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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

INFLUENCE OF THE BODY FLOW FIELD ON TEE ZERO-LIFT 

WAVE DRAG OF WING-BODY COMBINATIONS MODIFIED IN 

ACCORDANCE WITH THE TRANSONIC AREA RULE 

By William A. Page 

SUMMARY 

An analysis based upon an approximation to the transonic small-
disturbance theory is presented which shows an influence of the local 
Mach number field of the body on the zero-lift wave drag of wing-body 
combinations modified in accordance with the transonic area rule. The 
analysis indicates that for a restricted class of indented wing-body 
combinations the zero-lift wave drag approximates that of the corre-
sponding equivalent body when a Mach number of 1 occurs locally at the 
wing instead of in the free stream. Comparisons are made between the 
analysis and available experimental data. The comparisons suggest an 
explanation for some of the anomalous results obtained by various inves-
tigators from tests of indented wing-body combinations. 

INTRODUCTION 

The transonic area rule as first demonstrated by Whitcomb (ref. 1) 
has led to the procedure of indenting the bodies of wing-body combina-
tions in the region of the wing in order to reduce the drag rise at 
sonic speed to the value for the body alone. The results of applying 
body indentations, as reported by Whitcomb and others, have not been 
entirely consistent. In some cases a drag rise at sonic speed equal to 
that of the body alone (the so-called equivalent body of revolution) has 
been obtained. In other cases the drag rise has been higher than that 
of the equivalent body. 

Some reasons for these inconsistencies have been advanced. Spreiter 
has shown in reference 2, by an examination of experimental data on the 
basis of the transonic similarity rules, that if the similarity parameter 
for aspect ratio and thickness, A(t/c) 113 , for a wing becomes too large, 
the zero-lift drag rise at sonic speed is no longer related by the
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transonic area rule to the drag rise of a similar wing of lower aspect 
ratio and thickness (i.e., lower value of A(t/c) 113 ). As a result, it 
can be expected that a similar limit exists on A(t/c)" for wings 
mounted either on indented or unindented bodies above which drag equiv-
alence with the respective equivalent body would not be obtained. 
Whitcomb also recognized that some limitation should exist since the 
rule specifies that the wings must be "thin t' and of "low aspect ratio." 
It has also be suggested in reference 3 that flow separation in the 
region of the body indentation, caused by excessive body surface slopes, 
would change the effective boundary of the configuration and thereby 
prevent the attainment of equivalent body drag rise. 

In addition to the foregoing two possible sources of a higher drag 
rise at transonic speeds, an as yet unexplored explanation is offered 
here, namely, the influence on the drag of the wing of the local Mach 
number field induced by the body. It was reasoned that the drag of the 
wing and indentation parts of the configuration would depend primarily 
upon the value of the local Mach number in the vicinity of the wing 
instead of the free-stream Mach number. It is the purpose of this paper 
to investigate the influence on the zero-lift wave drag of indented wing- 
body combinations of the local Mach number field induced by the body and, 
by comparisons of the analytical results with experiment, to indicate the 
extent to which this influence accounts for some of the aforementioned 
anomalous results of applying the transonic area rule. 

SYMBOLS 

A	 aspect ratio 

b	 wing span 

wing-root chord 

pressure coefficient, p-pm qw 

C-p	 average value of the pressure coefficient in the region R 
(defined below)

D0' 
CDO '	 zero-lift drag coefficient,

Do 
CD0	 zero-lift wave-drag coefficient, 

D0	 zero-lift drag
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Do	 zero-lift wave drag 

k	
(y+l)M2 

U. 

7.	 body length 

M.	 free-stream Mach number 

M7.	 local Mach number 

AM	 M7.-}iL 

average value of AM in the region R (defined below) 

q.	 free-stream dynamic pressure 

R	 small region of the equivalent body flow field corresponding 
to the region occupied by the wing in the complete configura-
tion flow field 

r(x)	 body radius as a function of x 

SW	 plan-form area of wing, including part inside body 

Ss	 surface area of configuration 

t	 wing thickness 

to	 wing maximum thickness 

U	 free-stream velocity 

x,y,z longitudinal, lateral, and normal coordinate system with the 
x axis corresponding to the wind axis 

2_l 

ratio of specific heats 

A	 surface slope 

cp	 perturbation potential 

IPX	
perturbation velocity
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average value of cpx in the region E (defined above) 

