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By Henry A., Cole, Jr., and Frances L. Bennion 
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In writing equations (3) through ( l.c), an error was made in converting 
linear dimensions from inches to feet. In order to make these equations 
consistent with the figures and the Notation, the following changes should 
be made: 

Page 6, line above equation (3): Replace 12 by 1/12 

Page 6, equation (3): Replace 12/1000 by 1/12000 

Page 6, equation ( li-a): Replace 12/1000 by 1/9Op R 0 U L S ON LA 80 R A TO i
- Y 

Page 7, equation ( li-b): Replace 1000/12 by 12000	 LI RA R V 

Page 7, equation ( li-c) should read: 	 MY 29 1956 

I = \' 
mjxj2 = 1000	 iFORNIA iiTI1UiE OF 1HüLGy 

y L lk'i-	 122 
1=1 

In order to avoid confusion of symbols appearing in Appendix B with 
those in the Notation, the following changes should be made: 

Appendix B: Replace k by k 1 and w by w 

Page 17, under equation (B5) write: Wn1 wing first-bending mode 
frequency 

Page 8, equation (5): Replace wn by Wn1 

Page 8, fifth line below equation (5): Replace wn by wn1 

Page 3, insert: Wn1 wing first-bending mode frequency 

NACA m Lanalev Field. V. 	
VIA 

 Ut.
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MEASUREMENT OF THE LONGITUDINAL MOMENT OF INERTIA 

OF A FLEXIBLE AIRPLANE 

By Henry A. Cole, Jr., and Frances L. Bennion 

The method of measuring moment of inertia of an airplane by oscil- 
lating it on knife edges and a spring is examined analytically for 
application to flexible airplanes. First, the equations of motion of a 
flexible airplane mounted on three supports are presented. Then these 
equations are examined for conditions required to minimize the. difference 
between the apparent inertia of the flexible airplane and the inertia of 
the rigid airplane. The analysis is applied to a flexible airplane 
mounted on various combinations of springs and knife edges. A practical 
combination is then selected in which the moment-of-inertia correction 
for flexibility is very small. 

The application and results of the above method in round, oscillation 
tests are described. The various corrections to reduce the measured 
moment of inertia to the reference axis moment of inertia are presented.. 
The results show that measurement of moment of inertia by this method is 
practicable, provided the knife edges and spring are arranged to minimize 
excitation of structural modes. 

INTRODUCTION 

In the evaluation of stability derivatives from dynamic flight-test 
data and in the prediction of the dynamic stability and control of an 
airplane, accurate values of the moment of inertia-are important. Esti-
mates of moment of inertia are usually of doubtful accuracy because of 
the large number of parts in an airplane; hence, it is desirable when-
ever possible, to measure moments of inertia. Although moment of inertia 
is a property of rigid bodies, it is used in dynamic stability calcula-
tions for flexible airplanes because inertial effects due to flexibility 
are usually insignificant near frequencies of the airplane oscillatory 
modes. For frequencies near the structural modes, inertial effects due 
to flexibility have to be taken into acce..E
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The present investigation was conducted to obtain reliable measure-
ments of longitudinal moment of inertia of a large flexible swept-wing 
airplane for use in conjunction with the dynamic stability and control 
program which is reported in reference 1. The airplane was oscillated 
on a support of a spring and two knife edges because this appeared to be 
most practical for a large airplane. This method is commonly used for 
the determination of moment of inertia of rigid airplanes (ref. 2). 
Design of the support equipment becomes more critical for a flexible 
airplane because dynamic coupling of airplane structural modes with the 
support spring system can cause serious errors in the measured frequency 
from which the moment of inertia is calculated. Furthermore, the loads 
at the three supporting points may be near the maximum allowable; hence, 
additional loads due to dynamic forces may overstress the airplane struc-
ture. In order to overcome these difficulties, the spring-airplane 
dynamic systems for a wide range of spring and knife-edge arrangements 
were analyzed, and a combination was selected which practically eliminated 
the effects of structural flexibility. 

The methods used in the dynamical-systems studies and the results 
should be of general interest because they may be applied to other air-
planes in which flexibility is a problem. The first part of the report 
presents methods which can be used to minimize the effects of flexibility. 
The second part deals with ground oscillation tests of the airplane con-
ducted by personnel of the High-Speed Flight Station of the NACA at 
Edwards Air Force Base, California. 

