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In writing equations (3) through (kc), an error was made in converting
linear dimensions from inches to feet. In order to make these equations
consistent with the figures and the Notation, the following changes should
be made:

Page 6, line above equation (3): Replace 12 by 1/12

Page 6, equation (3): Replace 12/1000 by 1/12000

Page 6, equation (la): Replace 12/1000 by l/glztOPoPRODULSION LABORATORY

Page 7, eguation (4b): Replace 1000/12 by 12000 LIBRARY
Page T, equation (l4c) should read: MAY 22 1956
N r v AN ” - - P
: =Z myx? _ 1000 1kPEIFORNIA iNSTITUTE OF TeCHNOLOGY
£ 1hh 12 w2
=1

In order to avoid confusion of symbols appearing in Appendix B with
those in the Notation, the following changes should be made:

Appendix B: Replace k by k; and wp by Wn4

Page 17, under equation (B5) write: Wy, Wwing first-bending mode

frequency

1

Page 8, equation (5): Replace w, by wp,
Page 8, fifth line below equation (5): Replace wp by wny

Page 3, insert: Wn,y wing firstJbending mode frequency
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' RESEARCH MEMORANDUM

MEASUREMENT OF THE LONGITUDINAL MOMENT OF INERTTIA
OF A FLEXIBLE AIRPLANE

By Henry A. Cole, Jr., and Frances L. Bennion .
SUMMARY

The method of measuring moment of inertia of an airplane by oscil-
lating it on knife edges and a spring is examined analytically for
application to flexible airplanes. First, the equations of motion of a
flexible airplane mounted on three supports are presented. Then these
equations are examined for conditions required to minimize the difference
between the apparent inertia of the flexible airplane and the inertia of
the rigid airplane. The analysis is applied to a flexible airplane
mounted on various combinations of springs and knife edges. A practical
combination is then selected in which the moment of ~inertia correction
for flexibility is very small.

The application and results of the above method in ground osc1llat10n
tests are described. The various corrections to reduce the measured
moment of inertia to the reference axis moment of inertia are presented.
The results show that measurement of moment of inertia by this method is
practicable, provided the knife edges and spring are arranged to minimize
excitation of structural modes.

INTRODUCTION

In the evaluation of stability derivatives from dynamic flight-test
data and in the prediction of the dynamic stability and control of an
airplane, accurate values of the moment of inertia.are important. Esti-
mates of moment of inertia are usually of doubtful accuracy because of
the large number of parts in an airplane; hence, it is desirable when-
ever possible, to measure moments of inertia. Although moment of inertia
is a property of rigid bodies, it is used in dynamic stability calcula-
tions for flexible airplanes because inertial effects due to flexibility
are usually insignificant near frequencies of the airplane oscillatory
modes. For frequencies near the structural modes, inertial effects due
to flexibility have to be taken into accedﬁf BRI AnalFRd s,
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The present investigation was conducted to obtain reliable measure-
ments of longitudinal moment of inertia of a large flexible swept-wing
airplane for use in conjunction with the dynamic stability and control
program which is reported in reference 1. The airplane was oscillated
on a support of a spring and two knife edges because this appeared to be
most practical for a large airplane. This method is commonly used for
the determination of moment of inertia of rigid airplanes (ref. 2).
Design of the support equipment becomes more critical for a flexible
airplane because dynamic coupling of airplane structural modes with the
-support spring system can cause serious errors in the measured frequency
from which the moment of inertia is calculated. Furthermore, the loads
at the three supporting points may be near the maximum allowable; hence,
additional loads due to dynamic forces may overstress the airplane struc-
ture. In order to overcome these difficulties, the spring-airplane
dynamic systems for a wide range of spring and knife-edge arrangements
were analyzed, and a combination was selected which practically eliminated:
the effects of structural flexibility. '

The methods used in the dynamical-systems studies and the results
should be of general interest because they may be applied to other air-
Planes in which flexibility is a problem. The first part of the report
presents methods which can be used to minimize the effects of flexibility.
The second part deals with ground oscillation tests of the airplane con-
ducted by personnel of the High-Speed Flight Station of the NACA at
Edwards Air Force Base, Californis. ’

