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INFLUENCE OF THE BODY FLOW FIELD ON THE ZERO-LIFT
WAVE DRAG OF WING-BODY COMBINATIONS MODIFIED IN
ACCORDANCE WITH THE TRANSONIC AREA RULE

By William A. Page
SUMMARY

An analysis based upon an approximation to the transonic small-
disturbance theory is presented which shows an influence of the local
Mach number field of the body on the zero-lift wave drag of wing-body
combinations modified in accordance with the transonic area rule. The
analysis indicates that for a restricted class of indented wing-body
combinations the zero-1lift wave drag approximates that of the corre-
sponding equivalent body when a Mach number of 1 occurs locally at the
wing instead of in the free stream. Comparisons are made between the
analysis and available experimental data. The comparisons suggest an
explanation for some of the anomalous results obtained by various inves-
tigators from tests of indented wing-body combinations.

INTRODUCTION

The transonic area rule as first demonstrated by Whitcomb (ref. 1)
has led to the procedure of indenting the bodies of wing-body combina-
tions in the region of the wing in order to reduce the drag rise at
.sonic speed to the value for the body alone. The results of applying
body indentations, as reported by Whitcomb and others, have not been
entirely consistent. In some cases a drag rise at sonic speed equal to
that of the body alone (the so-called equivalent body of revolution) has
been obtained. In other cases the drag rise has been higher than that
of the equivalent body.

Some reasons for these inconsistencies have been advanced. Spreiter.
has shown in reference 2, by an examination of experimental data on the
basis of the transonic similarity rules, that if the similarity parameter
for aspect ratio and thickness, A(t/c)/3, for a wing becomes too large,
the zero-lift drag rise at sonic speed is no longer related by the
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transonic area rule to the drag rise of a similar wing of lower aspect
ratio and thickness (i.e., lower value of A(t/c)3). As a result, it
can be expected that a similar limit exists on A(t/c)Y® for wings
mounted. either on indented or unindented bodies above.which drag equiv-
‘alence with the respective equivalent body would not be obtained.
Whitcomb also recognized that some limitation should exist since the
rule specifies that the wings must be "thin" and of "low aspect ratio."
It has also be suggested in reference 3 that flow separation in the
‘region of the body indentation, caused by excessive body surface slopes,
would change the effective boundary of the configuration and thereby
prevent the attainment of equivalent body drag rise.

In addition to the foregoing two possible sources of a higher drag
rise at transonic speeds, an as yet unexplored explanation is offered
.here, namely, the influence on the drag of the wing of the local Mach
number field induced by the body. It was reasoned that the drag of the
wing and indentation parts of the configuration would depend primarily
.upon the value of the local Mach number in the vicinity of the wing
. instead of the free-stream Mach number. It is the purpose of this paper
to investigate the influence on the zero-1lift wave drag of indented wing-
body combinations of the local Mach number field induced by the body and,
by comparisons of the analytical results with experiment, to indicate the
extent to which this influence accounts for some of the aforementioned
anomalous results of applying the transonic area rule.

SYMBOLS
A aspect ratio '
B wing span
‘c . wing-root chord .
3 . . .. PP
Cp pressure coefficient, =——
65 average value of the pressure coefficient in the region R
(defined below)
. D ]
Cpy' zero-1ift drag coefficient, O
UoSy
' s . Do
Cpo zero-1lift wave-drag coefficient, =
W

Do zero-1lift drag
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Px

zero-1ift wave drag

(7+1)M 2
U

body length

free-stream Mach number

local Mach number

M, - M,

average value of  AM in the region R (defined below)

free-stream dynamic pressure

small region of the equivalent body flow field corresponding
to the region occupied by the wing in the complete configura-
tion flow field

body radius as a function of x

plan-form‘area of wing, including part inside body

surface area of coﬁfiguration

wing thickness

wing maximum thickness

free-stream velocity

longitudinal, lateral, and normal coordinate system with the
X axis corresponding to the wind axis

