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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

STATIC LATERAL STABILITY CHARACTERISTICS OF A 1/16-SCALE 

MODEL OF THE DOUGLAS D-558-II RESEARCH AIRPLANE 

AT MACH NUMBERS OF 1.61 AND 2.01 

By Frederick C. Grant and Ross B. Robinson 

SUMMARY 

Results of tests of a 1/16-scale model of the Douglas D-558-II 
research airplane which were made in the Langley 1 by 4-foot supersonic 
pressure tunnel at Mach numbers of 1.61 . and 2.01 have indicated that the 
complete model has positive directional stability and positive effective 
dihedral at both Mach numbers with no significant change in the directional 
stability or effective dihedral with Mach number. The apparent differ-
ences In trend between flight and tunnel test results are believed to be 
due to the difficulty experienced in measuring the directional-stability 
derivative Cn in flight during combined rolling and yawing motions. 

As predicted by theory, the rudder effectiveness was less at the 
higher Mach number. 

Addition of the wing to the body—vertical-tall configuration reduced 
the lateral force and yawing moment of the tail but increased the incre-
mental rolling moment due to the tail. 

INTRODUCTION 

Tests have been made in the Langley II- by 4-foot supersonic pressure 
tunnel to determine the aerodynamic characteristics of a 1/16-scale model 
of the Douglas D-758-II research airplane. These tunnel tests supplement 
the flight tests of the D-758-II which are being conducted at the NACA 
High-Speed Flight Research Station. The flight tests have indicated that 
the directional stability of the D-558-II is low at supersonic speeds and 
decreases rapidly as the Mach number increases. The purpose of the wind-
tunnel tests was to determine the static lateral stability characteristics 
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of the complete model at Mach numbers of 1.61 and 2.01 and the contribu-
tions to the static-lateral-stability derivatives of the components of 
the model. 

Results of low subsonic Mach number tunnel tests of a 0.27-scale 
model are given in reference 1, while the longitudinal stabilityand 
control characteristics of the present model at high subsonic and low 
supersonic speeds are given in reference 2. The static longitudinal 
stability and control characteristics at Mach numbers of 1.61 and 2.01 
are presented in reference 3 . Calculations of the dynamic lateral sta-
bility characteristics of the full-scale airplane are presented in ref -
erences i- and 5 up to high subsonic and supersonic Mach numbers, respec-
tively. Flight-test results showing the lateral stability and control 
characteristics of the airplane through the Mach number range of 0.27 
to 1.87 are given in references 6 to 11. 

The present paper gives the aerodynamic characteristics in sideslip 
at angles of attack of 00 and 4 for the complete 1/16-scale model and 
for combinations of its components at Mach numbers of 1.61 and 2.01. 
At these Mach numbers, the Reynolds numbers (based on the mean aerodynamic 

chord) were 1.90 x 106 and 1.72 x 106, respectively. Analysis of the 
results obtained was limited to comparisons of the experimental results 
with calculations for the complete airplane of reference 5 and estimates 
of the body-alone characteristics using the method of reference 12. 

COEFFICIENTS AND SYMBOLS 

The results of the tests are presented in terms of standard MACA 
coefficients of forces and moments which are referred to the stability-
axes system (fig. 1). The coefficients and symbols used are defined as 
follows: 

CL	 lift coefficient, -Z/qS 

Cx	 longitudinal-force coefficient, X/qS 

Cy	 lateral-force coefficient, Y/qS 

C 1	 rolling-moment coefficient, L/qSb 

Cm	 pitching-moment coefficient, M' /S 

C11	 yawing-moment coefficient, N/qSb 
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X	 force along X-axis 

Y	 force along Y-axis 

Z	 force along Z-axis 

L	 moment about X-axis 

M t	 moment about Y-axis 

N	 moment about Z-axis 

q	 free-stream dynamic pressure 

S	 total wing area including body intercept 

b	 wing span

/
wing mean aerodynamic chord, /-b/2  c2d/j b/2 c dy 

0	 YO 

M	 Mach number 

p	 angular velocity about X-axis 

roll angle, 
IP 

dt 

a.	 angle of attack of body center line, deg 

angle of sideslip, deg 

br 	 rudder deflection, deg 

it	 stabilizer def-lection, deg 

be	 elevator deflection, deg 

C	 -_._X -
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increment of lateral-force coefficient due to addition of 
vertical tail 

increment of yawing-moment coefficient due to addition of 
vertical tail 

increment of rolling-moment coefficient due to addition of 
vertical tail 

MODEL AND APPARATUS 

A three-view drawing of the model is shown in figure 2 and the 
details of the wing fences are shown in figure 3 . The vertical tail of 
the model is the same as that originally used on the airplane (refs. 1 
to Ii. ). However, a slightly extended tail and slightly smaller rudder 
are now employed-on the airplane (refs. 5 to ii). In addition, the after-
portion of the fuselage of the model was enlarged to accommodate the bal-
ance. These alterations are shown in figure i. A photograph of the model 
in the tunnel is shown in figure 5. The geometric characteristics of the 
model are presented in table I. Coordinates for the body are given in 
table II and for the wing fences in table III. 

