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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PRELIMINAﬁY INVESTIGATION OF COMPRESSOR BLADE VIBRATION
EXCITED BY ROTATING STALL

By Merle C. Huppert, Donald F. Johnson, and
Eleanor L. Costilow

' SUMMARY

A preliminary investigation of compressor blade vibration excited
by rotating stall was conducted on a single-stage axial-flow compressor
with hub-tip ratio of 0.5 at the rotor entrance. Rotating stall was
found to excite ‘compressor blades to resonance and may have been the
source of excitation in many cases where some type of flutter was con-
sidered to be the cause of blade failure.

Constant-temperature hot-wire anemometers were used for measuring
the flow fluctuations of rotating stall. Resistance-wire strain gages
were used to determine the vibratory stress in the compressor stator
blades. Three distinct stall patterns were obtained with the compressor
operating in the stalled condition. The first pattern encountered on '
reducing the flow coefficient following tip stall consisted of three
stall regions, then four stall regions, and five stall regions at the
lowest flow coefficients investigated. Resonant bending vibrations were
excited in the stator blades by harmonics of the fundamental frequency -
of both the three- and four-stall-region flow patterns. The maximum
stress in the aluminum stators indicated by the strain-gage data was
16,000 pounds per square inch, which was sufficient to crack the blades.
in a few minutes of operation. ’

INTRODUCTION :

The blading systems of axial-flow compressors may be excited to
vibrate in each of several modes of bending and torsional vibration
(refereﬁces 1 to 4). Blade failures in service due to vibrational
fatigue have been attributed to two general types of vibration:

(1) forced vibration and (2) aerodynamic self-excited vibrations.

Most of the blade failures in the past have been attributed to
forced vibration of an aerodynamic origin, as indicated in references 1
to 4. The principal causes of forced vibration of an aerodynamic drigin
in jet-engine compressors have been wakes from preceding blade rows,
struts or other objects in the air stream, pressure fields produced by

-
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other vibrating blades (reference 5), surge, and asymmetric pressure
distributions. The principal causes of self-excited vibrations have
been considered to be classical coupled flutter, stalled uncoupled
bending or torsional flutter or both (references 6 and 7), unstalled
uncoupled flutter (reference 8), choking-flow flutter (reference 6),
and shock flutter (reference 9). 1In addition, the shedding of Kirmin
vortices may also produce self excitation.

References 6 and 9 indicate that most multistage compressor blade
failures not attributable to forced vibrations, and consequently pre-
sumably attributable to some form of self-excited vibrations, are associa-
ted with stall. As explained in reference 10, the inlet stages of multi-
stage compressors are liable to be stalled when the compressor is
operating at rotational speeds somewhat below design. Reference 6 indi- .
cates that stalling of the inlet stages may persist up to 70 or 80 per-
cent of design speed.

. Recently the -use of hot-wire anemometers has shown that stall in
compressors may produce large flow fluctuations which may also be an
important source of excitation for forced vibrations {references 11 to 13).
Stall was found to produce low flow regions which propagate relative to
the rotor blades -opposite to the direction of rotation but generally at
a lower relative speed, such that in the absolute sense, the stall regions
rotate ‘in the -direction of rotor rotation. The information in refer-
ence 13 was obtained from three single-stage axial-flow compressors with
hub-tip ratios of 0.9, 0.8, and 0.5, and from a 16-stage axial-flow com-
pressor. Rotating stall was observed in each compressor investigated.
Since the rotational speed of the stall regions increased linearly with
rotational speed of the compressor rotor in the single-stage compressors
used, it was considered possible that the flow fluctuations of rotating
stall might at particular speeds excite resonant vibrations in the
blading. Inasmuch as several blade failures had been experienced at the
NACA Lewis laboratory when single-stage .compressors of low hub-tip ratios
were operating stalled, the possibility that the failures may have been
due to vibrations excited by rotating stall was investigated.

