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NATIONAL ADVISORY CCfl4ITTEE FOR AERONAUTICS


RESEARCH MEMORMIDUM 

LIFT-CURVE SLOPES DETERMINED IN FLIGHT ON


A FLEXIBLE SWEPT-WING JET BOMBER 

By William S. Aiken, Jr., and Raymond A. Fisher 


SUMMARY 

An analysis is made of the effects of Mach number and dynamic pres-
sure on the lift-curve slope of a large flexible swept-wing jet-propelled 
airplane by using flight measurements of normal acceleration and angle of 
attack with auxiliary instrumentation as needed. The methods and proce-
dures used to correct the flight measurements (obtained in abrupt push-
pull maneuvers) and to convert the flight test data to equivalent rigid 
conditions for comparison with rigid-model wind-tunnel tests are described 
in detail. The airplane angle of zero lift and the airplane-less-tail 
angle of zero lift for the Mach number range of the flight tests (O.lt-2 
to 0.81) are also presented. Excellent agreement was obtained in the com-
parison between flight and wind-tunnel rigid lift-curve slopes and angles 
of zero lift.

INTRODUCTION 

The lift-curve slope and the effects of wing flexibility on the lift-
curve slope are important factors in the design of present-day aircraft. 
Generally, design values of lift-curve slope are based on rigid-model 
wind-tunnel results and theoretical methods for estimating the effects of 
flexibility on wing-load distributions and thereby on airplane lift-curve 
slope. Actual] f, little information exists where these design procedures 
have been verified experimentally. As a result of an extensive flight 
investigation carried out by the National Advisory Committee for Aeronautics 
with a large flexible bomber airplane sufficient lift-curve-slope data were 
obtained over a fairly wide range of Mach number and dynamic pressure in 
quasi-static maneuvers to attempt an analysis. Some preliminary values of 
rigid-airplane lift-curve slope estimated from flexible-airplane flight 
test values obtained at one altitude have been previously presented in 
reference 1. 

A principal objective of the present report is to show the comparison 
of rigid-airplane lift-curve slopes derived from flexible-airplane flight 
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test values with values of rigid lift-curve slope obtained from wind-
tunnel tests. An equally important objective is the development of a 
rational method for obtaining rigid lift-curve, slopes from flexible 
flight test values. This rational method is essentially the reverse of 
standard procedures used in design for estiiating the effects of flexi-
bility on airplane lift-curve slope. The report is organized to show 
the step-by-step analysis procedure followed from raw data to the final 
rigid lift-curve-slope variation with Mach number. The more or less 
standard corrections to angle of attack and airplane-normal-force-
coefficient measurements are described in detail and a method for 
accounting for recorder lag necessary for the present analysis is given. 
In addition, angles of zero lift determined from the flight tests are 
correlated and compared with wind-tunnel results. 

S1MBOLS 

A,B	 defined by equation (22) 

aspect ratio 

c	 two-dimensional lift-curve slope, per degree 
'CL

airplane normal-force coefficient 

CNA	 airplane normal-force coefficient corrected for pitching-
C	 acOeleration tail load and defined by equation (A113) 

C	 time derivative of CNAC 

CNA	 airplane normal-force coefficient for trim in level flight 
trim 

CN	 incremental wing-fuselage normal-force coefficient due to 
add	 additional type of loads, includes wing flexibility effects 

L CN.	 incremental wing-fuselage normal-force coefficient due to 
1	 wing inertia flexibility effects 

incremental wing-fuselage normal-force coefficient f or rigid 
wing case 

CNT	 incremental total wing-fuselage normal-force coefficient, 
includes wing flexibility effects 
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- (?\	 (	
de\St 

K1 - ct )tail - 

defined by equation (Al2) 

=	 )tai1 cia S 

K=(-

	