M2 -1
32+k—"<pr
ratio of specific heats

surface slope

perturbation potential

perturbation velocity
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Ty average value of @y 1in the region R (defined above)
Subscripts
B equivalent body of revolution
C complete configuration, wing-body combination modified in
accordance with the transonic area rule
P ‘perturbation shape, the wing and the area-rule body indentation

on an infinite eylindrical body

X,y,2 derivative with respect to x, y, or z
ANALYSTS
General Method

The basic problem under consideration is to investigate the influ-
ence on the zero-lift wave drag of an indented wing-body combination of
the local Mach number field induced by the body. To study this problem
analytlcally 1t is necessary to use the transonic small-disturbance’
theory, since any simpler theory is incapable of predicting local veloc-
ity field effects.” The analysis consists of two parts: (1) the deter-
mination of an approximate transonic velocity potential about the con-
figuration and (2) the computation of the zero-lift wave drag from
“knowledge of this velocity potential. :

Since the transonic small-disturbance equation is nonlinear, the

. application of the theory is extremely difficult. Methods for finding
solutions for three-dimensional shapes are not available. Accordingly,
simplifying assumptions are introduced and only an approximation to the
transonic potential is found. For example, this approach is used in
references 4 and 5 where the zero-lift wave drag of slender three- '
dimensional shapes is studied at transonic speeds by use of an approxi-
mation based upon slenderness,
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Derivation of the Velocity Potential

Consider the wing-body combination modified , ¢
in accordance with the transonic area rule shown -
as the complete configuration in sketch (a). The
problem is to find an approximation to the tran-
sonic potential ¢g about this configuration.
Since the transonic area rule states that the drag CGomplete configuration
rise depends primarily upon the longitudinal dis- ¢s
tribution of area and indicates that a wing-body

combination will have a drag rise equal to that e = —

of the equivalent body at sonic speed, Pas the

potential about the complete configuration was . Equivalent body
related to @p, the potential about the equiva-
lent body (the second configuration shown on é,
sketch (a)) by the equation . — //\\
¢ 3

Pc = Pg + Pp (1) U/

Perturbation configuration -
where can be considered as a difference

perturbation potential. The purpose of the Sketch (a)
remainder of this section will be to show that -

under certain conditions the perturbation potential, , can be closely
approximated by the linear-theory potential about the third configura-
tion of sketch (a). This perturbation configuration is an area-rule
indented wing-body combination resembling the complete configuration,
but with an infinite cylindrical body.

The transonic small-disturbance equation expressed in terms of a
- perturbation potential can be written in the form

. . B ' 1 2
(B® + kPy) Py S Qpy F 0py 5 ko= _(_7_‘“600_)_“1 (2)

where x,y, and z are a longitudinal, lateral, and normal coordinate
system with the x axis along the body center line coinciding with the
wind axis. For a derivation and discussion of the applicability of this
equation see reference 6, pages 327-335. Substituting the value of Pc
. from equation (1) in equation (2) gives '

(8% + ko, + X0p,) (I + Pr) = Ty * Foyy * gy + By (3)

As op by itself is a solutlon to equation (2), the subtractlon of
equation (2) from equation (3) yields
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(B + kop, )opy, + kop, (¥py, + Ppy) = ¥y + ¥p,, (&)
Region R A small region, R, of the equivalent body
s e flow field (sketch (b)) is now considered which
‘=::::::::t::::::::3 c?rresp9nds to tye region ab?ut the comPlete con-
. i;guzzztznt?ccupled ?y;f&e W;E§; ?n this reglon.
- ption I@Bx mBX|<<|@Bxl is made regarding
Sketch (b) the value of PRy The symbol EE; represents the

average value of PBy in the region R. It is

easily recognized that the above relation is equivalent to stating that
the local Mach number field about a body of revolution decays slowly in
the radial direction at transonic speeds and that over the portion of
the body length containing the wing the variation in PBy is small. A
survey about a representative smooth slender body of revolution, made in
the Ames 2- by 2-foot transonic wind tumnel, verified the existence of
such a region and indicated that this assumption was reasonable., The
results of the survey are presented in Appendix A.

It is further assumed that | < PPyx l in the region R. This
statement is qualitatively related %x the previous assumption, for if
PBy varies but a small amount, PByx must be small. Appendix A also
presents a comparison between theory and experiment to show that for
the test configuration PBxx 18 small compared with ¢p,..