NOTATION 

a1	 system influence coefficient, deflection at station i, relative 
to horizontal plane, due to load at station j, in./1000 lb 

bij	 wing influence coefficient, deflection at station i, relative 
to fuselage center line, due to load at station j, in./1000 lb 
(Because of symmetry, stiffness of both wings is included.) 

i,j	 arbitrary station numbers 

k	 spring constant, 1000 lb/in. 

mi	 equivalent mass at station i, slugs 
(Because of symmetry, mass of both wings is included in wing 
stations.) 

r	 knife-edge station (station 3 for the test location and station 3' 
for the alternate location) 

x	 longitudinal distance from knife edge, in.
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Xj	 longitudinal distance of station i from knife-edge axis, in. 

	

X S 	 longitudinal distance of spring from knife-edge axis, in. 

Z	 vertical distance from the horizontal plane through the knife-edge 
axis, in. 

	

Zj	 vertical displacement of station i relative to horizontal plane 
through knife-edge axis, in. 

	

Fi	 vertical force at station i, lb 

	

'A	 apparent moment of inertia, slug-f t2 

	

IF	 fuselage moment of inertia, slug-ft2 

	

IW	 wing moment of inertia, slug-f t2 

	

IY	 longitudinal moment of inertia, slug-ft 2 

'Yref longitudinal moment of inertia about the body reference axis passing

	

-	 through the airplane center of gravity, slug-f t2 

	

5	 perpendicular distance from plane passing through wing chord at 
wing-fuselage juncture, in. 

	

Si	 displacement of station i relative to a plane passing through 
wing chord at wing-fuselage juncture, in. 

	

br	 displacement of knife edges from plane passing through wing chord 
at wing-fuselage juncture, in. 

	

e	 angle of rotation of fuselage center line, radians 

frequency, radians/sec 

	

wn	 undamped natural frequency of flexible airplane in test rig, 
radians/sec 

	

Wo	 undamped natural frequency of rigid airplane in test rig, 
radians/sec

Matrices 

{ }

 

column matrix 

[]	
square matrix
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L J	 row matrix 

[0]	
square matrix with all except diagonal elements equal to zero 

transposed matrix 

[1]	 unit matrix, matrix which has units for all of its principal diag-



onal elements and zeros for the remainder of its elements 

{l}
	

column matrix with all elements equal to 1 

LlJ	 row matrix with all elements equal to 1 

ANALYSIS OF PROBLEM 

The basic problem was to devise a method to measure moment of inertia 
of a flexible airplane. The moment of inertia of rigid airplanes is 
usually obtained by measuring the frequency of the airplane when oscillated 
on a pair of knife edges and restrained by a spring. When this method is 
applied to a flexible airplane, the structural modes can couple with the 
supporting spring reaction forces so that simple calculations of moment of 
inertia from the measured frequency are no longer valid. Corrections for 
the effect of structural modes on the measured frequency requires knowl-
edge of the structural deflections (modes) and spring constants, or spring 
constants and mass distribution of flexible parts; usually these are not 
known accurately. A more practical approach is to seek methods in which 
flexibility effects on the measured frequency are small. Approximate 
equations for the airplane dynamic system supported by knife edges and a 
spring will be developed first, and then the application of these equa-
tions to the test airplane will be made to determine practical methods 
for measuring the moment of inertia. 

Airplane-Support Dynamic Equations 

The airplane and support system may be approximately represented by 
a system of discrete masses elastically connected as shown in figure 1. 
The selection of the distribution and number of masses is discussed in 
reference 3. In general, mass points are selected for all relatively 
rigid masses on the airplane such as the fuselage and nacelles. Then the 
distributed mass of the flexible parts is divided into segments, which 
should be increased in number as more accuracy is desired. The accuracy 
qf a particular discrete mass arrangement can be checked by comparing the 

au FTD
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deflections of the elastic system under inertial loadings of the discrete 
masses and of the continuous mass for the mode of interest. 

If the angle e is assumed small in the coordinate system of fig-
ure 1, then only the vertical displacements, Zj of the mass points need 
to be considered in the equations of motion. The spring characteristics 
can be conveniently expressed in the form of influence coefficients, ajj, 
which represent the deflection at station i due to a unit load at 
station j. The influence coefficients can either be calculated or 
measured directly on the airplane-support system. 