NOTATION

system influence coefficient, deflection at station i, relative

i3
J to horizontal plané, due to load at station Jj, in./lOOO 1b

bi j wing influence coefficient, deflection at station i, relative
to fuselage center line, due to load at station |, in./lOOO 1b
(Because of symmetry, stiffness of both wings is included.)

i,J arbitrary station numbers

k spring constant, 1000 lb/in.

m; equivalent mass at station i, slugs
(Because of symmetry, mass of both wings is included in wing
stations.)

r knife-edge station (station 3 for the test location and station 3!
for the alternate location)

X longitudinal distance from knife edge, in.

ONFEDENTTALLD)
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X

Xs

oi

or

W

=

longitudinal distance of station 1 from knife-edge axis, in.
longitudinal distance of spring from knife-edge axis, in.

vertical distance from the horizontal plane through the knife-edge
axis, in.

vertical displacement of station 1 relative to horizontal plane
through knife-edge axis, in.

vertical force at station i, 1b
apparent moment of inertis, slug-ft2
fuselage moment of inertia, slug-ft2
wing moment of inertia, slug-ftZ
longitudinal moment of inertia, slug-ft2

longltudlnal moment of inertia about the body reference axis passing
through the airplane center of gravity, slug-ft

- perpendicular distance from plane passing through wing chord at

wing-fuselage juncture, in.

displacement of station 1 relative to a plane passing through
wing chord at wing-fuselage Jjuncture, in.

displacement of knife edges from plane passing through wing chord
at wing-fuselage juncture, in.

angle of rotation of fuselage center line, radians
frequency, fadians/sec

undamped natural frequency of flexible airplane in test rig;
radians/sec

undamped natural frequency of rigid airplane in test rig,
» radians/sec

Matrices
column matrix

square matrix -
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LJ row matrix

[°] square matrix with all except diagonal elements equal to zero

[ transposed matrix

(1] unit matrix, matrix which has units for all of its principal diag-

onal elements and zeros for the remsinder of its elements

{?} column matrix with all elements equal to 1
L1] row matrix with all elements equal to 1
ANALYSIS OF PROBLEM

The basic problem was to devise a method to measure moment of inertia
of a flexible airplane. The moment of inertia of rigid airplanes is
usually obtained by measuring the frequency of the airplane when oscillated
on a pair of knife edges and restrained by a spring. When this method is
applied to a flexible airplane, the structural modes can couple with the
supporting spring reaction forces so that simple calculations of moment of
inertia from the measured frequency are no longer valid. Corrections for

‘the effect of structural modes on the measured frequency requires knowl-

edge of the structural deflections (modes) and spring constants, or spring
constants and mass distribution of flexible parts; usually these are not
known accurately. A more practical approach is to seek methods in which
flexibility effects on the measured frequency are small. Approximate
equations for the -airplane dynamic system supported by knife edges and a
spring will be developed first, and then the application of these equa.-
tions to the test airplane will be made to determine practical methods

for measuring the moment of inertia. :

Airplane-Support Dynamic Equations

The airplane and support system may be approximately represented by
a system of discrete masses elastically connected as shown in figure 1.
The selection of the distribution and number of masses is discussed in
reference 3. In general, mass points are selected for all relatively
rigid masses on the airplane such as the fuselage and nacelles. Then the
distributed mass of the flexible parts is divided into segments, which
should be increased in number as more accuracy is desired. The accuracy
of a partlcular discrete mass arrangement can be checked by comparing the
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deflections of the elastic system under inertial loadings of the discrete
masses and of the continuous mass for the mode of interest.