With the introduction of these approx1mat10ns in equation (4), there
is obtained for @p in the region R

(B* + K9p, + kpp,)Opyy = 0Py, + Pp,, (5)
or
(B, + kop,Jop,, = ®p, + Op,, (6)
where .
Bi® = B% + kg (7)

Since B2 + ke, equals Mzz - 1 to the order of accuracy retained in
this analysis, the symbol B; is recognized as characterizing the
average local Mach number of the flow field about the equivalent body
in the region of the wing. Moreover, inspection of equation (6) indi-
cates that, in the region R, ¢p satisfies the transonic small-
disturbance equation with the free-stream Mach number defined as the
average of the local Mach number in R for the equivalent body alone,
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In addition to satisfying equation (6) in the region R and
equation (4) outside R, ¢p must satisfy conditions determined from
the boundary conditions satisfied by ¢c and @g. In the region of
the wing o¢p must satisfy the same boundary conditions as does P
For a wing-body combination which is symmetrical with respect to the
horizontal plane, this condition is given by

OPp

Sz = u:o)\c(x:y') (8)

Z=0

where U, 1s the free-stream velocity and Ac(x,y) is the wing surface
slope.

To obtain the boundary condition satisfied by @p near the body
surface is more complicated. For a circular body, the initial boundary
conditions are

d
= - Uarg(x) (9)
T r=rp(x)
and
d
= - Uorg() (10)
r r=rp(x)

where ro(x) and rg(x) define the body radii of the two configurations,
In the region of the body indentation, rp(x) is not the same as rg(x).
However, for simplicity, it will be assumed here that neither rc(x) norxr
rg(x) differs appreciably from the average value of ra(x) in this
region. Furthermore, since As(x) is equal to Ag(x) at other positions
on the body outside the indentation, the boundary condition satisfied by
Pp is closely approximated by

o
=0 = U Rl - 00| (11)
or |.. =

I'=I'B
where ?B is the average body radius in the region of the indentation.
This equation indicates that the boundary condition approximately satis-
fied by ¢@p near the body surface is described by an indented infinite
cylindrical body. Altogether, equations (8) and (11) indicate that the
boundary conditions which apply to ¢p are those of an area-rule
indented wing-body combination resembling the complete configuration, but
with an infinite cylindrical body rather than a pointed finite body.
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At this point in the analysis, it can be said that some progress has
been made since the equations and boundary conditions approximately satis-
fied by ¢p have been determined. However, the problem is still non-
linear, and not presently solvable, since equation (6) is in the form of
the transonic small-disturbance equation. It can now be demonstrated that
the perturbation potential, ¢p, can be linearized, a step which greatly
facilitates the determination of solutions. In reference 7 it is shown
that for a configuration described by an equal number of sources and sinks
in each plane perpendicular to the wind axis, the velocity potential as
calculated by linear theory remains finite as the Mach number approaches
and becomes 1. In particular, @x remains small compared with U except,
for instance, for singularities at the leading edge of a wing. Similar
conditions apply to the perturbation configuration, P, if the approximation
of the proportionality of source strength to surface slope is accepted.
This approximation is valid for wing-body combinations at or near a Mach
number of 1 (see ref. 8).

The preceding arguments have indicated that equation (6) for the
perturbation potential, ¢p, can be reduced to linearized form and still
produce finite and small values for the perturbation velocities at sonic
speed, a result which has an interesting consequence, As the zero-lift
wave drag will be zero for this configuration at sonic speed (ref. ),
it can be said that a special class of thickness solutions exists which
is valid at this Mach number., These solutions predict the transonic area
rule for a configuration that can be described by an equal number of
sources and sinks in planes perpendicular to the x axis (i. e., for con-
figurations where the derivative of the area distribution with respect to
x 1s zero everywhere),

Within the framework of the above approximations, the velocity poten-
tial at transonic speeds of wing-body combinations modified in accordance
with the transonic area rule,for which the local Mach number field about
the equivalent body is approximately constant in the corresponding region
occupied by the wing,can be determined as follows

1. The velocity potential about the wing-body combination in the
region occupied by the wing is approximated by the sum of two parts;
namely, (a) the velocity potential about the equivalent body alone, and
(b) the velocity potential about the wing and an infinite cyllndrlcal
body having the same indentation volume as the actual body.

