ratio
of about 1.10 and 1.30 with -the afterburner off (1600° R). The curve
defg is for shroud variation from an exit diameter ratio of 1.10 (cy-
lindrical) to 1.82 (divergent) with the afterburner on (3500° R). Net-
thrust ratio is lower for nonafterburning than for afterburning because
inlet momentum of both the primary and the secondary system is a greater
proportion of the available jet thrust at 1600° than at 3500° R. In
general, the ejector net thrust is indicated as about 1 percent less
than optimum nozzle net thrust for afterburning conditions and about 2
percent less for nonafterburning conditions. '

CONCLUDING REMARKS

Ten divergent- and two cylindrical-shroud ejectors were investiga-
ted. The results indicate that variable shroud geometry is necessary
for an ejector to maintain near-optimum thrust performance over a typi-
cal range of flight conditions of current interest.

The afterburning turbojet and ejector installation requires both a
variable shroud exit and a variable shroud entrance (which involves com-
plex mechanical design) in order to maintain optimum thrust characteris-
tics as the primary nozzle is varied. A more practical ejector for an
afterburning turbojet is perhaps the conventional double-iris design
modified so that the shroud could be either conical, cylindrical, or
divergent.

An ejector instaltation having a fixed primary nozzle could attain
near-optimum thrust over a range of flight Mach numbers if the shroud
geometry were variable from cylindrical to divergent. A cylindrical
shroud of about 1.10 diameter ratio would serve for low subsonic Mach
numbers. At supersonic Mach numbers, a divergent shroud providing the
necessary expansion ratio with divergence angles up to lSO-Qr 20° would
have adequate performance.

Use of an ejector for a fixed jet-exit application depends somewhat
on cooling-air requirements. For no cooling air, a fixed convergent-
divergent type nozzle could provide about 1 percent more thrust than an
ejector. With corrected cooling-air-flow ratios of about 0.02 to 0.04,
the divergent ejector apparently can provide a net thrust equal to or
slightly better than the net thrust expected from a cooled convergent-
divergent nozzle.
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For most of the divergent ejectors investigated, secondary flow was
choked in the annular passage at the ejector entrance for high values of
weight-flow ratio. Air-handling characteristics for such choked opera-
tion can be computed from one-dimensional flow theory within an accuracy
of about 0.0l weight-flow-ratio unit.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, July 27, 1955



10 - CONT—— NACA RM E55G2la

APPENDIX A
SYMBOLS

A area,‘sq ft
c coefficient
D diameter, in. or ft
F thrust, 1b |
g acceleration due to gravity, 32.17 ft/sec?
L distance between exits of primary nozzle and ejector shroud,

in. or £t
M Mach number
P total pressure, 1b/sq ft
P : static pressure, lb/sq 't
R gas constant, 53.3 £t-1b/(16)(CR)
T total temperature, CR
t static temperature, “R
v velocity, ft/sec
W weight flow, lb/sec
o half cone angle of upstream shroud section, deg
B wall divergence_angle of ejector shroud, deg .
T ratio of specific heats
o] ratio of local pressure to NACA standard sea-level pressure

of 2116 1b/sq ft
2] ratio of local temperature to NACA standard sea-level temper-

ature of 518.7° R

o) density,.lb/cu ft
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Subscripts:
b bellmouth

c cold

e ejector exit

eJ ejector

F thrust
h hot

ip isentropic primary expansion -

J Jet
n net
P primary stream or station p

s secondary stream or station s

v ‘velocity

0 free stream or ambient exhaust

Parameters:

] S
K; secondary area ratio (annular passage) = (ﬁ;) -1

. . actual jet thrust. . )

Cr thrust coefficient, {actual mass flow)(isentropic velocity)
C velocity coefficient, agtual ex%t velOC}ty

v isentropic velocity
De
_— exit diameter ratio
D
P
Dg
55 secondary diameter ratio



S o

*ds I ms
*UHI m'_:]

thrust ratio

spacing (length) ratio
primary pressure ratio

ejector total-pressure ratio

ejector temperature ratio

-’

ejector weight-flow ratio

corrected weight-flow ratio

NACA RM E55G2la
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APPENDIX B

ATR-HANDLING CHARACTERISTICS OF CHOKED EJECTOR

Consider the choked ejector system in sketch (a):

Pg, Agy Ty

Mg = 1.0

Pp, Ap, Tp

Mp = 1.0

Sketch (a)

Since both primary and secondary Mach numbers are 1.0 at a known flow
area, the flow through each system can be expressed for the primary

stream as

’p
T8 V
_ _ Pe.
wp = Cp(PAV)p = CpPphp w,RTP
' +

+ 1
2
YY 1
Tp n>»
2
Yg +1
Ts8 2

RTs Ts

Tg + 1 Vs-l
, 2

and for the secondary stream as

'wg = Cg(pAV)g = CgPghAg

where € is the flow coefficient of the corresponding passage.