The deflection at the mass points in terms of the applied forces is 
given by:

z1 
= 

1 (aiiF1 + a12F2 + a13F3 . . . + a1F) 
1000 

	

= 1000 (a
21F1 + a22F2 + a23F3 . . . + aF)	

(la) 

ZN = (aN1F1 + aN2F2 + aN3F3	 . . + aF) 

	

1000	 f 
These equations can be more conveniently written in matrix form as 
follows:

	

fz ij	 1 
= 1000 [a

ij] {Fij;	 i,j = 1,2, . . ., N	 (lb) 

Matrix notation will be used throughout the remainder of the report. 
These equations can easily be converted to tabular form by applying the 
rules of matrix multiplication, addition, and transposition which are 
explained in Chapter 1 of reference 4. 

Oftentimes, the influence coefficients of the airplane wing are known 
relative to the fuselage (b coordinates in fig. 1). If these are 
expressed in matrix form [b] where the element bij is the deflection 
at station i, relative to fuselage, due to a load at station j, then 
the influence coefficients [aij] for equation (lb) may be obtained by the 
following transformation

xi xi
[au] = [c] [bij][c]' 

+	
[j;	 i,j=l,2, . . .,N	 (2) 

WIFE Rig, TIME. 4^
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where

'Column l2. . .	 r	 . . .N 

00.. .(-l) . . .0 

	

0 0 . . . (7
X2	

0 
[c] =[l]+

00. ..(). ..0 

and r represents the station where the knife edges are located. This 
equation is derived in Appendix A. 

For sinusoidal motion, the inertial force applied to the structure 
is F = 12w 2zm. Then 

{j} = 2[aij] [mi] {Z1}	 i,j=l,2,. .,N	 (3) 

The modes and natural frequencies of this dynamic system may be 
determined by solving equation (3) by methods described in reference 14. 
Since the fundamental mode is the only one used to determine the moment 
of inertia, the simple iteration solution of equation (3) is most prac-
tical. Assume a modal column, substitute into the right-hand side 
of equation (3), and perform the inicated matrix multiplications. The 
resulting modal column is normalized and again substituted into the right-
hand side of equation (3). This process is repeated until successive 
normalized modal columns are equal. The inverse of the normalizing multi-
plier is the frequency squared. 

The rigid airplane can be treated as a special case of equation (3) 
in which the [bj] part of [aij] is equal to the zero matrix. Then 
by equations (2) and (3)

12 o2 Ix1 fZil =	 ILXISI Imil fzil 	 (4a) 

1A modal column is a set of coordinates which describes the charac-
teristic shape in which the system oscillates.
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and, since {Zj} is invariant for the rigid case, equation ( il-a) reduces 
to the well-known equation for a rigid airplane: 

= 1000 kxs	
(lw) 

12	 mixi2 

1=i 

from which the moment of inertia is obtained: 

N
2 1000'kx52 

ly	 IflXj 
= 12 Wo2	

(il-c) 

Minimization of Flexibility Effects 

The practical frequencies for ground oscillation tests to determine 
moment of inertia naturally fall below the frequencies of the structural 
modes. Also, frequencies near zero are not practical because of the 
large static'spring deflections required and the relatively larger effect 
of friction and damping forces. Hence, the highest frequency at which 
flexibility effects are small is probably the most desirable. Several 
approaches are available. One is to select locations of knife edges and 
springs which suppress or uncouple the lowest airplane structural mode, 
thus raising the available band of frequencies in which flexibility 
effects are small. Another approach is to limit the frequency to values 
which keep flexibility effects small. Discussion of these approaches 
follows. 