2. The velocity potential of the equivalent body is calculated by
transonic small-disturbance theory. The velocity potential of the wing
and indented infinite eylindrical body is calculated by linear theory,
but with the Mach number used in the calculations determined by the
average local Mach number of the equivalent body in the correspondlng
region occupied by the w1ng.
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Calculation of the Zero-Lift Wave Drag

The zero-lift wave drag of the complete configuration is given by

Do, = qwb/‘xccp dSg (12)
C Se c

~

integrated over the exposed plan-form area of the wing and the surface
of the indented body. Using the relationship :
20, 92 + 9,2 A
CP = - - ) (13)
U Uso

and equations (l); (11), and (12) gives

B QCDBX Q)By2 + q)BZ2A 2cpr Q)EXZ + (pPZZ
Do, = 9 | (A + Ap)|{- - z + - . -
c 5e U U, Uy

2
00 . Uoo

dSg ' (1%)

or

| /29 0p  29p 9p
_ N z £z
DOC = qw\/S‘ [}\BCPB-*- )\PCPB + )\BCPP + ?\PCPP + (}\P + }\B ) <- 22 y.... UCOZ : >]dss
S
(15)

An examination of the various terms of equation (15) follows: The

. first term on the right-hand side of equation (15) represents the drag
of the equivalent body; it is the only term “predicted" by the transonic
area rule at a free-stream Mach number of 1, The fourth term of equa-
tion (15) represents the drag of the wing and area-rule body indentation
on an infinite cylinder. It has a value of . 0 for a local Mach number
of 1. At a free-stream Mach number of 1 its value depends, of course,
upon the amount of increase .of the local Mach number about the equivalent
* body and the shape and size of the wing. '

The second term representsvthe action of the equivalent body pres-
sure field on the indented wing-body combination having the infinite
cylindrical body. This term can contribute to the drag only within the
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region R since AP is zero elsewhere. Within this region it has been
assumed that the variations in are small or, correspondingly, the

variations in CpB are small, The second term can therefore be written
as :

L NCp S = /1; AT S5 + fR Ap <ch - EP_B> dSg (16)
S

The first term on the right-hand side of this equation contributes no
drag since a constant pressure field acting on the perturbation shape

causes no drag force. The second term is small compared with XBCdeSS,
S

the term representing the drag of the equivalent body, since Ap in R
is of the order of magnitude of Ag elsewhere on the body and Cp - 65‘
. . . B B
in R 1is small compared with CPB.

The third term of equation (15) represents the action of the pressure
field of the wing-body combination having the infinite cylindrical body on
the equivalent body. Within the region R, this term can be assumed small
compared with the term representing the drag of the equivalent body, since
CPP is the same order of magnitude as CPB ‘and for the smooth slender

equivalent bodies considered here Ag within R would be small compared
“with KP. Evaluation of the possible remaining drag contribution from the
third term of equation (15) in the region outside R is difficult to
assess because @p no longer satisfies a simple equation as it does in R.
However, if the linear solution to ¢p 1is extended along the body surface
(one can imagine the region R growing in size, or conversely, the wings
becoming smaller), it is found that Ppy (and also CPP) rapidly decays

toward zero. This is easily seen, for the potential downstream of -an equal
number of sources and sinks grouped together (i.e., the wing and the area- °
rule body indentation) resembles more and more closely the potential
directly behind a doublet for which ¢, = O. In fact, at a local Mach
number of 1, PPy would be identically zero along the cylindrical body
surface. As Cp, outside R can therefore be expected to be small com-
pared with Cp,, the drag contribution from the third term of equation (15)

can be expected to be small compared with the drag of the equivalent body.

The last term of equation (15) can.be disposed of with reasoning
similar to the foregoing when it is noted that, within the region R,
PR and QBZ are small since the body slopes for smooth slender bodies

have small values in this region, and outside the region R, the magnitude
of @Py and op, must be close to zero as can be reasoned from the boundary- -

condition requirements given by equation (11).
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From the foregoing considerations, the total zero-lift wave drag of
the complete configuration can be approximated by

Dog (M) = Do (M) + Doy (M) (17)

where DOB(M@) is the zero-1lift wave drag of the equivalent body alone and
DOP(MZ) is the zero-lift wave drag of the perturbation configuration (the

indented wing-body combination having the infinite cylindrical body). The
zero-1ift wave drag of the equivalent body, DOB(MM), must be calculated

from the transonic small-disturbance theory at the free-stream Mach number,
whereas DOP(Ml) can be calculated by means of the linear theory but at a

Mach number given by the average of the local Mach number field about the
equivalent body in the region of the wing. Since DOP is zero in a sonic

flow field and increases as the Mach number is increased, it is clear that
equation (17) indicates that the complete configuration can have greater
zero-1lift wave drag than its equivalent body at a free-stream Mach number
of 1. This increase in drag can be attributed to what might be called a
Mach number shift effect on the drag of the wing and area-rule indentation
parts of the configuration. It must also be remembered that equation (17)
has been derived under relatively restrictive conditions; that is, the wing
is small relative to the body size and located in a region where the corre-
spondlng equivalent body flow field is approximately uniform.