The present preliminary investigation was made to determine whether
rotating stall could excite resonance in the blading of a single-stage
compressor having a hub-tip ratio at the rotor inlet of 0.5. The canti-
levered stator blades, rather than the rotor blades, were Instrumented
with strain [gages for measuring vibratory stress. This choice eliminated
the necessity for modifying the compressor to accommodate slip rings
necessary for use with strain gages mounted on the rotor blades. Flow

- fluctuations were detected and measured by use of constant-temperature
hot-wire anemometers over a range of speeds and a wide range of welght
flows at each speed.
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SYMBOLS
The following symbols are used in this report:

A annulus area, sq ft

'cp specific heat at constant pressure, ft-lb/lb

F ratio of beat frequency to natural frequency of blade in bendi;g

fy natural frequency of blade in bending, cps

fs> frequency at which stall passes given point, cps

g acceleration due to gravity, 32.16 ft/sec2

h rotational speed of stall regions, rps

N rotor speed, rps

P stagnation pressure, lb/sq ft

r ratio of local radius to tip radius

T total temperature, °R

U rotor speed, ft/sec

v absolute velocity, ft/sec

W relative velocity, ft/sec

W weight flow, 1b/sec

o angle between hot-wire-anemometer probes

B absolute air angle measured from axial direction

Y ratio of specific heats

3] ratio of compressor-inlet pressure to standard atmospherlé pres-
' sure, Pp/2116

0 ratio of compressor- 1nlet‘temperature to standard atmospheric

temperature, o/518 6° R

g
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A number of stall regions in annulus

p - density, 1b/cu ft

oV mass-flow rate, 1b/(sec)(sq ft)

ov mass-flow rate indicated by average current through hot wire,

) 1b/(sec)(sq ft)

pV,y time average mass-flow rate, 1b/{sec)(sq ft)
-égi amplitude of flowvfluctuation divided by pV based on average
eV current through hot wire

o blading solidity, chord to pitch ratio.

¢ blade-angle setting measured from axial direction, (fig. 1)
®P f}ow coefficient, 56%£§%€

-1
, . 2gepTy .<P3>———
¥ pressure coefficient, 3 N -1
Uy 0

Subscripts:

av. average

b blade

5 stall

t tip

Z axial

0 inletAdepression tank

1 between guide vanes and rotor

2 between r;tor and stator .

3 after stator

co

P e



NACA RM E52J15 co‘ . 5

Superscripts:

* indicates quantity has been divided by.rotor tip velocity, Ut

APPARATUS AND PROCEDURE
Compressor

The single-stage compressor used in this investigatioﬂ consisted
of 40 steel .inlet guide vanes, 19 steel rotor blades, and 20 cantilevered
aluminum stator blades. The stage had a hub-tip ratio at the rotor inlet
of 0.5, representative of the inlet stage of a multistage compressor.
The guide-vane-discharge angle, the rotor and stator setting angles, the
rotor and stator solidity, and the design ratio of axial velocity to
rotor tip speed at the outlet of the guide vanes are shown in figure 1.

The guide vanes were variable-chord circular-arc sheet-metal vanes.
The rotor and stator blades had NACA 65 series blower blade profile
65(12)-10 at all radii. The chord length was 1.3l inches at all radii
for both rotor and stator blades. The stator-blade natural frequency
in bending f was experimentally determined to be 420 cycles per

second. The vector diagrams computed from experimental data obtained
at approximately the maximum efficiency operating point at the design
operating speed are presented in figure 2; for this operating point the
flow coefficient ¢ is 0.565 and the rotor speed N/Vg_ is 202 rps.

A schematic diagram of the single-stage compressor installation is
shown in figure 3. Air enters through the orifice tank and a motor-
operated inlet throttle into a depression tank equipped with screens to
provide a uniform distribution of air at the compressor inlet. Air was
discharged from the compressor into a collector connected to the labora-
tory altitude-exhaust system by two outlet pipes. A motor-operated
throttle was installed in the outlet pipe. The compressor was driven
by a 1500-horsepower variable-frequency motor through a step-up gearbox.