Subscripts 

B	 equivalent body of revolution 

C	 complete configuration, wing-body combination modified in 
accordance with the transonic area rule 

P	 perturbation shape, the wing and the area-rule body indentation 
on an infinite cylindrical body 

x,y,z derivative with respect to x, y, or z 

ANALYSIS 

General Method 

The basic problem under consideration is to investigate the influ-
ence on the zero-lift wave drag of an indented wing-body combination of 
the local Mach number field induced by the body. To study this problem 
analytically it. is necessary to use the transonic small-disturbance 
theory, since ay simpler theory is incapable of predicting local veloc-
ity field effects The analysis consists of two parts: (1) the deter-
mination of an approximate transonic velocity potential about the con-
figuration and (2) the computation of the zero-lift wave drag from 
knowledge of this velocity potential. 

Since the transonic small-disturbance equation is nonlinear, the 
application of the theory is extremely difficult. Methods for finding 
solutions for three-dimensional shapes are not available. Accordingly, 
simplifying assumptions are introduced and only an approximation to the 
transonic potential is found. For example, this approach is used in 
references 4 and 7 where the zero-lift wave drag of slender three-
dimensional shapes is studied at transonic speeds by use of an approxi-
mation based upon slenderness.
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Derivation of the Velocity Potential 

Consider the wing-body combination modified 	 4 
in accordance with the transonic area rule shown 
as the complete configuration in sketch (a). The 
problem is to find an approximation to the tran-
sonic potential cpC about this configuration. 
Since the transonic area rule states that the drag	 Complete configuration 

rise depends primarily upon the longitudinal dis-
tribution of area and indicates that a wing-body 
combination will have a drag rise equal to that 
of the equivalent body at sonic speed, cpC the 
potential about the complete configuration was	 Equivalent body 

related to q, the potential about the equiva-
lent body (the second configuration shown on 
sketch (a)) by the equation  

(1)

Perturbation configuration 
where cpp can be considered as a difference 
perturbation potential. The purpose of the	 Sketch (a) 
remainder of this section will be to show that 
under certain conditions the perturbation potential, cpp, can be closely 
approximated by the linear-theory potential about the third configura-
tion of sketch (a). This perturbation configuration is an area-rule 
indented wing-body combination resembling the complete configuration, 
but with an infinite cylindrical body. 

The transonic small-disturbance equation expressed in terms of a 
perturbation potential can be written in the form 

2	 (yM+l)2 on 

(	 k= 

where x, y, and z are a longitudinal, lateral, and normal coordinate 
system with, the x axis along the body center line coinciding with the 
wind axis. For a derivation and discussion of the applicability of this 
equation see reference 6, pages 327-335. Substituting the value of cpC 
from equation (1) in equation (2) gives 

(2 + kcp + kpp)(q	 + cpp)	 0. + qp +
	 +	 ( 3) 

As cpB by itself is a solution to equation (2), the subtraction of 
equation (2) from equation (3) yields

(2)
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(2 
+ kc)cpp	 + kpp(pp +	 (PPYY + IPPZZ

 

	

Region R	 A small region, R, of the equivalent body 
7	 flow field (sketch (b)) is now considered which 

___--f-j-------1 corresponds to the region about the complete con-
figuration occupied by the wing. In this region 
the assumption I PBx -	 is made regarding 

	

Sketch (b)	 the value of cpBx  The symbol qBx represents the 
average value of q 	 in the region R. It is 

easily recognized that the above relation is equivalent to stating that 
the local Mach number field about a body of revolution decays slowly in 
the radial direction at transonic speeds and that over the portion of 
the body length containing the wing the variation in	 is small. A 
survey about a representative smooth slender body of revolution, made in 
the Panes 2- by 2-foot transonic wind tunnel, verified the existence of 
such a region and indicated that this assumption was reasonable. The 
results of the survey are presented in Appendix A. 

It is further assumed that 	 in the region R. This 
statement is qualitatively related to the previous assumption, for if 

varies but a small amount,(pBxx must be small. Appendix A also 
presents a comparison between theory and experiment to show that for 
the test configuration cpBxx is small compared with pp. 