The model had a wing without ailerons, with 350 of sweep of the 
0.30-chord line of the unswept panel, aspect ratio 3.57, taper ratio 0.56, 
and NACA 63-010 airfoil sections normal to the 0.30-chord line. The wing 
was at 30 incidence to the fuselage center line and had 30 of negative 
dihedral. 

The horizontal tail, the elevators, and the rudder were movable, 
and the deflections of these surfaces were set manually. The wing, verti-
cal tail, and horizontal tail of the model were removable so that tests 
of combinations of components could be made. Force and moment measure-
ments were made with a six-component internal strain-gage balance. No 
hinge-moment data were taken on any of the control surfaces. 

The model was mounted on a 40 bent sting. By using the bent sting, 
it was possible to test through the angle-of-attack range at sideslip 
angles of 00 and 40 and through the sideslip angle range at angles of 
attack of 00 and 

The tests were conducted in the Langley 4_ by 4-foot supersonic 
pressure tunnel which is described in reference 13. 
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TESTS


Test Conditions 

The conditions for the tests were: 

Mach number ..................... 1.61 	 2.01 

Reynolds number, based on the wing M.A.C. . . . 1.90 x 10 6 1.52 x 106 
Stagnation dewpoint, OF ............... -20 	 -25 
Stagnation pressure, lb/sq in . . . . . . . . . . . . . 15 	 11 
Stagnation temperature, OF ............. 110 	 110 

The magnitudes of the variations in the test-section flow parameters 
for the two test Mach numbers were: 

Mach number variation ................. ±0.01 	 ±0.015 
Flow angle in the horizontal or vertical 

plane, deg	 ...................... ±0.1 	 ±0.1 
CORRECTIONS AND ACCURACY 

The angles of attack and sideslip were corrected for the deflection 
of the balance and sting under load. No corrections were applied to the 
data for the flow variations in the test section. 

The estimated errors in the data are: 

CL ............................... ±0.003 
C)(	 ............................... ±0.001 
Cy	 ............................... ±0.001 

Cm	 .......	 ...	 ..................... ±o.0006 
C	 .............................. ±0.0003 
C	 .............................. ±0.0003 

a,	 deg	 .............................. ±0.1 
13,	 deg	 .............................. ±0.1 
8r '	 deg	 ............................. ±0.1 
it ,	 deg	 ............................. ±0.1

The base pressure was measured and the longitudinal-force data were 
corrected to a base pressure equal to free-stream static pressure. 
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RESULTS AND DISCUSSION 

The experimental variations with sideslip angle of C, C1, and 

Cy are presented in figure 6 for M = 1.61 and figure 7 for M = 2.01. 
Also shown in figures 6 and 7 are the theoretical estimates of these 
coefficients for the complete model (ref. 5) and calculated values of 
the body-alone lateral-force and yawing-moment coefficients (ref. 12). 

All wing-on configurations tested had the wing fences installed 
with the exception..of the complete model at M = 2.01 and a = 0 0 . The 
negligible effect of the wing fences is indicated in figure 8. 

Values of the stability derivatives Cy, Cj,, and Crj measured 

from the results shown in figures 6 and 7 are presented in table IV. 

The results shown in figures 6 and 7 indicate, as could be expected, 
that the largest contribution to C comes from the vertical tail, with 

small changes due to addition of the wing or deflection of the rudder. 
Theoretical estimates agree well with the experimental results for the 
complete model but are somewhat low for the body alone. There was little 
change in CY,for the complete airplane at the two test Mach numbers 

(table IV). 

At zero angle of attack C 1 is almost entirely due to the vertical 

tail. At a =	 the wing has a substantial contribution, which was

expected. Theoretical estimates are somewhat low. The effective dihedral 
C j of the complete airplane was but slightly changed between the two 

test Mach numbers (table IV). 