(B1)

(B2)

Combin-

ing the two equations, corrected weight-flow ratio is expressed as
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Tp_
To-1
Tp + 1\ P
s [ Ts- 2 )
— = (B3)
Yo \[Tp Ts
T -1
S
Tg * 1
2

Thus, the pumping characteristics of such an ejector are defined if flow
areas, flow coefficients, and specific-heat ratios are known.-

Computed and experimental weight-flow ratios are compared in figure
11 for several choked divergent ejectors. Agreement is generally within
0.01 ws/wp unit.
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APPENDIX C

CALCULATION OF NET-THRUST RATIO FOR EJECTOR

Net-thrust ratio (Fej/Fip), 1is defined herein as the ratio of the

net thrust of the ejector system to the net thrust available from the
primary system if the actual mass flow were expanded isentropically to
exhaust pressure. In equation form,

W- W,

S
F.; Fej - 2 Vo - = Vo
(eJ> = J g g (Cl)

Fi W-
P/n P
, Fip =% Vo

For compufation purposes, the equation was rearranged by using

F. = EEQ F and F;, = EBV- and dividing through b EE Vv t
ej = Fip 3 ip ip =g 'ip viding ough by = Vip o

Fej Vs Vo
Fip)y \p © Y Tip
ip/; P ip

Fej :
J

= c2
(Fip)n A 1 - V,L . ( )

In order to evaluate the performance of a hot (hot primary stream) ejec-
- or from the cold data herein, the following two assumptions were made:
(1) The corrected weight-flow ratio (ws/wp)l"TS/Tp of a hot ejector is

equal to the corrected weight-flow ratio of a cold ejector, and (2) the
jet-thrust ratio of a hot ejector is the same as for a cold ejector at
the same over-all operating pressure ratios. Thus, equation (C2) becomes

Fip JscC ViP

obtain

(), - [E—; | 5 E) -]

Vip/n

(c3)

andvnet-thrust ratio can be evaluated for a typical schedule of flight
conditions. ‘

The net-thrust values computed herein are based on a typical sched-
ule of primary pressure ratio and maximum ejector total-pressure ratio
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with flight Mach number and altitude as shown in figure 7. The proce-
dure for computing (Fej/Fip)n from equation (C3) is as follows.

(1) Choose Mach number and primary temperature. Determine Pp/pO
and (Pg/Pp) .. from schedule.

(2) select an ejector to-be evaluated. From its cold performance

’ WgalTg
data at Pp/po, get values of (FeJ./F‘ip)J’c and.( from

wp T
Ws/wb =0 to (Ps/PP)max'

(3) Compute (VO/ViP) as follows:

v, 0 V(i'4)(;§) (ca)
- | ca
R

where to 1is the altitude temperature in R and (V/A/gRT);, is a ve-

locity parameter from tables of reference 23 corresponding to the Pp/po
at a typical YP of 1.3. ,

(4) Compute Tg as follows:
Tg = Tg + (AT), ) (cs)

where T, is the free-stream total temperature, and (AT), is the tem-

perature rise through the secondary system for a specific secondary
flow. 1In this report (AT)g was evaluated by the methods of refer-
ence 24.