The instrumehtation used to obtain over-all performance was similar
to that described in reference 14, The instrumentation station locations
are shown in figure 4. :

Instrumentation for Measuring Flow Fluctuations

The flow fluctuations of rotating stall were detected and measured
with constant-temperature hot-wire anemometers. The anemometer probes
were made with 0.0002-inch-diameter tungsten wire ahd had an effective
length of 0.08 inches. The amplifier used is that discussed in refer-
ence 15. This feed-back amplifier maintains a constant anemometer-
probe resistance 'and consequently a constant temperature of the hot-wire
element during flow fluctuations, providing continuous compensation for

lag in hot-wire response. . N
co g
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Two anemometer probes were installed in radial traversing mechanisms
about 1/2 inch downstream of the stators (station 3, fig. 4). One of
the anemometer probes was installed in a circumferential survey pad, so
that the angle between the two probes could be varied. This provision
was necessary to permit the determination of the number of stalls
(reference 13).

The anemometer signals were viewed or recorded photographically
from a dual-beam cathode-ray oscilloscope. The stall frequency fg was

obtained by forming Lissajous figures on the oscilloscope by use of an
audio-frequency oscillator.

The methods of converting the voltage fluctuations as read from the

oscillograms to fluctuations in mass-flow rate ApV/EV and of deter-
mining the number of stalled regions in the annulus were those outlined
in reference 13.

Strain-Gage Installation on Stators

Resistance-wire strain gages were mounted on 3 of the 20 stator
blades. _A photograph of a stator blade with the strain gage attached
is shown in figure 5. The gages were attached to the blades with Bake-
lite cement, with the resistance-wire filaments parallel to the blade.
span. Gages were installed on both the suction and pressure surfaces
at-the blade base near the trailing edge, so that both bending and
torsional vibration could be detected. Subsequent bench tests indicated
that the ratio of bending stress at midchord to that at the strain-gage
location was 1.35, and this factor was used in computing the bending
stress from the strain-gage signals. The strain-gage signals were ampli-
fied and recorded photographically or viewed from a four-beam cathode-
ray oscilloscope.

RESULTS AND DISCUSSION

In order to determine whether large-amplitude vibratory stresses
observed in the stator blades at certain rotational speeds and weight
flows could be excited by resonance with the stall frequency fg, 1it was
necessary to investigate the stall characteristics of the stage. These
stall characteristics will be discussed prior to the discussion of the
vibrations excited.

Performance and Stall Characteristics of Compressor
The information presented on the stall characteristics of this

single-stage compressor supplements that presented in reference 13,
which contains incomplete stall data on a stage with a hub t1p ratio

of 0.5.
coN
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The performance parameters chosen to represent the performance
characteristics of the compressor are flow coefficient ® and pressure
coefficient V. Figure 6 shows the variation in pressure coefficient v
with flow coefficient .

Rotor tip stall was experienced near the peak value of pressure
coefficient. As the flow coefficient was further reduced, rotating
stall was detected by the hot-wire anemometers at station 3 (fig. 4).
The first rotating-stall pattern obtained when the weight flow was
decreased consisted of three equally spaced stall regions rotating in
the direction of rotor rotation. Oscillograms of the signals from the
two anemometer probes displaced angularly 36° and at three radial posi-
tions of the probes are shown in figure 7 (compressor operating at
point A, fig. 6). The amplitude of the flow fluctuations varied some-
what with radius, as shown. As the flow coefficient was further reduced
to point B, figure 6, the number of stall regions changed from three to
four. Oscillograms of this stall pattern at three radial positions with
an angular separation of the probes of 94° are shown in figure 8. (Only
one anemometer signal is shown at the stator root position.) The varia-
tion in amplitude of the flow fluctuations with radius is less than that
indicated for the pattern with three stall regions. shown in figure 7.

As the flow coefficient was reduced to point C (fig. 6), the stall
pattern changed. Five or a multiple of five stalls were indicated. The
data obtained were insufficient to distinguish between five and a multi-
ple of five stalls, but, inasmuch as there were only 19 rotor blades,
the number five seemed the most likely. Consequently, this pattern is
considered to consist of five stall regions. Oscillograms of this stall
pattern at three radial positions with an angular separation of the
probes a of 940 are shown in figure 9. With this stall pattern the
largest flow fluctuations occurred near the hub position. '

The following table summarizes the stall information obtained but
does not include all data obtained:

Rotational | Frequency of Number Rotational h
speed of stall region | of stall | speed of N/A/E
compressor | passing ane- regions stall
(rps) mometer probe A regions
/A8 ‘s b
(cps) (rps)
301 127 3 42.3 0.419
151 191 3 63.7 : 422
100 190, 4 47,5 475
151 286 4 71.5 474
101 - 261 5] 52.2 .517
. 151 400 5 80 - 530

: 3
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These data indicate that the rotational speed h of the stall
regions and consequently their frequency fg increase nearly linearly

with rotational speed of the compressor rotor. This is in agreement
with the data of reference 13.