With the introduction of these approximations in equation ( ii-), there 
is obtained for pp in the region R

(7) 

or

(2 + kqp)pp	 = cpp	 + cpp	 (6) 

where

= p2 +	 (7) 

Since f32 + kq	 equals M, 2 - 1 to the order of accuracy retained in 
this analysis, the symbol 0 1 is recognized as characterizing the 
average local Mach number of the flow field about the equivalent body 
in the region of the wing. Moreover, inspection of equation (6) indi-
cates that, in the region R, pp satisfies the transonic small-
disturbance equation with the free-stream Mach number defined as the 
average of the local Mach number in R for the equivalent body alone.
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In addition to satisfying equation (6) in the region R and 
equation ( ii. ) outside R, cpp must satisfy conditions determined from 
the boundary conditions satisfied by cpC and q>. In the region of 
the wing pp must satisfy the same boundary conditions as does CPC. 
For a wing-body combination which is symmetrical with respect to the 
horizontal plane, this condition is given by 

z 
I
= 

= tJ7(x,y)	 (8) 

where U is the free-stream velocity and ?(x,y) is the wing surface 
slope. 

To obtain the boundary condition satisfied by q near the body 
surface is more complicated. For a circular body, the initial boundary 
conditions are

I
= Uc1(X)	 (9) 

r
r=r0(x) 

and

I	 =	 (10) 
r=rB (x) 

where rC(x ) and rB(x) define the body radii of the two configurations. 
In the region of the body indentation, rC(x) is not the same as rB(x). 
However, for simplicity, it will be assumed here that neither r,(x) nor 
rB(x) differs appreciably from the average value of rB(x) in thrs 
region. Furthermore, since Ac(x) is equal to AB(x ) at other positions 
on the body outside the indentation, the boundary condition satisfied by 
Pp is closely approximated by 

where is the average body radius in the region of the indentation. 
This equation indicates that the boundary condition approximately satis-
fied by Pp near the body surface is described by an indented infinite 
cylindrical body. Altogether, equations (8) and (11) indicate that the 
boundary conditions which apply to Pp are those of an area-rule 
indented wing-body combination resembling the complete configuration, but 
with an infinite cylindrical body rather than a pointed finite body.
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At this point in the analysis, it can be said. that some progress has 
been made since the equations and boundary conditions approximately satis-
fied by cpp have been determined. However, the problem is still non-
linear, and not presently solvable, since equation (6) is in the form of 
the transonic small-disturbance equation. It can now be demonstrated that 
the perturbation potential, pp, can be linearized, a step which greatly 
facilitates the determination of solutions. In reference 7 it is shown 
that for a configuration described by an equal number of sources and sinks 
in each plane perpendicular to the wind axis, the velocity potential as 
calculated by linear theory remains finite as the Mach number approaches 
and becomes 1. In particular, (px remains small compared with U except, 
for instance, for singularities at the leading edge of a wing. Similar 
conditions apply to the perturbation configuration, P, if the approximation 
of the proportionality of source strength to surface slope is accepted. 
This approximation is valid for wing-body combinations at or near a Mach 
number of 1 (see ref. 8). 

The preceding arguments have indicated that equation (6) for the 
perturbation potential, cpp, can be reduced to linearized form and still 
produce finite and small values for the perturbation velocities at sonic 
speed, a result which has an interesting consequence. As the zero-lift 
wave drag will be zero for this configuration at sonic speed (ref. 7), 
it can be said that a special class of thickness solutions exists which 
is valid at this Mach number. These solutions predict the transonic area 
rule for a configuration that can be described by an equal number of 
sources and sinks in planes perpendicular to the x axis (i.e., for con-
figurations where the derivative of the area distribution with respect to 
x is zero everywhere). 

Within the framework of the above approximations, the velocity poten-
tial at transonic speeds of wing-body combinations modified in accordance 
with the transonic area rule, for which the local Mach number field about 
the equivalent body is approximately constant in the corresponding region 
occupied by the wing, can be determined as follows: 

1. The velocity potential about the wing-body combination in the 
region occupied by the wing is approximated by the sum of two parts; 
namely, (a) the velocity potential about the equivalent body alone, and 
(b) the velocity potential about the wing and an infinite cylindrical 
body having the same indentation volume as the actual body. 