At zero angle of attack the stabilizing portion of C is almost 

entirely due to the vertical tail. At a = 	 the small stabilizing

wing contribution increased slightly, as was expected. Theoretical esti-
mates of the unstable body moment agree well with the experimental results, 
but the estimates of the tail contribution seem to be somewhat high. The 
change in Cnp for the complete airplane was small between the test Mach 
numbers (table IV). At a. = 00 the variation of Cn with 0 is linear 
at M = 2.01 but not at M = 1.61 (figs. 6 and 7) . As a result, the 
measured values of C no for a small 13 range at M = 1.61 inadequately 

describe the variation of Cn with 3. 

The longitudinal forces and moments corresponding to the lateral 
forces and moments of figures 6 and 7 are presented in figures 9 and 10. 
There are no significant changes in the coefficients with sideslip angle 
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apparent from figures 9 and 10, with the possible exception of the 
pitching-moment coefficient. For the complete model near the trim con-
dition, however, the pitching-moment coefficient remains essentially con-
stant at sideslip angles less than about 60. 

A comparison of the theoretical, flight, and wind-tunnel values of 
the static-directional-stability derivative Cn13 is given in figure 11. 

It is shown in the figure that the experimental body-alone C 13 is essen-

tially constant with Mach number and is close to the theoretical value. 
The addition of the wing has a small stabilizing effect which gives the 
wing-body combination a constant contribution. In the case of the com-
plete configuration, however, there are significant differences in the 
theoretical, flight, and wind-tunnel values. Theory indicates a large 
contribution of the vertical tail which decreases somewhat with increasing 
Mach number. The wind-tunnel results indicate a slightly smaller con-
tribution which is essentially constant. Flight results, on the other 
hand, indicate a large tail contribution which decreases very rapidly 
with Mach number. The values of C 13 for Mach numbers greater than 1.7 

reported from an analysis of flight-test results are somewhat lower than 
the wind-tunnel values. As explained in reference 11, however, there is 
some doubt as to the reliability of the one-dimensional analysis of the 
flight-test data because of the large rolling motion which occurred during 
the high-speed flights. For detailed discussion of the flight results, 
reference 11 should be consulted. Since the vertical tail of the test 
model was smaller than that on a 1/16-scale model of the airplane (fig.li.), 
the values of Cn 8 for the complete model from the tunnel tests are con- 
servative. Tunnel tests at other Mach numbers are needed to establish 
the real trend of Cn13 with Mach number. 

The variation of C, Cn, and C 1 with CL for sideslip angles 

of 0° and -i° shown in figure 12 was used to determine the variation of 

CYO, Cr!13 , and C 1 with CL presented in figure 13. Values of Cy13, 

Cn13, and C 113 from table IV are shown for comparison. These slopes are 

not in exact agreement with those obtained from figure 12 because of the 
nonlinear variation of Cy, Cn, and C 1 with 3. The values of Cy13, 

C 13 , -and C 113 shown in figure 13 should, however, indicate the probable 

variation through the lift range of the present investigation. 

The directional control characteristics are presented in figure 14 

for a. = 00 and 40 for Mach numbers of 1.61 and 2.01. The theoretical 
variation of Cn with br obtained by the method of reference 14 is 

also shown. Although the calculated values of Cn8r are somewhat higher 
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than the experimental values, the predicted decrease in C 5 at the 

higher Mach number is indicated by the experimental results. The effect 
of angle of attack on Cnbr appears to be negligible. There is a slight 

increase in the value of Pbrwith increasing a. at M = 1.61, but at 

M = 2.01 the value of 
Pbris 

greater at a.. = 1 0 because of the decrease 

in Cn at this angle of attack. At both angles of attack the values 

Of C1 are smaller at M = 2.01 than at M = 1.61. 

The effect of the wing on the vertical-tail contribution to the 
lateral characteristics is shown in figure 17. Vertical-tail increments 

(Y )t' (z)t' and (n)t were obtained from the data presented in 

figures 6 and 7 by measuring the differences between the tail-on and tail-
off results for configurations with and without the wing. Addition of 
the wing reduced the values of (Cy)t and (Cn)t and increased slightly 

the values of (LCz)t.

CONCLUDING REMARKS 

Results of tests of a 1/16-scale model of the Douglas D-778-II 
research airplane in the Langley 4- by 4-foot supersonic pressure tunnel 
at Mach numbers of 1.61 and 2.01 indicate that the complete model has 
positive directional stability and positive effective dihedral at both 
Mach numbers. The apparent differences in trend between flight- and tunnel-
test results are believed to be due to the difficulty experienced in meas-
uring the directional-stability derivative Cn in flight during com -

bined rolling and yawing motions. 

The stabilizing forces and moments are contributed almost entirely 
by the tail, but a small reduction in the stabilizing side force and 
yawing moment is due to the addition of the wing. Addition of the wing 
increases the contribution to the rolling moment contributed by the ver-
tical tail.