Uncoupling of the wing first-bending mode.- When the airplane is 
oscillated at frequencies below the structural-mode frequencies, the 
inertial forces in the wing excite the wing first-bending mode primarily. 
The degree of excitation will, of course, depend on the location of the 
rotational axis and the frequency. Although it is possible to solve for 
an axis which gives the minimum excitation to the wing, the choice of the 
axis is usually restricted to some point near the center of gravity if 
static spring deflections are to be kept within practical limits. Since, 
the axis of rotation is more or less fixed, an external force is needed 
to suppress the wing first-bending mode. Such a force is available in 
the reaction force at the knife edges if they are located out on the wing. 
The problem then resolves itself into one of selecting a spring location 
which gives the reaction force the amplitude and phase necessary to cancel 
out the major part of the wing first-bending mode. Since the principal 
masses are located in the fuselage, a good criterion to optimize the spring 
location is to minimize the deflection of the fuselage relative to the 

OIDENAL
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knife edges (sr). This imposes boundary conditions similar to those of 
a rigid strut from the wing to the fuselage. The minimum value of 5r 
can be determined by solving for {Z} over a range of x 5 , calculating 
r from {z} and plotting versus x5. 

Cases where uncoupling is not practical.- In some cases it will not 
be practical to locate knife edges sufficiently far out on the wing to 
uncouple the wing first-bending mode. In such cases flexibility effeäts 
can be kept small only by keeping the frequency small. A simplified 
analysis (Appendix B) of a swept-wing configuration in which the knife 
edges are located near the wing root shows that the apparent inertia is: 

(5) 'A = IF +
	

Iw

 - 

The moment of inertia of the wing, I, is usually about 17 percent of 
the total moment of inertia when nacelles are located near the wing tips. 
Then, according to equation (5), errors in moment of inertia greater 
than 5 percent will be caused by flexibility if W0 is greater than 
50 percent of wn.

Analysis of Test Airplane 

The dynamic-analysis techniques just described were applied to a 
test airplane which was represented by discrete masses as shown in 
figure 2. The airplane dimensions are given in table I and estimated 
masses and influence coefficients are given in table II obtained from 
references 1 and 5. Combinations of spring and knife-edge locations as 
shown on figure 3 were considered. The most practical combinations are 
those of figures 3(a) and 3(b) because the knife edges are near the 
center of gravity which gives small static spring deflections and the 
compression springs reduce the load at the knife edges. The combination 
of figure 3(c) was considered because it is an arrangement which is 
sometimes used on rigid airplanes and provides an interesting comparison 
with the arrangement of figure 3(a) since the reaction forces of the two 
springs are 1800 out of phase. 

Through use of equations (3) and ( li.b) the frequencies for the flex-
ible and rigid airplane were calculated for the combinations of figure 3. 
The results are shown for a range of spring constants on figure 4. The 
frequency of the flexible airplane using the combination of figure 3(a) 
is nearly the same as the frequency of the rigid airplane but the-com-
binations of figures 3(b) and 3(c) show large shifts in frequency due to 
flexibility for constant k. Hence, the arrangement shown on figure 3(a) 
is the most desirable of the three from - the standpoint of reducing flexi-
bility effects.

ETAL
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The reason for the large shifts in frequency is indicated by the 

corresponding modes, {Zj}, plotted in figure 7. This figure shows the 
relative movement of the fuselage and wing when they oscillate in the 
fundamental mode. The modes have been normalized to the same angle of 
rotation so that the relative amounts of wing deflection are apparent. 
It may be seen that system (a) oscillates very nearly as a rigid airplane 
in contrast to systems (b) and (c) which have relatively large wing 
deflections. 

Although the fuselage jack points are the most practical locations 
for the spring, it is interesting to estimate the optimum location. 
Figure 6 shows the variation of the deflection of fuselage relative to 
knife edges, br, with spring location, x 5 . The deflection goes to 
zero at X5 = 0 and x = 680 inches which is at the nose of the airplane 
and is noted on figure 2. The former value is trivial because frequency 
is zero at this point, but the latter value indicates the approximate 
spring location to minimize flexibility effects. 

A direct indication of the effects of flexibility on the measured 
moment of inertia is obtained by calculating the square of the ratio of 
the flexible to rigid airplane frequencies, (wn/o) . This parameter 
is inversely proportional to the ratio of the flexible airplane apparent 
moment of inertia and the rigid airplane moment of inertia. Variation 
of this parameter for the two knife-edge locations and a range of spring 
locations is shown in figure 7. The difference of the Values from 1.00 
indicates the error in moment of inertia which would result if flexibility 
were not taken into account. With knife edges at the inboard wing jack 
points, the optimum location of the spring is at x 5 = 0, but this loca-
tion is impractical because the frequency is zero. As x5 is increased 
or decreased, the inertia parameter falls off rapidly. On the other hand, 
the inertia parameter for the system with knife edges at outboard wing 
jacks shows an initial increase in accuracy with x 5 and does not fall 
off until considerably higher values of x 5 are reached. It is inter-
esting to note that the optimum value for the outboard wing-jack system 
is near the point for br = 0 which supports the use of this criterion 
to estimate the optimum. 