If the angle 6 is assumed small in the coordinate system of fig-
ure 1, then only the vertical displacements, zi, of the mass points need
to be considered in the equations of motion. The spring characteristics
can be conveniently expressed in the form of influence coefficients,
which represent the deflection at station 1 due to a unit load at
station Jj. The influence coefficients can either be calculated or
measured directly on the airplane-support system.

aij,

The deflection at the mass points in terms of the applied forces is
given by:

’
1
Z2, = m (allFl + a;oFs + a13F3 e alNFN)
Zo = L— (3-21Fl + asoFs + asalfs . . .+ azNFN)
1000 F (1a)
Zy = —}—— (aNlFl + ayoFo + apsFs .. + aNNFN)
1000 i J

These equations can be more conveniently written in matrix form as

follows:
24 . S aji| {Fit; 1,5=1,2, . . N (1)
1000 J

Matrix notation will be used throughout the remainder of the report.
These equations can easily be converted to tabular form by applying the
rules of matrix multiplication, addition, and transposition which are
explained in Chapter 1 of reference L,

Of tentimes, the 1nfluence coefficients of the airplane wing are known
relative to the fuselage (® coordinates in fig. 1). If these are
expressed in matrix form [bjj] where the element bjj is the deflection
at station i, relative to fuselage, due to a load at station j, then

the influence coefficients [alJ] for equation (lb) may be obtalned by the
following transformation

[:aij] = [c] [ lJ][C] + = { }t J, i,§=1,2,. . ,8  (2)

EOCTPETALS,
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Where
‘Column l 2 .. .. N
—
<%s %) .. 0
X2
cle= - i> .« .0
[e] = [1] +
().
—

and r represents the station where the knlfe edges are located. This
equatlon is derived in Appendix A.

For 51nu501dal motlon, the inertial force applled to the structure
is F; = 12wy®zimj. Then

RS TN [ A PP

The modes and natural frequencies of this dynamic system may be
determined by solving equation (3) by methods described in reference L.
Since the fundamental mode is the only one used to determine the moment
of inertia, the simple iteration solution of equation (3) is most prac-
tical. Assume a modal column,l {%i s substitute into the right-hand side
of equation (3), and perform the indicated matrix multiplications. The
resulting modal column is normalized and again substituted into the right-
hand side of equation‘(S). This process is repeated until successive
normalized modal columns are equal. The inverse of the normalizing multi-
plier is the frequency squared. : .

i

The rigid airplane, can be treated as a special case of equation (3
in which the [bij] part of [aij] is equal to the zero matrix. Then
by equations (2) and (3)

108 loio“’fi{HJH{Zi} e

1A modal column is a set of coordinates which describes the charac- -
teristic shape in which the system oscillates.
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and, since {?i}»is invariant for the rigid case, equation (L4a) reduces
to the well-known equation for a rigid airplane:

_ 5 |
g2 = 2000 lxg ()

N
12 Z mixi2

1=1

from which the moment of inertia is obtained:

. 1000 2
“kx
Ty = ) MiXi2 = —e———S Le)
y ' 1A, 12 woz (
i=1

Minimization of Flexibility Effects

The practical frequencies for ground oscillation tests to determine
moment of inertia naturally fall below the frequencies of the structural
modes. Also, frequencies near zero are not practical because of the
large static spring deflections required and the relatively larger effect
of friction and damping forces. Hence, the highest frequency at which
flexibility effects are small is probably the most desirable. Several
approaches are available. One is to select locations of knife edges and
springs which suppress or uncouple the lowest airplane structural mode,
thus raising the available band of frequencies in which flexibility
effects are small. Another approach is to 1limit the frequency to values
which keep flexibility effects small. Discussion of these approaches
follows. :

Uncoupling of the wing first-bending mode.- When the airplane is
oscillated at frequencies below the structural-mode frequencies, the
inertial forces in the wing excite the wing first-bending mode primarily.
The degree of excitation will, of course, depend on the location of the
rotational axis and the frequency. Although it is possible to solve for
an axis which gives the minimum excitation to the wing, the choice of the
axis is usually restricted to some point near the cénter of gravity if
.static spring deflections are to be kept within practical limits. Since.
the axis of rotation is more or less fixed, an external force is needed
to suppress the wing first-bending mode. Such a force is available in
the reaction force at the knife edges if they are located out on the wing.
The problem then resolves itself into one of selecting a spring location
which gives the reaction force the amplitude and phase necessary to cancel
out the major part of the wing first-bending mode. Since the principal
masses are located in the fuselage, a good criterion to optimize the spring
location is to minimize the deflection of the fuselage relative to the .
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knife edges (Br). This imposes boundary conditions similar to those of
a rigid strut from the wing to the fuselage. The minimum value of Op
can be determined by solving for <zj ¢ over a range of Xxg, calculating
or from z{} and plotting versus xg.