It should be mentioned that as the Mach number is increased somewhat
above unity, the transonic analysis presented herein breaks down and linear
theory becomes more directly applicable. In that case, equation (17) can
be shown to be accurate when both DOB and Dg are obtained directly from

linear theory at the stream Mach number, if the equivalent body is a so-
called minimum drag shape.

" COMPARISON OF PREDICTED RESULTS WITH AVATIABLE EXPERIMENTAL DATA

It is the intent of this section to determine whether the theoretical
prediction of the previous section is in accord with experiment, and thus
to see if the analysis accounts for the anomalous results from tests on
indented wing-body combinations. A direct comparison between the predicted
value from equation (17) and the experimental value of the zero-lift wave
drag of the complete configuration cannot be made -since solutions to the
transonic small-disturbance equation for bodies of revolution are not
available either for the drag, or the local Mach number field about the
body. Determination of the usefulness of equation (17) can be made,
however, by comparing the predicted value of CDOP (the zero-lift wave
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drag of the wing and indentation parts of the configuration) with the
experimental value of CDo and obtaining the local Mach number field

P
about the equivalent body either directly from experiment, or from linear-
theory calculations.

Experimental values of CDOP, as obtained from available experiments

on indented wing-body combinations, will be compared with linear-theory
values of Cp, with and without the correction for the shift in Mach

P
number caused by the velocity field of the body. A description of the
means Of evaluating the quantities necessary for the comparison between
experiment and theory follows:

The linear-theory values for CDoP were obtained in most cases fram

the literature; the actual source will be given subsequently on the figures
which show the comparisons. The value for the average local Mach number
about the equivalent body in the region occupied by the wing was estimated
in most cases from experiment, as described in Appendix B. A summary of
the results obtained is given in the table of Appendix B. The experimental
drag of the wing and indentation parts of the configuration was obtained by
subtracting the experimental drag of the equivalent body from the experi-
mental drag of the complete configuration. The zero-lift wave drag of the
wing and indentation, CDOP, was estimated in turn by considering it equal

to the zero-1lift drag rise, which is obtained by subtracting the subsonic
drag level from the transonic and supersonic drag values. The quantity
subtracted was usually the zero-lift drag at the lowest subsonic Mach
number at which data were available. . This procedure is equivalent to
assuming that the change in friction drag over the Mach number range of
interest is negligible and that no serious amount of flow separation takes
place. )

Figure 1 shows the comparisons between measured characteristics for
wing-body combinations modified in accordance with the transonic area rule,
and the characteristics estimated by the approximate theory as developed in
the preceding section of this report. The upper half of each part of the
figure shows the experimental data as obtained from the indicated refer-
ences. In the lower half of the figure is shown the experimental value of
CDo as determined from the data in the upper half of the figure. This

P
estimate of zero-1lift wave drag of the wing and indentation based upon the
experimental data is compared with the linear-theory value of Cpo

and the modified value of CDOP, which is shifted in Mach number (gue to

the influence of the local Mach number field induced by the body) by the
amounts indicated in the table given in Appendix B. Figures 1(a), (e),
and (f) definitely show improved agreement between experiment and theory
at transonic speeds when the influence of the local Mach number field of
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the body is taken into account. Figures 1(b), (c), and (d) represent
cases where the influence of the local Mach number field of the body
should be negligible, since there was little increase in the local Mach
number above the free-stream value at the wing location for the bodies

of these examples. Figures 1(b) and (c) show that the experimental value
of Cp,. 1s near zero at a free-stream Mach number of 1, as was expected

for these cases., The large increase in the experimental value of Cpg

(e.g., fig. 1(d)) prior to sonic speed is not accounted for by the present
theory.