The degree of coupling of the rigid airplane mode and the wing first-
bending mode is indicated by the variation of the inertia parameter, 

as the frequency of the rigid airplane approaches the wing 
first-bending mode frequency of 7.3 radians per second. The two frequen-
cies become equal for the spring location of x = 830 and a spring con-
stant of 1 .132. As indicated on figure 7, the outboard wing-jack system 
incurs an error of only 3 percent in the inertia parameter, indicating a 
small amount of coupling as compared to 19 percent for the inboard wing-
jack system, indicating a large amount of coupling. 

CONFDEL
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MEASUREMENT OF MOMENT OF INERTIA

Test Equipment 

The knife-edge and spring combination of figure 3(a) was selected 
for use on the test airplane because it satisfied the practical considera-
tions of small static spring deflections and simplicity of attachments to 
jack points and at the same time would only cause an estimated 2.4-percent 
change in the inertia due to flexibility. Knife-edge and spring instal-
lation details are shown on figures 8 and 9 . The spring was calibrated 
by applying a load with a hydraulic press and loads were measured with a 
strain-gage load instrument. The spring was preloaded to 10,000 pounds 
prior to the test. to simplify setting up the static spring deflection 
(10 in.) for the test configuration. The airplane was equipped with an 
optigraph, developed by the NPLCA, which records the motion of 100-watt 
target lights on the wing and fuselage. For this test, target lights were 
also mounted on a stand near the tail to give a horizon reference. The 
location of target lights used in this report is indicated in figures 2 
and 3(a). A control position recorder.was also installed to indicate 
spring deflections. 

Experimental Procedure and Measurements 

The airplane was weighed in the defueled condition on the outboard 
wing jacks and the front fuselage jack point. The airplane was weighed 
at the points of support of the spring and knife edges in order to check 
the loads on the test equipment and airplane structure. Gross weight 
was 81,390 pounds with center of gravity located at 13.6-percent mean 
aerodynamic chord. In this condition it was estimated that the static 
spring deflection would be too large, so 700 pounds ballast was added to 
the tail. Then the total static load on the I spring was 11,720 pounds. 

The airplane was raised with the outboard wing jacks, with knife 
edges installed, until the rear wheels cleared the floor by 3 inches. 
Then the nose was raised by the inboard wing jacks until the spring 
shaft could be moved into place under the forward fuselage jack point. 
The inboard wing jacks were then lowered and removed so that the airplane 
rested only on the knife edges and the spring. The wheels were left down 
for safety. 

Oscillations were excited by hand and the subsequent free oscilla-
tions of wing and body were measured by the optigraph. Unfortunately, 
the control position recorder malfunctioned, but it was felt that the 
optigraph records were sufficient. Typical time histories of the opti-
graph measurements are shown on figure 10. It is apparent from the wing-
tip records that modes other than the fundamental were excited. Also, it
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should be noted that the deflections at the wing tip were extremely small 
and on the fringe of measuring accuracy of the optigraph as indicated by 
the small deflection of the traces (0.007-in, trace deflection on the 
photographic film). A discussion of these higher modes follows. 

Effect of subdominant structural modes.- Several analyses were made 
to determine the distortion of the time histories from the fundamental 
mode caused by the higher-frequency modes. A dynamic analysis of the 
subdominant modes (ref. ii-) was carried out and the results are shown on 
figure 11. In this figure the modal columns of the first three subdomi-
nant modes are plotted. In every case the deflection of the wing tip is 
greater than the deflection at the tail. Hence, since the wing-tip 
deflections were barely measurable, the distortion of the horizon target 
trace (fig. 10) by these higher modes is negligible. This result was 
verified by the horizon-target time histories. Components of the calcu-
lated modes were found to be present but they were too small to affect 
the measured frequency of the fundamental, especially since an average 
was taken over a large number of cycles. 