Cases where uncoupling is not practical.- In some cases it will not
be practical to locate knife edges sufficiently far out on the wing to
uncouple the wing first-bending mode. In such cases flexibility effects
can be kept small only by keeping the frequency smail. A simplified
analysis (Appendix B) of a swept-wing configuration in which the knife
eages are located near the wing root shows that the apparent inertia is:

Iy
Iy =Ip + ——————= . (5)
A ¥ l"(wo/wn)

The moment of inertia of the wing, Iy, is usually about 15 percent of

the total moment of inertia when nacelles are located near the wing tips.
Then, according to equation (5), errors in moment of inertia greater
than 5 percent will be caused by flexibility if wy is greater than

50 percent of wp. .

Analysis of Test Airplane

The dynamic-analysis techniques just described were applied to a
test airplane which was represented by discrete masses as shown in
figure 2. The airplane dimensions are given in table I and estimated
masses and influence coefficients are given in table II obtained from
references 1 and 5. Combinations of spring and knife-edge locations as
shown on figure 3 were considered. The most practical combinations are
those of figures- 3(a) and 3(b) because the knife edges are near the
center of gravity which gives small static spring deflections and the
compression springs reduce the load at the knife edges. The comblnatlon
of figure 3(c) was considered because it is an arrangement which is
sometimes used on rigid airplanes and provides an interesting comparison
.with the arrangement of figure 3(a) since the reaction forces of the two
springs are 180° out of phase.

Through use of equations (3) and (4b) the frequencies for the flex-

ible and rigid airplane were calculated for the combinations of figure 3.
The results are shown for a range of spring constants on figure 4. The
frequency of the flexible airplane using the combination of figure 3(a)
'is nearly the same as the frequency of the rigid airplane but the com-
binations of figures 3(b) and 3(c) show large shifts in frequency due to
flexibility for constant k. Hence, the arrangement shown on figure 3(a)
is the most desirable of the three from“the standpoint of reducing flexi-

e Y
bility effects. n N \,.
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The reason for the large shifts in frequency is indicated by the
corresponding modes, {éi}) plotted in figure 5. This figure shows the
relative movement of the fuselage and wing when they oscillate in the
fundamental mode. The modes have been normalized to the same angle of
rotation so that the relative amounts of wing deflection are apparent.

It may be seen that system (a) oscillates very nearly as a rigid airplane

in contrast to systems (b) and (c) which have relatively large wing
deflections.

Although the fuselage Jjack points are the most practical locations
for the spring, it is interesting to estimate the optimum location.
Figure 6 shows the variation of the deflection of fuselage relative to
knife edges, dp, with spring location, xg. The deflection goes to
zero at xg = O and Xg = 680 inches which is at the nose of the airplane
and is noted on figure 2. The former value is trivial because frequency
is zero at this point, but the latter value indicates the approximate
spring location to minimize flexibility effects.

A direct indication of the effects of flexibility on the measured
moment of inertia is obtained by calculating the square of the ratio of
the flexible to rigid airplane frequencies, (wn/wo)z. This parameter
is inversely proportional to the ratio of the flexible airplane apparent
moment of inertia and the rigid airplane moment of inertia. Variation
of this parameter for the two knife-edge locations and a range of spring
~locations is shown in figure 7. The difference of the values from 1.00
indicates the error in moment of inertia which would result if flexibility
were not taken into account. With knife edges at the inboard wing Jjack
points, the optimum location of the spring is at xg = O, but this loca-
tion is impractical because the frequency is zero. As xs 1is increased
or decreased, the inertia parameter falls off rapidly. On the other hand,
the inertia parameter for the system with knife edges at outboard wing
jacks shows an initial increase in accuracy with xs and does not fall
of f until considerably higher values of xg are reached. It is inter-
esting to note that the optimum value for the outboard wing-jack system
is near the point for ©®r = O which supports the use of this criterion
to estimate the optimum.