It seems that consideration of the local Mach number field about the
equivalent body explains why some indented wing-body combinations exhibit
greater zero-lift drag rise at a free-stream Mach number of 1 than the
equivalent body. One of the requirements which appears to be necessary
for the sonic drag rise to be the same is for the equivalent body to be
so shaped as. to assure that the local Mach number in the corresponding
region oceupied by the wing is approximately the free-stream value (as
it is for a body with a sufficiently long cylindrical section or for a
very slender body).

The preceding analysis or the experimental comparisons shown do not
give any direct information regarding the largest aspect ratio and thick-
ness of a wing for which the concept of the transonic area rule can be
expected to be valid (ref. 2). The possibility of finding any information
on this subject from the present analysis was lost when equation (7) for
the perturbation potential, ¢p, was linearized. A systematic series of
experimental tests or the appropriate solution to the transonic small-
disturbance equation would be necessary for this purpose.

CONCLUDING REMARKS

An approximate transonic analysis, based on relatively restrictive
assumptions, has shown that, for indented wing-body combinations for
which the wing is small relative to the body size and for which the local
Mach number field about the equivalent body is approximately constant in
the corresponding region occupied by the wing, the zero-lift wave drag is
approximated by the sum of two parts: (1) the zero-lift wave drag of the
equivalent body, and (2) the zero-lift wave drag of the wing and an
infinite cylindrical body having the same indentation volume as the actual
body. The drag of the wing and indented infinite cylindrical body depends
on the average local Mach number of the equivalent body in the region
occupied by the wing. ‘
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Comparisons of the approximate analysis with available experimental
data have been made by considering only the zero-lift wave drag of the
wing and indentation parts of the configuration. It was shown that agree-
ment between theory and experiment could be improved by taking into con-
sideration the local Mach number field of the equivalent body. This
result confirmed the reasoning that the zero-lift drag rise of a wing-body
combination modified in accordance with the transonic area rule must exceed
that of the equivalent body at a free-stream Mach number of 1 if there is
an appreciable increase in the local Mach number field about the equivalent
body. The result of the investigation suggests that drag-rise equivalence
occurs when a Mach number of 1 occurs locally at the wing instead of in the
free stream.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Nov. 10, 1955
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APPENDIX A

SURVEY OF THE VELOCITY FIELD ABOUT A BCDY

OF REVOLUTION AT TRANSONIC SPEEDS

It is the purpose of this section to demonstrate experimentally two
features of the flow field about a smooth slender body of revolution at
transonic speeds; namely, (1) variations in the local Mach number field
are small in the region occupied by a typical wing, and (2) the value of
Pyxx in this region is small compared to the theoretical value of Pxx
for a wing and area-rule body indentation. To obtain this information a
survey of the flow about a body of revolution was made in the Ames 2- by
2-foot transonic wind tunnel., The body used was the same as the body of
reference 9 and is also the same body as in figure 1(a) of this report.
A static-pressure survey was made with a movable, cylindrical axial tube
of l/2-inch diameter extending through the test section parallel to the
wind axis of the wind tunnel.

The results of the pressure survey at Mach numbers from 0.98 to 1.10
are shown in figure 2 in the form of contours of the increase in local
Mach number over the free-stream value. The contours shown are the dif-
ference between the survey about the body of revolution and an empty-
tunnel survey, The accuracy of the contours is the order of 0.0l Mach
number. Inspection of the figure shows that over the plan form of the
elliptical wing (the dashed lines on the figure) the variations in the
local Mach number are small, The variations in this region become larger
as the Mach number is increased to 1.10.

To determine if the value of Pyxx For the body flow field is small
compared with values for a typical wing and area-rule indentation, the
experimental values (obtained by using Cp = -(294/U,) to relate the
pressure coefficient and the velocity potential) are compared in figure 3
with theoretical values for the wing and area-rule body indentation of
reference 9 at a Mach number of 1, The figure shows that Pxx for the
body alone is negligible compared with the values for the wing and inden-
tation. The theoretical values were determined by simulating the wing
with a source-sink sheet (the planar approximation) and the area-rule
body indentation by a line of sinks (and sources) along the center line
of the body. Under these conditions, where an equal number of sources
and sinks exists in every plane normal to the x axis, the two-
dimensional equation '

cpyy + cpzz =0 (Al)
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applies (ref. 7). The potential is therefore given by
Um a(x) . o
oly,esm) = [ ] (v - 7207 + 2% s -
() |

a(x)