Reduction of Data 

The average period of the horizon-target deflection oscillation was 
determined from 24 cycles and estimated accuracy is 3 percent. Measure-
ments and corrections are as follows: 

Period = 1.70 ±0.07 sec 

wn = 3.70 ±0.13 radians/sec 

k = 1.132 1000 lb/in. 

x 5 = 391.4 in. 

From equation ( li-c), the measured moment of inertia is obtained

ly = 1 , 076 , 000 slug-ft2 

Correction for flexibility.- The test frequency of 3.7 radians per 
second very nearly corresponds to the frequency shown in figure ii- (curve 
labeled 3(a) for k = 1 . 132 and x5 = 391.4). For these conditions the 
inertial parameter determined from figure 7 is 97.6; hence, the correction 
for flexibility is 2.4 percent or -27,000 slug-feet squared. 

Correction for additional apparent mass.- Additional apparent mass 
was calculated by the method of reference 6 and the correction was found 
to be -20,800 slug-feet squared. 

• C0NFIDENTL 
ur u
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Correction to center of gravity. - The correction for transfer of 
moment of inertia from knife edge to center of gravity is -65,500 slug-
feet squared. 

Correction for ballast and pilots.- The correction to subtract. the 
moment of inertia of the 500-pound ballast and to add pilots (' .00 pounds) 
to the airplane gave -26,900 and +15,200 slug-feet squared, respectively. 

Friction and damping. - The effect of friction and damping on the 
measured frequency was estimated and found to be negligible. 

Wheels.- Although the wheels were down during the tests, calculations 
indicated that the difference between moment of inertia with wheels up and 
wheels down was negligible. 

Summary of corrections and moment of inertia.- The measured moment 
of inertia and corrections are summarized below. From these valuesthe 
longitudinal moment of inertia about the reference axis is obtained for 
the airplane ready to fly except for fuel (81,790 pounds, center of 
gravity = 12.4-percent mean aerodynamic chord). 

slug-ft2 

Measured ly	 1,o6,000 

Flexibility	 -25,000 

Additional 
apparent mass	 -20,800 

C.G. transfer	 -6,00 

Ballast	 -26,900 

Pilots	 +15,200 

Tref	
933,000 

It is interesting to note that 
only 2.4 percent as compared to the 
measured

the correction for flexibility is 
total correction of 14.5 percent of 

CONCLUSIONS 

Analytical and experimental evaluation of ground oscillation tests 
to measure the longitudinal moment of inertia of a large flexible airplane 
has led to the conclusion that practicable and accurate measurements of 
the longitudinal moment of inertia of large flexible airplanes can be made
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by oscillating the airplane on a set of knife edges and a spring, which 
are arranged so as to minimize excitation of structural modes. The 
effects of flexibility on the fundamental frequency can be minimized by 
reducing the coupling between the spring system mode and the airplane 
first-bending mode. This can be done by locating the knife edges out-
board on the wing and selecting a spring location such that the reaction 
forces tend to cancel out the wing first-bending mode. For cases where 
it is not practical to locate the knife edges outboard on the wing, 
analyses indicate that the fundamental frequency should be small relative 
to the lowest structural mode frequency (less than 50 percent) to avoid 
excessive errors in measured moment of inertia. 

Mies Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Oct. 21, 1955 

CONFIDENTIAL 

Ut
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APPENDIX A 

DERIVATION OF AIRPLANE-SUPPORT INFLUENCE COEFFICIENTS 

The coordinate system used in this analysis is shown in figure 1. 
Assume that the airplane influence coefficients are known for the mass 
stations and the knife-edge location; that is, [b] is known in the 
equation:

{o±} = ij] {1}
	

(Al) 

where i = l,...r,...,Nandr represents the station of the knife edges. 

The sum of moments about the reaction point, r, must be equal to 
zero. Hence:

1
xi] {F} + sk(br - Oxs) = 

The sum of the vertical forces must be equal to zero. Hence: 

Ili fFjj + k(5r - ex5 ) + R = o	 e.,	 (A3) 

where H is the reaction force at the knife edge. 