CONFIDENTIAL



NACA RM L53129a	 CONFIDENTIAL	 9 

Rudder effectiveness was less at the higher Mach number as indicated 
by linear theory. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., September 11, 1973. 
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TABLE I 

DIMENSIONS OF THE 1/16-scALE MODEL OF THE 


DOUGLAS D-558-II RESEARCH AIRPLANE 

Wine: 
Root airfoil section (normal to 0.30 chord 

of unswept panel) ................... NACA 63-010 
Tip airfoil section (normal to 0.30 chod 

of unswept panel) .................... MACA 63-010 
Total area (including fuselage intercept) sq ft 	 ....... o.68!4. 
Span,	 In........................... 18.72 
Mean aerodynamic chord,	 In................... 
Root chord (parallel to plane of symmetry), in....... . 6.78 
Tip chord (parallel to plane of symmetry), in.	 ....... 383 
Taper	 ratio	 ......................... 0.565 
Aspect	 ratio	 ......................... 3.57 
Sweep of 0.30-chord line of unswept panel, deg ........ 35 
Incidence of fuselage center line, deg 	 ............ 3 
Dihedral,	 deg	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 -3 
Geometric	 twist,	 deg	 ...................... 0 

Horizontal tail: 
Root airfoil section (normal to 0.30 chord of 

unswept panel)	 ..................... MACA 63-010 
Tip airfoil section (normal to 0.30 chord of 

unswept panel)	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . . .	 NACA 63-010 
Area (Including fuselage intercept), sq ft 	 ........... 0.156 
Span,	 In........................... 8.98 
Mean aerodynamic chord,	 in .	 ...	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 2.61 
Root chord (parallel to plane of symmetry), In....... . 3.35 
Tip chord (parallel to plane of symmetry), In........ . 1.68 
Taper	 ratio	 ......................... 0.50 
Aspect	 ratio	 .......................... 3.59 
Sweep of 0.30-chord line of unswept panel, deg ........ 
Dihedral,	 deg	 ........................ 0 
Elevator area,	 sq ft	 ..................... 0.059

Vertical tail: 
Airfoil section (parallel to fuselage center line) . . . MACA 63-010 
Area (leading edge and trailing edge extended to 

fuselage center line), sq ft. ................ 0.215 
Span (from fuselage center line), in . . . . . . . . . . . . . 5.25 
Root chord , (parallel to fuselage center line), in ...... . 9.11i. 
Tip chord (parallel to fuselage center line), in...... . 2.75 
Sweep of 0.30-chord line of unswept panel, deg ........ . Ii.9 
Rudder area, sq ft ...................... 0.030 
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TABLE I.-. Concluded. 

DIMENSIONS OF THE 1/16—SCALE MODEL OF THE


DOUGLAS D-558-II RESEARCH AIRPLANE 

Fuselage: 
Length, in.............. ... ...........31.70 
Maximum diameter, in.......................3.75 
Fineness ratio ........................8.Is.o 
Base diameter, in........................ i.6 
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TABLE II 

COORDINATES OF THE BODY 

Ex is distance along model center line 


from the nose of the model; r is 

the radius; all dimensions in inches.] 

x r 

0 0 
1.000 .382 
2.000 .719 
3.000 1.010 
4.00O 1.276 
7.000 1.457 
6.000 1.614 
7.000 1.729 
8.000 1.8o6 
9.000 1.851 
10.000 1.871 
11-000 1.875 
16.250 1.875 
17.000 1.872 
18.000 1.858 
19 .000 1.833 
20.000 1.794 
21.000 1.743 
22.000 1.679 
23.000 1.602 
24.O00 1.513 
24.297 1.485 
31.500 .780
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TABLE III 

COORDINATES OF WING FENCES AND AIRFOIL SECTION IN THE


PLANE OF THE FENCES 

[x is distance from the leading edge along center line 
of airfoil section; y is distance perpendicular to 

center line (see fig. 3); all dimensions in inches.]

Airfoil section Fence 

x y x y 

0 0 
.334 .128 0.334 0.128 
.955 .201 .955 .585 

1.612 .249 1.672 .711.6 
2.259 .259 2.259 .66 
3 .073 .219 3.073 .687 
4 .155 .127 11..155 .125 
5 . 59 0

15 
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Figure 1.- System of stability axes. Arrows indicate positive values. 
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Figure 6.- Concluded. 
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coefficients with sideslip angle for the various configurations. 
M = 1.61.
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Figure 10.- Concluded. 
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Figure 17.- Concluded. 
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