1n(y2 + z2) Mya,x)dya (A2)
-a(x)

where a(x) defines the edge of the plan form. For the elliptic plan-form
wing with circular-arc section of reference 9 where

t _ %o X g2
sl (e/272 o) )

My1,x) is given by

Aya,e) = Ax) = - (—'°7§)— (ak)
The second derivative of the potential is found to be
PexC ct/02 072)2 2<<:/2.> <c_}/{2.>2- <;;;_ ] .
Up 2
@ T @
<c/ = (85)

- (@) ()
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APPENDIX B

DETERMINATION OF THE LOCAL MACH NUMBER ABOUT THE EQUIVALENT

BODIES OF REVOLUTION OF FIGURE 1

The average local Mach number about the equivalent bodies in the
corresponding region occupied by the wing was estimated in most of the
examples of figure 1 by reference to experimental pressure distributions.
First, the average pressure coefficlent in the region occupied by the
wing was determined. (The decay of the pressure field of the body over
the span of the wing was ignored in those cases in which it was not
known.) Second, the average local Mach number in this region was found

from the relation
-7/2
Cp = —= [<l+o'2M12> ’ 1] (B1)
P 7o L \1 + 0.2

In figure 1(a) the average local Mach number was estimated from the
pressure survey presented in Appendix A. TFor figures 1(b), (c¢), and (d)
the average local Mach number was estimated from pressure~distribution
measurements on the equivalent body from reference 15. For figures 1(e)
and (f) a linear-theory calculation at a Mach number of 1.05, based on
the method of reference 16, was used, since an experimental pressure
distribution was not available. It was assumed that the pressure dis-
tribution so obtained would be representative of values over the Mach
number range of 1.00 to 1.10., To show that this was a reasonable
assumption, a comparison between linear theory and the experimental
pressure distributions for all the bodies (fig. 1) where such data were
available is given in figure 4. It is to be noted in part (a) of
figure 4 that the pressure distribution was taken off the surface of
the body by the indicated amount; whereas the flagged symbols denote
measurements on the surface of the body. Here, the linear-theory method
of reference 16 tends to overestimate the actual pressure distribution
in the region of the wing. The essential feature of figure 4(b) is the
collapse of the pressure coefficient back to the free-stream value over
the cylindrical portion of the body. Except for the anomalous behavior
of the experimental pressure distribution at a Mach number of 1,03 com-
pared with the distributions at Mach numbers of 1.00 and 1.10, the pre-
diction of the theory is fairly accurate. In summary, while the accuracy
of the predictions of the linear-theory method of reference 16 in this
Mach number range has been shown to be somewhat variable, it can be
expected that the theory will serve to give a rough estimate of the
pressure distribution on bodies for which no experimental data are
available (figs. 1(e) and (f)).
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A summarizing table showing the values of the average local Mach
number used in the calculation of CDO for figure 1 is given below:
P

Body in |M; for

figure 4|M, = 1.00 Source

(a) (a) 1.025 |Pressure survey (Appendix A)
(b) (b) 1.00 Pressure distribution (ref. 15)
(c) (b) 1.00 Do.

(d) (b) 1.00 Do.

(e) (c) 1.0k Linear theory (ref. 16)

(f) (c) 1.0 Do.
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Figure 2.- Experimental local Mach number distribution about a Sears-
Haack-Karman ogive body of revolution at transcnic Mach numbers.
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2 Experiment ( Appendix A)

O M.=1.00

0 M,=105 amM=.025
- OM.=LIO

— Linear theory at M,=1.05
(Ref.16)

1 1 1 1 1 1 I J

.
// Wing ™\
i AY .
/" location \ Pressure survey station

(a) Equivaelent body ; \

of figure 1(a).

-2r Experiment (Ref, 15)
O M,=1.00

O M,=103
- O M.=110 —
—— Linear theory at =0
G
] ,’/Wing locations

(b) Equivalent body N y/
of figure 1(v), (c), b AN
and (4). : |

“r — Linear theory at

_ M, =105 (Ref.16) . i+ 04
o /\/\

1 1
4 6 8 10
%
I I yom————
. , y
s 4
P P ,//
I\ /Wing locations
|4 N S
1,7 Ny
v A
q AN

(¢) Equivalent body of : , .
figure 1(e) and (£f). —

Figure 4.- Experimental and theoretical pressure distributions about
the equivalent bodies at transonic Mach numbers. ,
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