(5) Solve equation (C3) for (Fej/Fip)n and plot:

(Fﬁl) (PS/PP)max
FiP 7l
g/
s/ °p My = constant
?E,= constant
Ts . Ysalls
Pp o |Tp -
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(6) Repeat (1) to (5) at other values of Mach number to obtain per-
formance curves over the desired range of Mach number.
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TABLE I. - EJECTOR CONFIGURATIONS

. . ‘ _
Pﬁ%\;ﬂ/ﬂ T o 6
h— = 6.018 in.
8 T A P inside ‘
— . D, Ds Dg = 6.143 in. outside .
/ l
L
Shroud Ejector| Exit Inlet Sﬁaéing Divergence Approéch Data in
’ diameter|diameter | ratio, angle, angle, figire
ratio, | ratio, ZL./D:p B a
De/Dp | Ds/Dp
Divergent- 1 1.24 1.20 0.45 29 511 |15° 36' | 3(a)
-2 1.23 |. 1.14 .47 50 36t [17° 34 (v)
3 -1.23 1.04 .47 | 110 31+ |20° 9! (c)
4 1.44-. 1.21 1.06 60 22' |16° 1 (a)
5 1.45 | 1.09 1.06 90 25' [19° 7 (e)
6 1.46 1.09 1.07 90 39' |90° (£) .
7 1.70 1.34 1.07 9% 23' ]11° 54 (g)
8 1.82 1.26 1.91 g0 20' |13° 53¢ (n)
9 1.81 1.21 1.91 8% 59 |150 28°' (1)
- 10 1.82 1.10 | 1.90 | 100 34' [19° 4 (3)
Cylindrical| 11 1.10 1.12 0.80 0° 90° 4(a)
212 ] 1.46 1.46 2.2 | o° 90° (b)
.\\‘ b

CONPERETELP,
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—CSREEER A

TABLE II. - INSTRUMENTATION

2l

| station or location

Total temperature

Total pressure

Static pressure

S A (R Two 4-probe |4 Wall taps
radial rakes
2 ~eeeee=e===  |8-Probe 4 Wall taps
diametrical '
rake
On outside of | =====——-- -~ |eem—e——- —_— Survey with
bellmouth inlet 12 taps
3 3-Probe 8-Probe P S E—
‘diametrical diametrical
" rake rake
Plenum chamber —r——————— ————— .8 Taps .
(secondary air) circumferential
- Orifice ‘ Single ———— (a)
" (secondary air) probe
P | meemm———e—- 8-Probe LR S —
trical
rake
s ————————— Three 3- = |==e—emememee—— -—
probe rakes
eq ,
spaced

aU‘pstrea.m pressure and orifice differential pressure
calibrated orifice assembly.

bInstalled dﬁring preliminary only.

measured,for
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Ratio of ejéctor jet thrust to ideal primary

Ittt T 1t
% t ig ; 3 i Corrected weight-
H 12 T HHEHT flow ratio, §§§
1.08 8
1:06 Jet thrust
[
Eal
k-
© 1.00
3
Iy
:
® .96
L
o
b
.92 T
R
e
.ea H ifsssisie
.6
s
Air handling
aP
S
L
iy Shroud entrance not choked for
-/ Vs |Ts
8 range of AT investigated
M
o -4 o~ j 2 — — .118
: R |
] —
? S O o T .086
(=1
4. ~ : 1
46» :\—C It ..058 a
L
u
Q
¥ 4
@ 2
-
=
N e 0
1 o~ 1
1 2 3 4 S 6 7 8 . 9 10 13

Primary pressure ratio, Pp/p0
(a) Ejector 1.

Figure 3. - Performance of divergent-shroud ejectors.



Ratio of ejector jet thrust to ideal primary Jjet thrust, FeJ/Fip

B/Pp

Ejector total-pressure ratio, P

—— NACA RM E55G2la

-

Corrected weight-flow ratio,
% 1/5
o VTp
0.134
1.04 :
.074
1.00
.025
.96
0

w0
[N}

-

.
@
@

2

.80
8 £
A Air handling Shroud entrance choked for
.6 vg |Tg
= A| 7 &above about 0.10
W A B
N e o— —
S
.4
\}\ - —.074
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)
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.025
P—10- 0
4
0
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i & e S 4 5 6 ] 8 9 10

Primary pressure ratio, Pp/po
(v) Ejector 2.