\	 'tail s 

tail load, lb 

M	 Mach number 

S	 wing area, sq ft 

St	 tail area, sq ft 

V	 true airspeed, ft/sec 

W	 airplane weight, lb 

am	 slope of measured airplane normal-force coefficient 	 = 0) 
against angle of attack, per deg 

aF	 faired slope of flexible tail-on normal-force coefficient 
against angle of attack, per deg 

madci	 calculated slope of additional flexible wing-fuselage normal-
force coefficient against angle of attack, per deg 

measured or calculated slope of flexible tail-off normal-
force coefficient against angle of attack, per deg 

• faired slope of flexible tail-off normal-force coefficient 
against angle of attack, per deg 

mR	 slope of rigid tail-off normal-force coefficient against 
angle of attack, per deg 

weighted mean values of mR, per deg 
w 

	

boom	
normal load factor at angle-of-attack vane, g units 
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measured normal load factor at accelerometer location, 
g units 

	

cg	 normal load factor at airplane center of gravity, g units 

incremental load factor, g units 

q	 dynamic pressure, lb/sq ft 

r	 boom radius or approximate radius of fuselage nose, in. 

t	 time, sec 

w	 weighting factor 

x	 distance of angle-of-attack vane forward of nose, in. 

x.	 distance of angle-of-attack vane from airplane center of 
gravity, ft 

y	 distance of vane from boom center line, in. 

a	 angle of attack, deg 

a1	 angle of attack measured with respect to fuselage reference 
axis, deg 

a2	 apparent true angle of attack with respect to fuselage refer-
ence axis, uncorrected for recorder lag, deg 

a3	 true angle of attack with respect to fuselage reference axis, 
corrected for recorder lag, deg 

trim	 true corrected angle of attack for trim in level flight, deg 

wing angle of attack with respect to free air stream, deg 

increment in measured angle of attack due to bending of boom 


	

a	 under aerodynamic load, deg 

increment in measured angle of attack due to inertia bending 


	

1	 of boom, deg 

increment in measured angle of attack due to pitching velocity, 
deg 

increment in wing root angle of attack, deg 
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angle of zero lift (airplane tail_on) 

dboC	
angle of zero lift (airplane tail_on) determined from equa-

tions of form of equation (26), deg 

angle of zero lift (airplane tail-off) determined from equa-
tions of form of equation (29), deg 

angle of zero lift (airplane tail-on) defined in equation (30), 

	

aj	 deg 

time rate of change of true corrected angle of attack, 
deg/se c 

8	 average root elevator angle for trim in level flight, deg trim 

	

oom	 upwash at vane due to boom 

fuselage upwash at vane due to fuselage 

	

wing	 upwash at vane due to wing 

A	 sweep angle of wing quarter-chord line, deg 

T	 ratio of distance of angle-of-attack vane from wing 
25-percent -chord location at centerline to wing semispan 

9	 airplane pitching velocity, radian/sec 

e	 airplane pitching acceleration, radian/sec2 

downwash factor 

(CN\
tail lift-curve slope in terms of tail angle of attack, 

\° / tail	 per deg 

tail lift-curve slope in terms of root elevator angle, 
tail	 per deg 

f(qlnR )	 defined by equation (15) 

Bar over a symbol indicates geometric mean value. 
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APPARATUS AND TESTS


Airplane 

The airplane used for this investigation was a six-engine, swept-
wing, jet-propelled medium bomber. A photograph of the test airplane is 
shown in figure 1, and pertinent characteristics and dimensions used in 
this report are given in table I. 

Instrumentation 

The data used in the reduction and analysis given in the present 
paper were obtained from standard MACA recording instruments. 

Normal accelerations were measured by both a single-component and 
a three-component air-damped accelerometer. Angular velocities and 
accelerations in pitch were measured by a rate-gyro-type, electrically 
differentiating, magnetically damped turnmeter. The angle of attack was 
measured by a flow-direction vane mounted on an NACA pitot-static head. 
The head was attached to a boom aimed with the longitudinal axis of the 
airplane and was located approximately one fuselage diameter ahead of the 
original nose. The. installation is shown in figure 2. 