The degree of coupling of the rigid airplane mode and the wing first-
bendlng mode is indicated by the variation of the inertia parameter,
(wn/wo) , as the frequency of the rigid airplane approaches the wing
first-bending mode frequency of 7.3 radians per second. The two frequen-
cies become equal for the spring location of Xg = 830 and a spring con-
stant of 1.132. As indicated on figure 7, the outboard wing-jack system
incurs an error of only 3 percent in the inertia parameter, indicating a
small amount of coupling as compared to 19 percent for the inboard w1ng-
jack system, indicating a large amount of coupling.

CONFIBENT
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MEASUREMENT OF MCMENT OF INERTIA

Test Equipment

The knife-edge and spring combination of figure 3(a) was selected
for use on the test airplane because it satisfied the practical considera-
tions of small static spring deflections and simplicity of attachments to
jack points and at the same time would only cause an estimated 2.4-percent
change in the inertia due to flexibility. Knife-edge and spring instal-
lation details are shown on figures 8 and 9. The spring was calibrated
by applying a load with a hydraulic press and loads were measured with a
strain-gage load instrument. The spring was preloaded to 10,000 pounds
prior to the test to simplify setting up the static spring deflection
(lO in.) for the test configuration. The airplane was equipped with an
optigraph, developed by the NACA, which records the motion of 100-watt
target lights on the wing and fuselage. For this test, target lights were
also mounted on a stand near the tail to give a horizon reference. The
location of target lights used in this report is indicated in figures 2
and 3(a). A control position recorder was also installed to indicate
spring deflections.

Experimental Procedure and Measurements

The airplane was weighed in the defueled condition on the outboard
wing Jjacks and the front fuselage jack point. The airplane was weighed
at the points of support of the spring and knife edges in order to check
the loads on the test equipment and airplane structure. Gross weight
was 81,390 pounds with center of gravity located at 13.6-percent mean
aerodynamic chord. In this condition it was estimated that the static
spring deflection would be too large so 500 pounds ballast was added to
the tail. Then the total static load on thg\spring was 11,520 pounds.

- The airplane was raised with the outboard wing’jacks, with knife
edges installed, until the rear wheels cleared the floor by 3 inches.
Then the nose was raised by the inboard wing jacks until the spring
shaft could be moved into place under the forward fuselage jack point.
The inboard wing jacks were then lowered and removed so that the airplane
rested only on the knife edges and the spring. The wheels were left down
for safety.

Oscillations were excited by hand and the subsequent free oscilla-
tions of wing and body were measured by the optigraph. Unfortunately,
the control position recorder malfunctioned, but it was felt that the
optigraph records were sufficient. Typical time histories of the opti-
graph measurements are shown on figure 10. It is apparent from the wing-
tip records that modes other than the fundamental were excited. Also, it
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should be noted that the deflections at the wing tip were extremely small
and on the fringe of measuring accuracy of the optigraph as indicated by
the small deflection of the traces (0.005-in. trace deflection on the
photographic f£ilm). A discussion of these higher modes follows.

Effect of subdominant structural modes.- Several analyses were made
to determine the distortion of the time histories from the fundamental
mode caused by the higher-frequency modes. A dynamic analysis of the
subdominant modes (ref. 4) was carried out and the results are shown on
figure 11. In this figure the modal columns of the first three subdomi-
nant modes are plotted. In every case the deflection of the wing tip is
greater than the deflection at the tail. Hence, since the wing-tip
deflections were barely measurable, the distortion of the horizon target
trace (fig. 10) by these higher modes is negligible. This result was
verified by the horizon-target time histories. Components of the calcu-
lated modes were found to be present but they were too small to affect
the measured frequency of the fundamental, especially since an average
was taken over a large number of cycles.

Reduction of Data

The average period of the horizon-target deflection oscillation was
determined from 2h cycles and estimated accuracy is 3 percent. Measure-
ments and corrections are as follows:

Period = 1.70 £0.05 sec
wp = 3.70 £0.13 radians/sec
k = 1.132 ;boo 1b/in.
xg = 391.L4 in.