2. The velocity potential of the equivalent body is calculated by 
transonic small-disturbance theory. The velocity potential of the wing 
and indented infinite cylindrical body is calculated by linear theory, 
but with the Mach number used in the calculations determined by the 
average local Mach number of the equivalent body in the corresponding 
region occupied by the wing.
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Calculation of the Zero-Lift Wave Drag 

The zero-lift wave drag of the complete configuration is given by 

Doc =	 CCpdSs	 (12)
SS 

integrated over the exposed plan-form area of the wing and the surface 
of the indented body. Using the relationship 

	

-- 2cp	 cp2+cp2 

	

-	 ('3) 

	

U.	 CO 

and equations (1), (ii), and (12) gives 

r 2	 2+(P2	 __  

DO =	 ( + ) [(- :
	

z + ( 2 Px - P U2 +	 - 

UO32 2	 U	 2 2 U. 03 

z y	
2cPB (Pp z _	 l 

	

2	 U2	 Is  

	

Uco	 .w J 
or

2
c

cp q	 2Bz(PPz)] 
XPCPB

	

	 (P+AB)(- dSsU2 

	

S5

	 U.
	 UO3

(15) 

An examination of the various terms of equation (15) follows: The 
first term on the right-hand side of equation (15) represents the drag 
of the equivalent body; it is the only term "predicted" by the transonic 
area rule at a free-stream Mach number of 1. The fourth term of equa-
tion (15) represents the drag of the wing and area-rule body indentation 
on an infinite cylinder. It has a value of 0 for a local Mach number 
of 1. At a free-stream Mach number of 1 its value depends, of course, 
upon the amount of increase of the local Mach number about the equivalent 
body and the shape and size of the wing. 

The second term represents the action of the equivalent body pres-
sure field on the indented wing-body combination having the infinite 
cylindrical body. This term can contribute to the drag only within the
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region R since	 is zero elsewhere. Within this region it has been
assumed that the variations in 1PBx are small or, correspondingly, the 
variations in C	 are small. The second term can therefore be written
as

f
PCP dSS =fpdSs + f Ap

(CPB -	
dSs	 (16) 

The first term on the right-hand side of this equation contributes no 
drag since a constant pressure field acting on the perturbation shape 

causes no drag force. The second term is small compared with 1:1BCPdS5, 
 B 

the term representing the drag of the equivalent body, since Np in R 
is of the order of magnitude of AB elsewhere on the body and C, - 
in R is small compared with Cp.	 B	 B 

The third term of equation (15) represents the action of the pressure 
field of the wing-body combination having the infinite cylindrical body on 
the equivalent body. Within the region R, this term can be assumed small 
compared with the term representing the drag of the equivalent body, since 
Cp is the same order of magnitude as Cp and for the smooth slender 

equivalent bodies considered here AB within R would be small compared 
with	 Evaluation of the possible remaining drag contribution from the 
third term of equation (15) in the region outside R is difficult to 
assess because cpp no longer satisfies a simple equation as it does in R. 
However, if the linear solution to ipp is extended along the body surface 
(one can imagine the region R growing in size, or conversely, the wings 
becoming smaller), it is found that cpp (and also c) rapidly decays 

toward zero. This is easily seen, for the potential downstream of an equal 
number of sources and sinks grouped together (i.e., the wing and the area-
rule body indentation) resembles more and more closely the potential 
directly behind a doublet for which 	 = 0. In fact, at a local Mach 
number of l, cpp would be identically zero along the cylindrical body 
surface. As Cp outside R can therefore be expected to be small com-
pared with CpB, the drag contribution from the third term of equation (15) 
can be expected to be small compared with the drag of the equivalent body. 

The last term of equation (15) can be disposed of with reasoning 
similar to the foregoing when it is noted that, within the region R, 

y
and 

z 
are small since the body slopes for smooth slender bodies. 

have small values in this region, and outside the region R, the magnitude 
of cp and	 must be close to zero as can be reasoned from the boundary-

condition requirements given by equation (11). 	 .
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From the foregoing considerations, the total zero-lift wave drag of 
the complete configuration can be approximated by 

D0 (I)	 Do B (M.) + Do(M1 )	 (11) 

where DoB(M) is the zero-lift wave drag of the equivalent body alone and 

Do(M1 ) is the zero-lift wave drag of the perturbation configuration (the 

indented wing-body combination having the infinite cylindrical body). The 
zero-lift wave drag of the equivalent body, DoB(M), must be calculated 
from the transonic small-disturbance theory at the free-stream Mach number, 
whereas Do(M1 ) can be calculated by means of the linear theory but at a 