The recorded data were synchronized at 0.1-second interlrals by means 
of a common timing circuit. All instruments were damped to about 0.67 
of critical damping. A summary of quantities measured, instrument loca-
tions, and accuracies is given in the following table: 

Quantity measured
Measurement 

station
Instrument 

range
Instrument 
accuracy 

Normal acceleration, 
g units - 

Single component .	 .	 . 34.2 percent M.A.0 0 to 2 0.005 
Three component	 .	 .	 .	 . 34-.2 percent M.A.C. -1 to	 4- 0.0125 

Pitching velocity, 
radians/sec	 .	 .......25 percent M.A.C. ±0.25 0.005 

Pitching acceleration,
25 percent M.A.C. .	 ±0.50 0.010 

Angle of attack, deg .	 .	 .	 . 117 in. ahead of ±O 0.10 
radians/sec 2 ........

original nose 
Dynamic pressure, lb/sq ft . lI4O in. ahead of 0 to 800 1.00 

original nose 
Static pressure, lb/sq ft 	 . 1152 in. ahead of 0 to 2,200 2.00 

original nose
Approx. 

_________________________ 
Time, sec ..........

_________________ _________ 0.005
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NACA RN L56E21a	 CONFIDENTIAL	 7 

Tests 

All tests were made with the airplane in the clean condition. The 
flight data evaluated were taken from 68 push-down pull-up maneuvers 
made at pressure altitudes of approximately 20,000, 25,000, 30,000, 
and 35, 000 feet and an overall Mach number range of O.!127 to 0.812. The 
tests were made at forward and normal center-of-gravity positions and 
airplane weights ranging from 107,000 to 127,000 pounds. Table II is a 
summary of the flight conditions for these runs. In tile table are listed 
the flight and run numbers, average Mach number, average dynamic pressure, 
test altitude, weight, and center-of-gravity position. The Mach number 
and dynamic-pressure changes during any test run are indicated in the 
appropriate columns of table II. 

METhODS AND RESULTS 

The data-reduction and analysis procedures for determining the air-
plane lift-curve slope from quasi-static maneuvers in flight and for con-
verting these results to rigid wing values for comparison with wind-tunnel 
data are somewhat complicated. Thus, the following sections present in 
detail:

(a) The corrections to the basic flight measurements of angle of 
attack and normal acceleration for the determination of airplane lift-
curve slope 

(b) A method of determining the lift-curve slope when lag is present 
in the angle-of-attack recording system 

(c) The values of lift-curve slope for the test airplane for the 
68 test maneuvers used in the analysis 

(d) A method for determining values of tail-off lift-curve slope 
for the rigid airplane from flight test values 

(e)A comparison of rigid airplane lift-curve slopes and rigid model 
wind-tunnel data 

(f) The determination of the tail-off angle of zero lift 

Basic Data 

The basic data required for the present analysis are time histories 
of angle of attack and of airplane normal—force coefficient. In the 
appendix, the method of correcting the measured angle of attack to account 
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for upwash, pitching velocity, and boom deflections are given in detail 
along with the corrections applied to normal-force coefficient to accouiit 
for the effects of pitching acceleration. The corrected angle of attack 
used in the analysis is given for the particular angle-of-attack meas-
urement installation of the present tests by equation (A8) of the appen-
dix as

a2 = O.9i - 0.11 + 3O3	 + 0.322(	 -	 + o. 59	 (1) 

and the airplane normal-force coefficient corrected for instrument loca-
tion and out-of-trim tail load is given by equation (A13) of the appen-
dix as

nnlw	 O.O2W 032 - c.g.' + 19.61 •B•	 (2) CNAC=-_+ qS	 1001	 q 

Normally, if the foregoing corrections have been made to the meas-
ured angles of attack (eq. (1)) and measured normal-force coefficients 
(eq. (2)) and if the lift-curve slope is constant over the angle-of-
attack range considered, the following equation may be used to express 
the linear relationship between the normal-force coefficient at the 
center of gravity and the airplane angle of attack: 