From equation (4c), the measured moment of inertia is obtained
Iy = 1,056,000 slug-ftZ

Correction for flexibility.- The test frequency of 3.7 radians per
second very nearly corresponds to the frequency shown in figure 4 (curve
labeled 3(a) for k = 1.132 and xg = 391.4). For these conditions the
inertial parameter determined from figure 7 is 97.6; hence, the correction
for flexibility is 2.4 percent or -25,000 slug-feet squared.

Correction for additional apparent mass.- Additional apparent mass

'was calculated by the method of reference 6 and the correction was found
to be -20,800 slug-feet squared.

 CONE: ENgﬁgL
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Correction to center of gravity.- The correction for transfer of
moment of inertia from knife edge to center of gravity is -65,500 slug-
feet squared.

Correction for ballast and pilots.- The correction to subtract. the
moment of inertia of the 500-pound ballast and to add pilots (400 pounds)
to the airplane gave -26,900 and +15,200 slug-feet squared, respectively.

Friction and damping.- The effect of friction and damping on the
measured frequency was estimated and found to be negligible.

Wheels.- Although the wheels were down during the tests, calculations
indicated that the difference between moment of inertia with wheels up and
wheels down was negligible.

Summary of corrections and moment of inertia.- The measured moment
of inertia and corrections are summarized below. From these values the
longitudinal moment of inertia about the reference axis is obtained for
the airplane ready to fly except for fuel (81,790,pounds, center of
gravity = 12.4-percent mean aerodynamic chord).

slug-ft2
Measured Iy 1,056,000

Flexibility -25,000
Additional

apparent mass -20,800
C.G. transfer -65,500
Ballast -26,900
Pilots +15,200
Iyief | 933,000

It is interesting to note that the correction for flexibility is
only 2.4 percent as compared to the total correction of 14.5 percent of
measured Iy.

CONCLUSIONS

Analytical and experimental evaluation of ground oscillation tests
to measure the longitudinal moment of inertia of a large flexible airplane
has led to the conclusion that practicable and accurate measurements of
the longitudinal moment of inertia of large flexible airplanes can be made

n RMDE ﬁmﬁ
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by oscillating the airplane on a set of knife edges and a spring, which
are arranged so as to minimize excitation of structural modes. The
effects of flexibility on the fundamental frequency can be minimized by
reducing the coupling between the spring system mode and the airplane
first-bending mode. This can be done by locating the knife edges out-
board on the wing and selecting a spring location such that the reaction
forces tend to cancel out the wing first-bending mode. For cases where
it is not practical to locate the knife edges outboard on the wing,
analyses indicate that the fundamental frequency should be small relative
to the lowest structural mode frequency (less than 50 percent) to avoid
excessive errors in measured moment of inertia.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 21, 1955
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DERIVATION OF AIRPLANE-SUPPORT INFLUENCE COEFFICIENTS

The coordinate system used in this analysis is shown in figure 1.
Assume that the airplane ‘influence coefficients are known for the mass
stations and the knife- edge location; that is, [bij] is known in the

equation: |
b} el £ o

where i = 1l,...r,...,Nandr represents the station of the knife edges.

The sum of moments about the reaction point, r, must be equal to

zero. Hence:
LXiJ {Fl} + xgk(dy - 6xg) = 0 (A2)

The sum of the vertical forces must be equal to zero. Hence:

[1] {Fl} + k(dy - 6xg) +R =0 (A3)

where R 1s the reaction force at the knife edge.

Combining equations (A3) and (A2) gives:

gl

Including the reaction force in equation (A4) with the applied
forces in equation (Al) gives:

ORI TSN TR
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where the 1 in the column matrix, {l}’ appears in the rth row and
all other elements are zero. c

For small angles, the deflections zj can be obtained by:

b3 b G 43 B

By solving for 6 in equation (A2) and using equations (A5) and (A6),
and noting that %y = lo o -1 0] {ﬁi}-where the 1 occurs in the rth
column, it may be shown that:

feuf = 1oy 11" + £ {2 2| e} -

where

00 ... X_1_1>...o

00 .

e
[N |\V]

'

'._l
NS

o

[e] = [1]+

. -
in which the <?§ - %) terms appear in the 1rth column.