The rotational speed of the stall regions with each stall pattern
was independent of weight flow at a given rotor speed, and there was
neither a marked change in compressor-discharge pressure as the stall
pattern changed nor a hysteresis loop associated with stall (refer-
ence 13). Audible surge was not detected at any compressor speed.

Vibratory Stress in Stator Blades Excited by Rotating Stall

The strain-gage data indicate that under certain conditions large
vibratory stresses were excited in the blades. The stall data obtained
indicate that the frequency with which a stall region passes a stator
blade fs 1increases linearly with rotor speed. The rate of increase,
however, depends on the stall pattern. Figure 10 is a plot of the ratio
of stall frequency fg to fundamental bending frequency of the stator
blade fp (fp = 420 cps) plotted against the rotor speed N/¢§' for the
three stall patterns obtained, that is, A = 3, 4, and 5. Figure 10
shows that resonance with the first harmonic of the fundamental frequency
of the flow pattern with four stalls and the second harmonic of the
fundamental frequency of the flow pattern with three stalls can occur at

N/f6 of 110 rps.

With the compressor operating at a rotor speed -NAJ§' of 109 at

: point D of figure 6, where a slight change in weight flow would change
the stall pattern from one with four stalls to one with three stalls,
motion pictures were taken of hot-wire-anemometer and strain-gage traces -
on the same oscilloscope. The strain-gage pattern of the vibratory
stress excited by the flow. fluctuations of rotating stall (A = 4,

point D, fig. 10) is shown in figure 11. The maximum stress indicated
is 16,000 pounds per square inch, and there are two strain-gage cycles
per stall. At a slightly higher weight flow (point E, fig. 6), such
that the stall pattern consisted of three stall regions, the stress
pattern was as shown in figure 12. There are three stress cycles per
stall, and the maximum stress indicated is about 7500 pounds per square
inch; however, the discontinuities in the strain-gage signal indicate
that the blade had cracked prior to the time the photographs were taken,
and, consequently, the magnitude of the stress is somewhat questionable.

Strain-gage data with the blades not vibrating at resonance were
taken prior to the strain-gage indication of a blade crack (fig. 12).
The data were taken at compressor speeds indicated by points F and G
in figure 10 and at the flow coefficients indicated on figure 6. At
these conditions there were three stalls in the rotating stall pattern.
The strain-gage signals obtained at these conditions are shown in

-
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figure 13. The "beating" effect is believed to be caused by interaction
of the forced vibrations due to the rotating stall and the transient
vibrations due to the rather random variation of the amplitude and wave
form of the exciting force. If the exciting force were of constant
amplitude and wave form, the transients would be damped and no beating
would occur. From the theory of beating (réference 16) the beat frequency
should be approximately equal to the difference between the frequency of
the exciting force and natural frequency of the blade. At point F of
figure 10, the exciting force was the second harmonic of the stall
frequency fg; therefore, the beat frequency divided by the natural

frequency of the blade in bending F is

F=1- = 1 - (3)(0.29)

=.0.13 -
of about eight blade vibration cycles per beat.

At point G of figure 10, the exciting force was the first harmonic
of the stall frequency fg; therefore,

=
I

=1 - ;fi =1 - (2)(0.46)
b

0.08

or about 12 blade vibrations per beat. The blade vibrations per beat
shown in figure 13 are approximately the same as indicated by theory.

After the strain-gage signals indicated a failed blade, the com-
pressor was disassembled for inspection. One stator blade was broken
off, and a photograph of the broken end is shown in figure 14. All the
stators were cracked in the region of maximum bending stress, as shown
in figure 15. The stator blade that broke off damaged the rotor blades
by making a notch in the trailing edges near the roots. A crack emanated
from the notch in each rotor blade, in some cases extendlng to 3/4 chord
length. .