CNAC = am(a - a)	 (3) 

Time histories of °NAC and measured a. 2 are shown in figures 3 

and by the square symbols for two typical push-pull maneuvers at a 
pressure altitude of approximately 35,000 feet. The flight conditions 
existing during these maneuvers are listed in table II. Also shown in 
time history form in figures 3 and + by circular symbols ar the meas-
ured load factor at fuselage station 638 (3 1- .2 percent of the wing 
M.A.C.), the pitching velocity e, the pitching acceleration b, and 
the measured angle of attack a 1 . A shift or time lag exists between 

and a2 which is illustrated more clearly in figures 5 and 6 

where plots of CNA against a 2 seem to show nonlinear variations of 

normal force with airplane angle of attack. 

Determination of lift-curve slopes with lag present in the angle-
of-attack recording system. - The nonlinearities which appear in fig-
ures 5 and 6 indicate that all corrections necessary to determine lift-
curve slope have not been applied. These nonlinearities were traced to 
lag in the recording Autosyn of the angle-of-attack measuring system. 
Although this recording instrument had a high enough natural frequency 
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(10 cps) for recording accurately most pitching maneuvers possible with 
the test airplane, it was thought that leakage of oil into the bearings 
of the Autosyn receiver unit at low temperatures changed the damping 
characteristics of the recorder so that a time lag was introduced. The 
lag was not determinable through calibrations or experiment since the 
amount of oil in the bearing and temperature of the unit could not be 
determined for the flight test conditions. Limited data obtained in 
tests subsequent to those reported here showed a linear variation of 
CNAC with a2 . Since these maneuvers were as abrupt as any reported 

herein, this precluded dynamic response of wings or fuselage as the 
cause of the lag loops described in the present paper. 

Analysis of a large portion of the data used for the present report 
indicated that the angle of attack corrected for lag a5 could be repre-

sented by the following equation:

da 
=	 + 4(Iag) 

A procedure was therefore adopted which would permit the evaluation 
of lift-curve slope am and angle of zero lift a 0 without directly 

da.3 
determining either	 - or the lag. The time derivative of the correct 

do,3 
angle of attack - is still unknown but it is by definition propor-

tional to CJA so that equation p4-) may be rewritten as 

(Lag) 

	

am CNA	 (5) 

Substituting equation (5) into equation (3) makes it possible to 
determine the lift-curve slope and angle of zero lift (a0 ) from readings 
of a2 where lag effects are suspected as 

a2	 CN	
(Lag) 

-	 C 
Ac	 0	 am	 'Ac 

With equations of the form of (6a), the flight data may be least 

1	 (Lag) squared to determine values of the coefficients 	 , a,0 , and 

with the measurement errors associated with the angle of attack a. 

Results for two specific maneuvers.- The coefficients resulting 

from least-squares solutions for the two sample maneuvers (figs. 3 and 1i) 

(4.) 

(6a) 
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using equation (6a) are given in the following table. For comparison 
purposes to indicate the improvement in fit, the coefficients were also 
calculated without the lag term from

(6b) 

which is, of course, an equation normally used for cases where there is 
no lag. The table also contains the standard errors of the coefficients, 
the number of test points used in the solutions, and the standard errors 
of estimate s: 

Number
1 Lag Standard 

Flight Run Figure of 
points

Type 
solution

a, error, 
S• 

used deg deg deg-sec deg 

9 1 35
Equation (6b) lO.51	 ± O. 1 8 -2.35 ± 0.27 
Equation (Ga) 11.16 ± 0.12 -2.60 ± 0.07 l.12 ± 0.07 ±.12 