Mach number given by the average of the local Mach number field about the 
equivalent body in the region of the wing. Since D 0 is zero in a sonic 

flow field and increases as the Mach number is increased, it is clear that 
equation (17) indicates that the complete configuration can have greater 
zero-lift wave drag than its equivalent body at a free-stream Mach number 
of 1. This increase in drag can be attributed to what might be called a 
Mach number shift effect on the drag of the wing and area-rule indentation 
parts of the configuration. It must also be remembered that equation (17) 
has been derived under relatively restrictive conditions that is, the wing 
is small relative to the body size and located in a region where the corre-
sponding equivalent body flow field is approximately uniform. 

It should be mentioned that as the Mach number is increased somewhat 
above unity, the transonic analysis presented herein breaks down and linear 
theory becomes more directly applicable. In that case, equation (17) can 
be shown to be accurate when both D OBand D0 are obtained directly from 

linear theory at the stream Mach number, if the equivalent body is a so-
called minimum drag shape. 

COMPARISON OF PREDICTED RESULTS WITH AVAILABLE EXPERIMENTAL DATA 

It is the intent of this section to determine whether the theoretical 
prediction of the previous section is in accord with experiment, and thus 
to see if the analysis accounts for the anomalous results from tests on 
indented wing-body combinations. A direct comparison between the predicted 
value from equation (17) and the experimental value of the zero-lift wave 
drag of the complete configuration cannot be made since solutions to the 
transonic small-disturbance equation for bodies of revolution are not 
available either for the drag, or the local Mach number field about the 
body. Determination of the usefulness of equation (17) can be made, 
however, by comparing the predicted value of CD, (the zero-lift wave 

P.
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drag of the wing and indentation parts of the configuration) with the 
experimental value of CD0 and obtaining the local Mach number field 

P 
about the equivalent body either directly from experiment, or from linear-
theory calculations. 

Experimental values of CD0' as obtained from available experiments 

on indented wing-body combinations, will be compared with linear-theory 
values of CD 

OP 
with and without the correction for the shift in Mach 

number caused by the velocity field of the body. A description of the 
means of evaluating the quantities necessary for the comparison between 
experiment and theory follows: 

The linear-theory values for CD OP were obtained in most cases from 

the literature; the actual source will be given subsequently on the figures 
which show the comparisons. The value for the average local Mach number 
about the equivalent body in the region occupied by the wing was estimated 
in most cases from experiment, as described. in Appendix B. A summary of 
the results obtained is given in the table of Appendix B. The experimental 
drag of the wing and indentation parts of the configuration was obtained by 
subtracting the experimental drag of the equivalent body from the experi-
mental drag of the complete configuration. The zero-lift wave drag of the 
wing and indentation, CD,, was estimated in turn by considering it equal 

to the zero-lift drag rise, which is obtained by subtracting the subsonic 
drag level from the transonic and supersonic drag values. The quantity 
subtracted was usually the zero-lift drag at the lowest subsonic Mach 
number at which data were available. This procedure is equivalent to 
assuming that the change in friction drag over the Mach number range of 
interest is negligible and that no serious amount of flow separation takes 
place. 

Figure 1 shows the comparisons between measured characteristics for 
wing-body combinations modified in accordance with the transonic area rule, 
and the characteristics estimated by the approximate theory as developed in 
the preceding section of this report. The upper half of each part of the 
figure shows the experimental data as obtained from the indicated refer-
ences. In the lower half of the figure is shown the experimental value of 
CD0 as determined from the data in the upper half of the figure. This 

estimate of zero-lift wave drag of the wing and indentation based upon the 
experimental data is compared with the linear-theory value of CD0 

and the modified value of CD , which is shifted. in Mach number (sue to 

the influence of the local Mach number field induced by the body) by the 
amounts indicated in the table given in Appendix B. Figures 1(a), (e), 
and (f) definitely show improved agreement between experiment and theory 
at transonic speeds when the influence of the local Mach number field of
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the body is taken into account. Figures 1(b), (c), and (a) represent 
cases where the influence of the local Mach number field of the body 
should be negligible, since there was little increase in the local Mach 
number above the free-stream value at the wing location for the bodies 
of these examples. Figures 1(b) and (c) show that the experimental value 

Of CD0 is near zero at a free-stream Mach number of 1, as was expected 

for these cases. The large increase in the experimental value of CD0 

(e.g., fig. 1(d)) prior to sonic speed is not accounted for by the present 
theory. 