Combining equations (A3) and (A2) gives: 

R =	 - li fFij	 (Alt) XS 

Including the reaction force in equation (A lt-) with the applied 
forces in equation (Al) gives: 

{} 
= [b

ij] [[j + {}
 [x'	 ]] tFil	 (A5) 

ENTIMI
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(O 
where the 1 in the column matrix,	 appears in the rth row and 
all other elements are zero.	 0 

For small angles, the deflections Zj can be obtained by: 

{Z1} = tbil - fil r + e[±] Til	 (A6) 

By solving for 0 in equation (A2) and using equations (AS) and (A6), 
and noting that br = Lo o • • i oj	 where the 1 occurs in the rth
column, it may be shown that: 

	

{Z1} = [[c][bi 1 [c]' +
	

[i] 

{F}	 (Al) 

where

00.. .(l). . 

00.. . .0 
[c] = [11+	

(
XS	 I 

00.. . ( i). .. 

in which the( - 1) terms appear in the rth column. 

The influence coefficient matrix of the airplane supported on knife 
edges and springs is:

[7Xjl 
[aij] = [ci
 Ibij] [c] +	 ---- 1 1xl	

—];	 i,j =1,2,. . ., N 	 (A8)xs
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APPENDIX B 

APPARENT INERTIA OF A MASS-SPRING SYSTEM 

Consider a mass connected to a pivot point by a spring as shown in 
sketch (a). If a sinusoidal forcing moment, M, of frequency u is 
applied to the system, what is the apparent inertia?

& Sketch (a) 

The equations of motion neglecting gravity are: 

where

(Bl) 

mxe+m6+kb=0	 (B2) 

d 20	 d2b e=— and =- 
dt2	 dt2 

Solving for the steady-state solution of e gives:

3 
M W2 

piEENTIAL
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and since the natural frequency is given by (O 2 = k/rn and the true 
moment of inertia by I = rnx2 ; then 

'A = •= 
' [1 ()21	

(B4) 

Yn 

When a fuselage-wing combination is oscillated at frequencies below 
the first-bending mode frequency, the wing-bending curve is very similar 
to that of the first-bending mode. Hence, this simple two-degree-of-
freedom analysis is approximately correct for a complete wing for fre-
quencies below the wing first-bending mode. The apparent inertia of a 
rigid fuselage with a flexible wing attached is approximately given by 

IW 

1 - (
WwnO 

\2

where 

'A apparent moment of inertia 

IF fuselage moment of inertia 

1w wing moment of inertia

(B7) 

P 
CONIDNT1 
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TABLE I. - AIRPLANE DIMENSIONAL CHARACTERISTICS 

selage 
Length, ft ....................... 1O.1l  
Average width, ft	 ................... 6.95 
Average depth, ft	 ................... 7.97 

Wing 
Span, ft ......................... 116 
Area, sq ft	 ...................... 1)4-28 
Aspect ratio ....................... 9.143 
Taper ratio	 ....................... O.1l2 
Sweep angle (25-percent M.A.C.), deg ........... 35 
Dihedral angle, deg .................. 0 

Horizontal tail 
Area, sq ft	 ........................	 268 
Aspect ratio
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TABLE II. - AIRPLANE MASS AND SPRING CHARACTERISTICS
(a) Mass distribution 

Station  
1 2 3 3? 1 5 6 

483.6 259.6 0 0 121.8 205 .8 39.8 716. 11. 716.4 
Percent 

wing 
semispan

.383 
___  

.383 .400 . 19 .707 .795 .921 0 0 

Percent 
wing chordl -.39 .38 .58 .8 .38 .ili. .38  

Knife edges at outboard wing jack points 

Xi 1169.3	 1 43.7 0 - - --109.5 1-123 . 3	 1-211. 5 1384-91-247.1 
Knife edges at inboard wing jack points 

Xj 49.4 1-76.2 1- - JO 229.	 J211.3.2 1331.4 I265.0367A 
(b) Wing influence coefficients 

bi 

1 2 3 3' 4 5 6 78 

1 0.0637 0.0175 0.0214 0.0055 0.0486 0 . 0722 0.0629 0 0 

2 .02911. . 0360 .04o8 .0075 .0993 .fl30 .1394 a I _2. 
3 .0217 . 011.42 .0540 -	 -	 - .1258 .1403 .17811. 0 0 

3' .0019 .0082 -	 -	 - . 0032 .Oi64 .0162 .0225 

11. .0622 .0993 .1209 .0164 .4103 .4820 .6530 C) 0 

5 .0764 .1105 .1330 .0180 .1.770 .5911.8 .8217 0 0 
6 .0803 .1288 .1603 .0224 .6421 .8218 1.2231 0 0 

7 0 0 0 0 0 0 0 00 

8 0 0 0 0 0 0 0 00

,-.ç 
PNF.IDETf±AL 
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Iz 

L 

Fuselage reference
line 

Spring

—Knife edge 

E W
.-
ing reference 

( c 	 line 

—Discrete 
masses 

Positive values indicated
by arrows 

Figure 1.-. Coordinate system (side view of airplane and support). 