12 6 I,6 27
Equation (6b) 11.26 ± 0.31 -2.67 ± 0.18

-

±0.30 
Equation (Ga) 11.78 ± 0.11 -2.89 * 0.06

-
-0.76 ± 0.05 ±.lO

The angles of attack as computed from the coefficients given in 
the preceding table for both sample maneuvers are shown in time history 
form in figures 3 and 14• The points are labeled with the equation num-
ber (6b) or (Ga) from which they were c.1culated. The calculations made 
using the coefficients of equation (Ga) are seen to approximate closely 
the time history of the angle of attack a2 . In figures 5 and 6, air-
plane normal-force coefficients are plotted as a function of the angle 
of attack corrected for lag a 3 (eq. (5)). Also shown in figures 5 
and 6 are the lift curves determined from the 	 and a0 coefficients 

am 
using equation (Ga). 

The significant improvement in fitting the data with the inclusion 
of a lag parameter may thus be seen by reference to figures 3 and where 
the time histories of a, 2 are successfully duplicated, to figures 5 and 6 
where the normal-force curves are linearized by the use of a 3 , and to 
the previously presented table of results where the standard errors of 
estimate show a considerable decrease with the inclusion of a lag 
parameter. 

The -- coefficients for the two representative runs are seen to 
am 

be in reasonable agreement. Lift-curve slopes 
5m obtained from the 
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solutions of equation (6a) would be 0.0896 for flight 9, run 1 and 
0.081+9 for f light 12, run 6. 

The values of the angle of zero lift a listed in the table are 
thought to vary from run to run due to center-of-gravity, Mach number, 
and dynamic-pressure effects. For the two cases given, the standard 
errors of estimate s of ±0.120 and ±0.100 are considered to be accept-
able since the basic reading accuracy for the angle-of-attack recorder 
is estimated to be ±0.10. 

Lift-Curve Slope Variation With Mach Number 

and Dynamic Pressure 

After establishing the method for correcting for the lag due to 
instrument characteristics, all 68 push-pull maneuvers were analyzed by 
using equation (6a) to determine both the airplane lift-curve slope and 
the angle of zero lift. The results of these computations are listed 
in table III with identifying run numbers, number of points used, stand-
ard errors of fit s, and average values of M and q. The runs are 
listed according to the approximate altitude and by increasing Mach num-
bers. The lag coefficients are not included since this was a byproduct 
necessary only to obtain the results. 

The standard errors listed in table III are, with a few exceptions, 
considered to be acceptable since as was previously stated the estimated 
measuring accuracy for angle of attack was ±0.100. 

The values of am listed in table III are shown plotted in fig-

ure 7 as a function of Mach number. In figure 7 different test-point 
symbols are used to differentiate the approximate altitude groupings of 
20,000, 25,000, 30,000, and 35,000 feet. It was seen that considerable 
scatter existed in these data even for any particular altitude; however, 
two general trends may be noted: (i) There is the expected increase in 
lift-curve slope with increasing Mach number and (2) with increasing 
dynamic pressure for constant Mach number, the lift-curve slope decreases. 

Conversion of flight data to rigid wing-fuselage values.- In order 
to determine lift-curve slopes for the rigid wing-fuselage combination 
for comparison with similar wind-tunnel data, it was first necessary to 
correct the flight tail-on lift-curve slopes to tail-off conditions by 
the use . of the following equation:

Ir 
mf =am-

	

	 (7) qS cx,3 
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The tail loads were measured for the maneuvers considered here. The 
values of from equation (7) are plotted in figure 8 and, at the 

high values of Mach numbers for any given altitude, the scatter is some-
what less than the scatter for the tail-on values of am given in 

figure 7. 