The influence coefficient matrix of the airplane supported on knife
edges and springs is:

{aijil = [e] [bij] [c]’ +_}1{_ {z—;} [;%J, ij=1,2,. . .,N (A8)

;.
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APPENDIX B

APPARENT INERTIA OF A MASS-SPRING SYSTEM

Consider a mass connected to a pivot point by a spring as shown in
sketch (a). If a sinusoidal forcing moment, M, of frequency w is
applied to the system, what is the apparent inertia?

+M

TN

Sketch (a) \\\i\\

The equations of motion neglecting gravity are:

mx28 + mxd = M | (B1)
mx6 + md + kd = O (B2)
where
a3e a2s
0 = —— and 5 = —
date dt2

Solving for the steady-state solution of 6 gives:

<l — > | (B3)

‘"“ﬂ“
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and since the natural frequency is given by wp? = k/m and the true
moment of inertia by I = mxZ; then

=

IA55=IT<—l%n_(:52— (B4)

When a fuselage-wing combination is oscillated at frequencies below
the first-bending mode frequency, the wing-bending curve is very similar
to that of the first-bending mode. Hence, this simple two-degree-of-
freedom analysis is approximately correct for a complete wing for fre-
quencies below the wing first-bending mode. The apparent inertia of a
rigid fuselage with a flexible wing attached is approximately given by

(B5)

where
Ip apparent moment of inertia
Ir fuselage moment of inertia

I; wing moment of inertia

CONFIDENTZ4
L L
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TABLE I.- AIRPLANE DIMENSIONAL CHARACTERISTICS

Fuselage
Length, ft . e v e e e e e e e
Average width, ft . . « « . « « . .
Average depth, ft

Wing
Span, £t .
Area, sq ft
Aspect -ratio .
Taper ratio .
Sweep angle (25- percent M. A C ), deg .
Dihedral angle, deg .

Horizontal tail
Area, sqQ Tt v ¢ v v v v v e e e e e e e e e
Aspect ratio .

. 1ok.h

6.95
T.97

116
1428
9.43
0.42

35

268
L.06

GONFIDENTTATD
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TABLE II.- AIRPLANE MASS AND SPRING CHARACTERISTICS
(a) Mass distribution
Station
1 2 3 3! L 5 6 T 8
mj .}1L483.6 |259.6 o 0 121.8 |205.8 39.8 [716.4] 716.4
Percent .
wing .383 .383| .koo| ..197" .707  .795] .924 O 0
semispan ' R
Percent N
ving chord =239 .38 | .58 | .58 .38 L1k 381 - - - -
Knife edges at outboard wing jack point
Xy 169.3 | 43.7 o - - -{-109.5 [-123.3 [211.5 [384.9|-2k7.1
Knife edges at ianard wing Jjack points
Xi Lok |-76.2 |- - -|O -229.k |-24k3.2 L331.4 [|265.0(-367.
(b) Wing influence coefficients
. by
L 1 2 3 3" 4 5 6 |78
1 0.0637 | 0.0175 |0.0214 |0.0055 |0.0486 | 0.0722 {0.0629 | 0 | O
2 .029% | .0360 | .0k08 .0075 | .0993 | .1130 139k oo
3 .0217 | .Okk2 | 0540 |- - - | .1258 | .1k03 | .1784 10O
3! .0019 | .0082 |- - - .0032' 0164 | .0162 | .0225| 0] 0
L .0622 [ .0993 { .1209 { .0164 | 4103 | .4820] 6530|010
5 L0764 | .1105 | .1330 | .0180 | k770 | 5948 | .8217| 0|0
6 .0803 | .1288 | .1603 | .o22k | 6421 | .8218 |1.2231| 0|0
7 0 0 0 0 0 o 0 00
8 0 0 0 0 0 0 0 00

e AR F‘(SGQ

o
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21

| Z
Knife edge

Wing reference
line

Discrete
masses

77777

rrr

—

Positive values indicated
by arrows

Figure 1.- Coordinate system (side_ view of airplane and support).