It seems that consideration of the local Mach number field about the 
equivalent body explains why some indented wing-body combinations exhibit 
greater zero-lift drag rise at a free-stream Mach number of 1 than the 
equivalent body. One of the requirements which appears to be necessary 
for the sonic drag rise to be the same is for the equivalent body to be 
so shaped as to assure that the local Mach number in the corresponding 
region occupied by the wing is approximately the free-stream value (as 
it is for a body with a sufficiently long cylindrical section or for a 
very slender body). 

The preceding analysis or the experimental comparisons shown do not 
give any direct information regarding the largest aspect ratio and thick-
ness of a wing for which the concept of the transonic area rule can be 
expected to be valid (ref. 2). The possibility of finding any information 
on this subject from the present analysis was lost when equation (7) for 
the perturbation potential, pp, was linearized. A systematic series of 
experimental tests or the appropriate solution to the transonic small-
disturbance equation would be necessary for this purpose. 

CONCLUDING REMARKS 

An approximate transonic analysis, based on relatively restrictive 
assumptions, has shown that, for indented wing-body combinations for 
which the wing is small relative to the body size and for which the local 
Mach number field about the equivalent body is approximately constant in 
the corresponding region occupied by the wing, the zero-lift wave drag is 
approximated by the sum of two parts: (1) the zero-lift wave drag of the 
equivalent body, and (2) the zero-lift wave drag of the wing and an 
infinite cylindrical body having the same indentation volume as the actual 
body. The drag of the wing and indented infinite cylindrical body depends 
on the average local Mach number of the equivalent body in the region 
occupied by the wing.
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Comparisons of the approximate analysis with available experimental 
data have been made by considering only the zero-lift wave drag of the 
wing and indentation parts of the configuration. It was shown that agree-
ment between theory and experiment could be improved by taking into con-
sideration the local Mach number field of the equivalent body. This 
result confirmed the reasoning that the zero-lift drag rise of a wing-body 
combination modified in accordance with the transonic area rule must exceed 
that of the equivalent body at a free-stream Mach number of 1 if there is 
an appreciable increase in the local Mach number field about the equivalent 
body. The result of the investigation suggests that drag-rise equivalence 
occurs when a Mach number of 1 occurs locally at the wing instead of in the 
free stream. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Nov. 10, 1975
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APPENDIX A 

SURVEY OF THE VELOCITY FIELD ABOUT A BODY 

OF REVOLUTION AT TRANSONIC SPEEDS 

It is the purpose of this section to demonstrate experimentally two 
features of the flow field about a smooth slender body of revolution at 
transonic speeds; namely, (1) variations in the local Mach number field 
are small in the region occupied by a typical wing, and (2) the value of 
cp	 in this region is small compared to the theoretical value of Txx 
for a wing and area-rule body indentation. To obtain this information a 
survey of the flow about a body of revolution was made in the Ames 2- by 
2-foot transonic wind tunnel. The body used was the same as the body of 
reference 9 and is also the same body as in figure 1(a) of this report. 
A static-pressure survey was made with a movable, cylindrical axial tube 
of 1/2-inch diameter extending through the test section parallel to the 
wind axis of the wind tunnel. 

The results of the pressure survey at Mach numbers from 0.98 to 1.10 
are shown in figure 2 in the form of contours of the increase in local 
Mach number over the free-stream value. The contours shown are the dif-
ference between the survey about the body of revolution and an empty-
tunnel survey. The accuracy of the contours is the order of 0.01 Mach 
number. Inspection of the figure shows that over the plan form of the 
elliptical wing (the dashed lines on the figure) the variations in the 
local Mach number are small. The variations in this region become larger 
as the Mach number is increased to 1.10. 