- Designation of discrete 
38% wing chord	

masses 

(Locations listed in table fl) 

Alternate method - knife - 

	

edges at inboard wing	 p.— Test method - knife edges 

	

jack points. Station 3'. 	 at outboard wing jack 

points. -_. Station 3. 

	

Optigraph
	 /

IHorizon 
optig ra ph

lights 

Xs68O 

Axis of rotation—
	 Wing-tip optigraph light 

Figure 2.- Plan view of test airplane and discrete masses.
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Horizon optigroph
target lights 

Wing-tip optigraph Optigraph  light 
—c----------	 -H fm"- 559 

77
 

H- 391.4" 

(a) Knife edges at outboard wing jack points and compression spring at 
forward fuselage jack point. 

622.8" 

(b) Knife edges at inboard wing jack points and compression spring at 
aft fuselage jack point. 

(c) Knife edges at outboard wing jack points and tension spring aft of 
pivot. 

Figure 3 . - Test airplane supported on knife edges and springs at various 
locations. 
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2	 3	 4	 5	 6
W, radians/sec 

Figure 4, Effect of wing bending flexibility on the measured frequency 
for the various suspension systems in figure 3. (Wing first-bending 
mode frequency = 7.3 radians/sec.) 
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wing chord 

Fuselage reference line 

I	 I 
600	 400	 200	 0	 -200	 -400	 -600 

X, in. 

(a) Knife edges at outboard.wing jacks; spring forward. 

z	 -,
- - - 

- - - ---
26 --- --- -. - - - - - -
- 400	 200	 0	 -200	 -400 

X, in. 

(b) Knife edges at inboard wing jacks; spring aft. 

z

- - 
- - 26 

- - 
- - - 

- - - 

I	 I	 I	 I	 I	 I 
600	 400	 200	 0	 -200	 -400	 -600 

X, In. 

(c) Knife edges at outboard wing jacks; spring aft. 

Figure 5.- Fundamental modes for spring-knife-edge arrangements shown 
in figure 3 (k = 1.132). 
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-SI - 

0•—_	 - 

7	 _ _ 

ENCIR- 7Z 

Sr, in. 

-.0 

-400	 -200	 0	 200	 400	 600	 800
x$,in. 

Figure 6.- Deflection of fuselage relative to knife-edge location for 
various spring locations and 1-inch deflection at station 7. (Knife 
edges at outboard wing jacks.) (k = 1.132) 
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KOJEO 

MO 

wn 

(A)0

• .84 

.76 

.68 

.60 
—800	 —400	 0	 400	 800	 1200 

in. 

Figure 7.- Effect of spring location on inertia parameter (k = 1.132). 
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Knife	 edges	 at outboard	 wing	 jack points 

- - --- Knife edges at inboard	 wing jack points 
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Knife edge 

24F1 1-
U L-1 

J.-30 ton' jock 

7" 

Compress on 
spring - 

II OD. 1 * rod

k = 1.132 
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A-20241 

(a) Knife-edge installation. 

2 * Dia. hole

A-20240 

(b) Spring installation. 

Figure 8.- Knife-edge and spring details. 
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600	 400	 200	 0	 -200	 -400	 -600 
X. in. 

First subdominant mode (w = 8.62 radians/sec). 

M

8% wing chord 

Fuselage
[reference line 

'-Spring	 Knife edge 

600	 400	 200	 0	 -200	 -400	 -600
X. in. 

Second subdominant mode (wn  16.18 radians/sec). 

600	 400	 200	 0	 -200	 -400	 -600
X. in. 

Third subdominant mode (: 23.66 radians/sec). 

Figure 11.- Calculated subdominant modes for test configuration. 
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