38% wing chord

Alternate method - knife
edges at inboard wing
jack points. Station 3'.

Optigraph

fe———— x, =680 ————

(6),/ Designation of discrete
'9 masses
(9) (Locations listed in table II)

Test method - knife edges
at outboard wing jack

Station 3.

/:orizon

optigraph
lights

points,

Axis of rototionJ

Figure 2.~ Plan view of test

Wing-tip optigraph light

Q

airplane and discrete masses.
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Horizon optigraph
target lights

Wing-tip optigraph
light
|«559"

E B / \
" /7
T —391.4"—| A

Opti'gra ph

(a) Knife edges at outboard wing jack points and compression spring at
forward fuselage Jjack p01nt

7777

(b) Knife edges at 1nboard w1ng Jjack p01nts and compres31on sprlng at
aft fuselage Jack point.

7777 A ‘ -
—391.4"—] e
(c)vKnife edges at outboard wing jack points and tension spring aft of
g

pivot.

Figure 3.- Test airplane supported on knife edges and springs at various
locations.
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2.0

Rigid '
- — — — — Flexible

o | 2 3 4 5 6
w, radians/sec

Figure 4.- Effect of wing bending flexibility on the measured frequency
for the various suspension systems in figure 3. (Wing first-bending
mode frequency = 7.3 radians/sec.)
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389 wing chord

Fuselage reference line

1 - 1 i 1
600 200 200 0 -200  -400  -600
,in.

(a) Knife edges at outboard wing jacks; spring forward.

7 /”Y
7 ’,’
28

i L I \
400 200 -0 -200 -400
: X, in.

-600

1

(b) Knife edges at inboa.rd wing jacks; spring aft.

_—

_400 -600 _

1 1 1 - |-
600 400 200 0 -200
x, in.

(c) Knife edges at outboard wing Jjacks; spring aft.

Figure 5.- Fundamental modes for spring-knife-edge arrangements shown
in figure 3 (kx = 1.132).
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.04

| -04 /,
-08 /

/

12— — ‘
-400 » -200 0 200 400 600 800
Xg, iN.

Figure 6.- Deflection of fuselage relative to knife-edge location for
various spring locations-and l-inch deflection at station 7. (Knife
edges at outboard wing jacks.) (k = 1.132)
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——— Knife edges at outboard wing jack points

— — ——= Knife edges at inboard wing jack points
1.00 ——— .
/,‘ h ~ Sr:o
/’ ‘ //\; K\
/ L N
99 // // \

T~
v l €
>
”
-~

84 : : \

\
.76 }

|
|
|
|

.68

Xs = 830
(wy=7.3)
.60 - :
-800 -400 ‘ 0] 400 800 . 1200
| Xg, IN

Figure 7.- Effect of spring location on inertia parameter (k = 1.132)
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Uikt

Knife edge

A-20241
(a) Knife-edge installation.

23" Dia. hole

L 4 =
| |
Compression
spring 58
11"0D. 13 rod , L
| | ={on_
k= 1132 0
n 2 0
N
! N
T N
i N
Sovlres
|
| Vo7 ////L 'I/l/// 24
A-20240 b~
Lot
27 Dia.
|2“————>—

(b) Spring installation.

Figure 8.- Knife-edge and spring details.
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\-7 S Tail
deflection
i
Wing tip

deflection

. |
! ] 1 1 1 ]
600 400 200 (0] -200 -400 -600

x,in.
First subdominant mode (w,= 8.62 radians/sec).

Y4
38% wing chord
(6) Fuselage
reference line
Q. —®-~
\-Spriig Knife edge
| ] ] L | J
600 400 200 o) -200 -400 -600
X, in. '

Second subdominant mode (w,=16.18 radians/sec).

' |z
2
4
I h
L W 1 1 | J
600 400 200 0 -200 -400 -600
X, in.

Third subdominant mode (w,= 23.66 radians/sec).

Figure 11.- Calculated subdominant modes for test configuration.
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