To determine if the value of 	 for the body flow field is small
compared with values for a typical wing and area-rule indentation, the 
experimental values (obtained by using Cp = -( 2(p /U ) to relate the 
pressure coefficient and the velocity potential) are compared in figure 3 
with theoretical values for the wing and area-rule body indentation of 
reference 9 at a Mach number of 1. The figure shows that	 for the 
body alone is negligible compared with the values for the wing and inden-
tation. The theoretical values were determined by simulating the wing 
with a source-sink sheet (the planar approximation) and the area-rule 
body indentation by a line of sinks (and sources) along the center line 
of the body. Under these conditions, where an equal number of sources 
and sinks exists in every plane normal to the x axis, the two-
dimensional equation

Tyy 	 (Al)
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applies (ref. 7). The potential is therefore given by

a(x) 

(P (Y 	 L(x) (Y:L[( - yi)2 + z2]dyi - 

pa(x) 
in(y2 + z2) /	 ?(y1,x)dy1	 (A2) 

where a(x) defines the edge of the plan form. For the elliptic plan-form 
wing with circular-arc section of reference 9 where 

x2y2 -1 
C	 c [	 (c/2)2 - (b/2)2]	

(A3) 

A(y1 ,x) is given by

(AIi) 1(y1,x) = A(x) =
t0x 

- (C/2)2 

The second derivative of the potential is found to be 

xb	 I	 <)2	
\ 

r1 - (_&
/

2.. 
__ 	 c2J b/2) Pxxc -	 (c/2)2 I- _:'_

2 	 /y \2	

j 

()2 1

1 ()	 L c) 
2-—'	 I 

c/2)	
(A) 

1 
(x"2(y\21
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APPENDIX B 

DETERMINATION OF THE LOCAL MACH NUMBER ABOUT THE EQUIVALENT 

BODIES OF REVOLUTION OF FIGURE 1 

The average local Mach number about the equivalent bodies in the 
corresponding region occupied by the wing was estimated in most of the 
examples of figure 1 by reference to experimental pressure distributions. 
First, the average pressure coefficient in the region occupied by the 
wing was determined. (The decay of the pressure field of the body over 
the span of the wing was ignored in those cases in which it was not 
known.) Second, the average local Mach number in this region was found 
from the relation

2 -7/2 
[ 

(11 + 

O.2M1)	
- 1]	 (31) = O.72 L 	 + O.2 

In figure 1(a) the average local Mach number was estimated from the 
pressure survey presented in Appendix A. For figures 1(b), (c), and (d) 
the average local Mach number was estimated from pressure-distribution 
measurements on the equivalent body from reference 17. For figures 1(e) 
and (f) a linear-theory calculation at a Mach number of 1.05, based on 
the method of reference 16; was used, since an experimental pressure 
distribution was not available. It was assumed that the pressure dis-
tribution so obtained would be representative of values over the Mach 
number range of 1.00 to 1.10. To show that this was a reasonable 
assumption, a comparison between linear theory and the experimental 
pressure distributions for all the bodies (fig. 1) where such data were 
available is given in figure 4 It is to be noted in part (a) of 
figure Ii- that the pressure distribution was taken off the surface of 
the body by the indicated amount; whereas the flagged symbols denote 
measurements on the surface of the body. Here, the linear-theory method 
of reference 16 tends to overestimate the actual pressure distribution 
in the region of the wing. The essential feature of figure (b) is the 
collapse of the pressure coefficient back to the free-stream value over 
the cylindrical portion of the body. Except for the anomalous behavior 
of the experimental pressure distribution at a Mach number of 1.03 com-
pared with the distributions at Mach numbers of 1.00 and 1.10, the pre-
diction of the theory is fairly accurate. In summary, while the accuracy 
of the predictions of the linear-theory method of reference 16 in this 
Mach number range has been shown to be somewhat variable, it can be 
expected that the theory will serve to give a rough estimate of the 
pressure distribution on bodies for which no experimental data are 
available (figs. 1(e) and (f)).
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A summarizing table showing the values of the average local Mach 
number used in the calculation of CD0 P for figure 1 is given below: 

Figure 1 Body in 
figure 4

M	 for 
Mw = 1.00 Source 

(a) (a) 1.025 Pressure survey (Appendix A) 
(b) (b) 1.00 Pressure distribution (ref. 15) 
(c) (b) 1.00 Do. 
(d) (b) 1.00 Do. 
(e) (c) 1.04 Linear theory (ref. 16) 
(f) (c) 1.04 Do.,
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Figure 2. 7 Experimental local Mach number distribution about a Sears-



Haack-Karman ogive body of revolution at transonic Mach numbers.
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Figure II. Experimental and theoretical pressure distributions about
the equivalent bodies at transonic Mach numbers. 
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