Figure 3. - Continued. Performance of divergent-shroud ejectors.
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FeJ/Fip

Ratio of ejector Jjet thrust to ideal
primary jJet thrust,

Ejector total-pressure ratio, Ps/Pp

=
o
n

©
@

.94

-90

%]

Corrected weight-flow ratio

s [Ts

27

%-0--0 > o> > .045 o

Air handling

.Shroud entrance choked for

above about 0.01

vﬁluf

— | ——

. i

2 3 4 5 6 7 8 9 10 B
Primary pressure ratio, Pp/po

(¢) Ejector 3.~

Figure 3. - Continued. Performance of divergent-shroud ejectors.
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Ratlio of ejector Jjet thrust to ideal primary jet thrust, FeJ/Fip

EJjector. total-pressure ratio, Ps/Pp

_COSEISENSENT, NACA RM ES55G2le

1.22

orrected weight-flow ratio,

'B Ts y
" VT

[
=
o]

1.14f

1.10

1.06

1.02E

.98
.94
+ 90
.86
o7 T T 1 T T T
I l Shroud entrance choked for
W s
Air handling - AT above about 0.16
60 P VD .23b
. D TS
\
.5 3
.4
.110
¥ \\ts. A f\ 2 -
N > al g .043
.2 - .
“ :oo--o——o—o——JF——o— = -1
o1 3 5 7 9 11 13 15 17 19 21 23 25

Primary pressure ratio, Pp/po
(d) Ejector 4.

Flgure 3. - Continued. Performance of divergent-shroud ejectors.
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Corrected weight-flow ratio,

Ratio of ejector jet thrust to ideal primary Jjet thrust, F,,/F,

ot
Air handling
.084 —
i D— O O D
.6 4
# .072

qu‘ e &.——.-——-—.—-————1—.-—-1
~ 5 .069
n.ﬂ . \
: \ F
) <06
]
o 4
§ E \ \ Shroud entrance choked for
@ vg [Tg
E \ \] AT above about 0.03
é 3 5 P P -
38 , O O . — H
4
Q
B
8 ]
5] ’

= | = rox 0 >

O1 2 3 4 5 6 T 8 9 10 11

Primary pressure ratio, P, p/p0
(e) Ejector 5.

Figure 3. - Continued. Performance of divergent-shroud ejectors.
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Ratio of ejector jet thrust to ideal primary jet thrust, Faj/?ip

Ejector total-pressure ratio, Pn/Pp
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NACA RM ES55G2la

Corrected weight-flow ratio,
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1.1 Air handling
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Figure 3. - Continued.
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(f) Ejector 6.
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Performance of divergent-shroud ejectors.
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Ratio of ejector jet thrust to ideal primary jet thrust, FeJ/F

Corrected weight-flow ratio,

11 13 15 17 19 21 23 25

Primary pressure ratio, Pp/po

Figure 3. - Continued.

(g) Ejector 7.

Performance of divergent-shroud ejectors.
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1.20

Ratio of ejector jet thrust to ideal primary jet thrust, l?e.,/l?1p

3 5 11 15 &1
Primary pressure ratio, Pp/po

(h) Ejector 8.

Figure 3. - Continued. Performance of divergent-shroud ejectors.
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FeJ/Fip

fax,

Ratio of-ejector Jet thrust to ideal primary jet thrust,

EJector total-pressure ratio, PS/Pp

'1.00
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.96

.92

.88
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Air handling g
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Primary pressure ratio, Pp/p°

(1) Ejector 9.
Figure 3. - Continued. Performance of divergent-shroud ejectors.
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Ratio of ejector jet thrust to ideal primary jet thrust, FeJ/‘F1p

P

EJector total-pressure ratio, PB/P
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= T

Corrected

t-flow ratio,
T

Jo* i il

e
=

| Shroud entrance choked for
Alr handling ¥
;2 TE above about 0.05
P P

- D 140

8

.7

A iaala 7 A A .105

6

5 :

“~<> &> < | .06
.4
) y
/
3 " -
.03

2 ' =

«1

Lo O—~O—+— OO 0
0
3 3 7 11 3 5 & 19 21 23 25 27

Figure 3. - Concluded.
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Ratio of ejector jet thrust to ideal primary
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Figure 4. - Performance of cylindrical-shroud ejectors.
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Figure 6. - Assumed operating schedule for evaluation of ejector net thrust.
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Figure 7. - Net-thrust performance of fixed-shroud ejectors at design Mach number. Pri-
mary gas temperature, 3500° R.
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Figure 8. - Net-thrust performance of fixed-shroud ejectors over range of flight Mach
number. Primary gas temperature, 3500° R. :
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Figure 10. - Net-thrust performance of ejectors with variable shroud geometry.
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