The next step in the procedure is to establish the equations neces-
sary for converting the flexible lift-curve slopes to equivalent rigid 
conditions. These equations are the same equations as would be used for 
calculating flexible results from rigid data. The incremental lift on a 
flexible wing surface may be expressed in coefficient form as 

	

CNT = £XCN d	 (8) 

where CNT is the incremental total wing-fuselage normal-force coef-

ficient including aerodynamic and inertia flexibility effects, CNadd 

is the incremental wing-fuselage normal-force coefficient due to addi-
tional type of aerodynamic loads including wing flexibility effects, 
and CNi is the incremental wing-fuselage normal-force coefficient due 

to wing inertia flexibility effects. Equation (8) may be rewritten as 

	

L CNadd	 CNT 

	

LCNT =CNR	 ^	 Ln	 (9)

CNR 

Taking the derivative of equation (9) with respect to the root or rigid 
angle of attack leads to

= 
mR madd 

+ m 
C /mR _	

(10) 

	

mR	 R	 daR 

In order to determine the inertia effect, the simplifying assumption Is 
made that the normal acceleration across the wing span is constant and 
that

	

n CNA q
	

(11) 

With this assumption, equation (10) becomes 

	

madd	 qS CNT/n1R 
Iflf = mR 

mR +	 V	
(12) 

or
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tmadd 
mR 

tmf =

	

	 s h/mR	
(13) 

l-qm 

Thus, in order to calculate the flexible wing or wing-fuselage lift-
curve slope, the following parameters are required: 

(a) mR to be obtained from theory or experiment 

(b)
maid to be obtained from theory 

(c)
NTI	 to be obtained from theory 

(d) to be specified for flight conditions 

madd	 CNT/mI. 
The values of	 and	 were obtained by use of the 

mR 
superposition method of reference 2 with some modifications. The modif 1-
cations, in brief, consisted of using matrix procedures to determine aero-
dynamic and structural influence coefficients and the use of least-squares 
procedures in the determination of the equations necessary for establishing 
the angle-of-attack distributions across the wing as a function of span 
position and qm, the basic flexibility parameter. Fuselage effects 
were included in the calculations by the use of an overvelocity matrix 

determined using the method of reference 3. The parameters 18dd 

and	 were calculated f or qm values of 0, 1, 5, 10, 15, 20, 

25, 30, 35, 4-0, 4-5, and 50 - .L and are shown in figures 9 and 10 as 
rt2 deg 

functions of	 Also shown in these figures are similar curves from 
reference 1- which were used in the design of a later version of the test 
airplane. The differences between the two results are thought to be 
attributable mainly to the wing bending-stiffness distributions (El) used 
in the two cases although they may be partly due to differences in values 
of two-dimensional lift-curve slopes used in each case. The NACA calcu-
lations used an El distribution which resulted in calculated structural 
influence coefficients which closely checked those measured and reported 
in reference 5. 

Equation (13) and the derived curves of	 (fig. 9) 
and CNT/mR 

mR 

(fig. 10) may now be used to estimate the lift-curve slope for the rigid 
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airplane from measurements of flexible lift-curve slopes made at various 
Mach numbers and dynamic pressures. Since the gross weights of the air-
plane varied only a maximum of 10 percent from the average gross weight 
of 116,000 pounds, equation (1)) may be written as 

tmadd 
mR mR	 OA) mf =
qm	 CNT/mR 

1-

	

81.65	 n 

Curves of m. plotted against mR may now be drawn as in figure 11 

for various values of qm. Since at constant values of qm the curves 

are linear, the following equation may be written: 

= f(q.m)mf
	

(15) 

1 - "R CNT/mR 

The parameter f(qmR) =	 81.65	 '	 is given in figure 12 and, 
madd 

	

in the range of qm from 0 to 50 - 	 it may be fitted by the 
ft2 deg 

quadratic equation 

f(qm) = 1 + 0.009O82qm - 0 . 0OOO)+14.79q2m 2	 (16) 

Thus

mR = (i + 0.O09O82qm - O.0OOO79q2m2)mf 	 (17) 

Equation (17) may be solved as a quadratic equation for mR or, as was 

done in the present case, mR may be determined by iteration. 