Frequency Spectrum of Flow Fluctuations of Rotating Stall

In order to determine the amplitude of the flow fluctuations rela-
tive to the average mass-flow rate pVgy and to indicate the amplitude
of the harmonics of the fundamental frequency of the stall fg, a
harmonic analysis of the wave form of a stall pattern was made. The
oscillograms obtained at the rotor tip radius (r = 0.946) with the stall
pattern consisting of four stall regions (point D figs. 6 and 10) were
converted by the methods outlined in reference 15 to values of ApV/pV

o
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The numerical method used for the Fourier analysis was that presented
in reference 17. The average-frequency spectrum and the maximum varia-
tion from the average of several individual cycles are shown in figure 16,
All values are divided by pV,,. For the wave form analyzed, pV,y/pV
was 1.1; that is, the time average mass-flow rate passing the anemometer
probe was 10 percent greater than that indicated by the average wire
current pV (reference 13). Although the line spectrum of the fluctua-
tions at the tip radius with the four stall patterns is not necessarily
representative of that at other radii or with other stall patterns, it
indicates harmonics of appreciable amplitude and considerable variation
in the amplitude of the fundamental and its harmonics. Also, the ratio
- of amplitudes of the first to second harmonics is of the same order of
magnitude as the ratio of the stresses measured.

Although the stator blade failure at resonance with the first har-
monic of the fundamental stall frequency fg with the four-stall-region
pattern prevented further investigation, the line spectra of the stall
pattern (fig. 16) indicate that higher stresses could be excited by the
fundamental. At present the relation between the fluctuations in mass-
flow rate pV and the fluctuations in blade vibration exciting force is
not known, so that it is not possible to predict the amplitude of stress
that would be excited by the fundamental frequency. Until such informa-
tion is availdble, more complete analysis of the data seems unjustified.

Perhaps the most significant information obtained is the fact that
rotating stall can excite compressor blades to resonance and may have
been the source of excitation in many cases where some type of flutter
was considered as the most likely cause of failure.

SUMMARY OF RESULTS

A preliminary investigation of compressor blade vibration excited
by rotating stall was conducted on a single-stage axial-flow compressor
with a hub-tip ratio of 0.5 at the rotor inlet. Constant-temperature
hot-wire anemometers were used for detecting and measuring the flow
fluctuations of rotating stall. Resistance-wire strain gages were used
for measuring the vibratory stress in the stator blades. . The results
obtained may be summarized as follows: '

1. Three distinct stall patterns were obtained with the compressor
operating in the stalled condition. The first stall pattern encountered
on a reduction of the flow coefficient following tip stall consisted of
three stall regions; the next pattern, four stall regions; and lastly,
five stall regions at the lowest flow coefficients investigated.

co‘
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2. Resonant bending vibrations were excited in the stator blades by
harmonics of the fundamental frequency of both the three- and four-stall-
region flow patterns. The maximum stress in the aluminum stators indi-
cated by the strain-gage data was 16,000 pounds per square inch, which
was sufficient to crack the stator blades in a few minutes of operation.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio
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Figure 7. - Oscillograms of three propagating.stalis at three radial positions after

stator.
fig. 6.)

Rotor speed, 101 rps; stall frequency, 127 cycles per second. (Point A,
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(c) Ratio of local radius to tip radius, 0.615 é%; = 1.32; angle between hot-wire-
p

anemometer probes, 94°.

Figure 8. - Oscillograms of four propagating stalls at three radial positions after
stator. Rotor speed, 151 rps; stall frequency, 286 cycles per second. (Point B,

fig. 6.)
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Figure 9. - Oscillograms of five propagating stalls at three radial positions after
gtator. Rotor speed, 151 rps; stall frequency, 400 cycles per second. (Point C,

£ig. 6.)
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Figure 14. - Fatigue failure at root of stator blade.
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C-30498

Figure 15. - Crack at stator root caused by vibratory bending stress.
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Figure 16. - Frequency spectra of stall fluctuations in
percent of time average mass-flow rate. Number of stall
regions, 4; stall frequency, 210; ratio of local radius
to tip radius, 0.946.
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