The rigid wing-body lift-curve slopes calculated for the 68 flight 
test conditions by using equation (17) are listed in table IV along with 
identifying flight and run numbers and Mach numbers. These slopes are 
plotted in figure l as a function of Mach number. 

Variation of rigid lift-curve slope, niB, with Mach number. - In order 

to aid in the determination of a curve giving the variation of niB with 
Mach number, the data were divided into the groups (1 to 3A) shown in 
table IV. The weighted mean values of mR at constant Mach number were 

calculated from the equation
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EwmR
(18) 

Zw 

The weighting factor w for each m was calculated from standard 
formulas for determining weights with precision of measurement and data 
range considered (ref. 6, for example). 

The weighted mean values of mR listed in table IV are shown 
plotted at the group Mach number in figure l l. (a). In order to establish 
a function or functions of Mach number by which all 68 points might be 
fitted simultaneously, the data shown in figure l . (a) were reduced to 
equivalent zero Mach number values by dividing the lift-curve slopes by 
the associated swept-wing Glauert factor as 

	

m10 = mR 1 - M2cos2A	 (19) 

The results of this operation are shown in figure li . (b) in which it 
appears that the lift-curve slope follows a Glauert type variation up 
to aMach number of about 0.70 above which it could be represented as 

varying linearly with	 M 

- M2cos2A 

Each point In figure ]A(b.) represents a weighted observation for a 
limited Mach number range. In order to analyze the weighted observations 
over the complete Mach number range for comparison with the wind-tunnel 
data, the lift-curve slope data were used in two parts. Part I contained 
the data from groups 1 through 8 and was fitted by a standard weighted 
least-squares equation as

1 

fl - M2cos2A 
=	 (20) 

Ew!	 1	
2 

- M2cos2A) 

From the data of table IV and equation (20), the variation of mR 
with Mach number below 0.70 was found to be 

- 0.08520
mR- _________ 
- M2cos2A

(for M < 0. 70 )	 (21) 

with a standard error of fit of ±0.0031. Part II contained the data 
from groups 7 through l and was fitted by an equation of the form 
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0.08520	 \/3j M2cos2A	 (22) A + Bw= w(mR-	
- M2COS2A) 

which in matrix form for solution of the coefficients A and B becomes 

A 1( 0.08520 

-	 M2cosAJ 

\& - M2cos2Al 

I 

fBI = [2

(23) 

l(mR -

0.08520	 \ - M2cosA 
- M2CO52A) 

Solution of equation (23) for A and B gives the variation of	 mR	 for 

Mach numbers above 0.68 as

0.O303 + 0.0797.iM 


Vi - M2cos2A 

with a standard error of ±0031. 

mR = (for M > 0.68)	 (21k) 

Comparison of flight and wind-tunnel rigid wing-body lift-curve 
slopes.- The variation of rigid lift-curve slope mR with Mach number 

established by equations (21) and ( 21k-) from the basic data shown in fig-
ure 13 are plotted in figure 15 as the dashed lines. The solid-line 
curve shown in figure 15 is the variation of wind-tunnel rigid-model 
lift-curve slope (ref. 1. or 7) with Mach number. The agreement between 
flight and wind-tunnel values to a Mach number of 0.70 is seen to be 
excellent. This agreement indicates that standard theoretical procedures 
used to calculate flexible lift-curve slopes for flight conditions are 
entirely adequate for the Mach number range tested since the procedure 
used to obtain flexible values from rigid values is just the reverse of 
the procedure used in the present case. The disagreement above M = 0.70 
may be viewed in several ways. From the standpoint of wind-tunnel testing 
techniques, it might be pointed out that the extrapolated flight test data 
depend on an assumed distribution of two-dimensional lift-curve slope 
across the span which may not have the same distribution at all Mach num-
bers. Also the estimated correction factor for total upwash effects 
gives a value of angle of attack 

a2 

which may be more in error at high Mach numbers than at low Mach numbers. 

CONFIDENTIAL 
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From a flight-testing-technique viewpoint, questions may be directed 
toward the validity of small-scale model tests at Mach numbers where tun-
nel disturbances may affect the results, or to the accuracy with which 
the model results were corrected for flexibility effects. Another pos-
sible source of difference between wind-tunnel test values and flight-
test values lies in the fact that no blocking corrections were applied 
to the test-section Mach number. In reference 7 it was stated that the 
uncorrected test-section Mach numbers were believed to be accurate to 
within 2 percent up to M = 0.85 . All in all, it is impossible to state 
which data best represent the rigid wing-body lift-curve slopes above 
M = 0.70. 

Calculation of flexible wing-body lift-curve slopes.- When equa-
tions (21) and ( 211) are inserted in equation (17) for m, the flexible 
wing-body faired lift-curve slope mp may be calculated for the flight 

test conditions. The calculated curves of 'F against M for altitudes 
of 20,000, 27,000, 30,000, and 35,000 feet for an average gross weight of 
116,000 pounds are shown in figure 16. Also shown in figure 16 are ±he 
measured mf. values from figure 8. The family of curves is seen to fit 
the data of the four altitudes with a relatively small amount of scatter. 
Extrapolation of the data to lower altitudes is limited to a value of 

qn1 of 70 - ..J.., the limit of the theoretical calculations made for 
ft2 deg 

this analysis. The calculations as noted previously correspond only to 
the wing stiffness distribution for airplanes of the type used in the 
present investigation and not to later versions of the same general 
configuration.

Angle-of-Zero-Lift Data 

Direct measurements of the angles of zero lift were not available 
from the flight test data since the airplane was restricted to flight at 
positive load factors. Thus a comparison of wind-tunnel and flight data 
was necessarily based on extrapolated values of angle of attack obtained 
from least-squares solutions. These extrapolated values of angle of zero 
lift	 are listed in table V. The extrapolation by least-squares 

analysis gives an intercept or a value which could also be expressed 
by the following equation:

a0 =	 -	 CNAC	 (25a) 

Inasmuch as the faired values of lift-curve slope mF in figure 16 cor-
rected for tail-on conditions more nearly represent the true lift-curve 
slope than the individual lift-curve slope m with its inevitable scat-
ter, the angle of zero lift associated with the faired lift-curve slope 
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was desired in order to represent best the data of CNAC plotted 

against a in the range of the measurements. The corrected angle of 

zero lift would be given by the equation 

ao =	 -	 CJc	 (25b) 

From equations (25a) and (25b), the corrected angle of zero lift con-
sistent with a faired lift-curve slope and representing the data in the 
range of the measurements becomes 

aOC = ao - CNAC ( -
	

(26) 

This procedure was used to calculate corrected values 	 for each of 

the 68 runs, the results being shown in table V and plotted in figure 17 
as a function of Mach number. It is evident from figure 17 that an 
analysis of the data in this form is next to impossible. Although in a 
given flight there appears to be a trend with Mach number, the scatter 
of the data from flight to flight suggests the presence of zero shifts 
in the recorded angles of attack. These suspected zero shifts in no 
way affect the magnitude or validity of the correction applied through 
equation (26). 

Calculation of a 0.. - For trimmed level flight, the following 

expression for airplane normal-force coefficient may be written 

CNAt i = m(atrjm -
	

+	 d€ St 

1tail - 
)trim - 

d€N	 5t (c\	 s 
2.75	

+ \)tai1	
(27a) 

or

CNA . = mF (trim - ctOWB ) + K1 trim - 2.	 + K btrim (2m)
trim 

From equation (27b) and the equation

^ CNAtrim	
(28) atrim = aoc	 ctF 
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an expression for 	 may be derived as foflows:

1	 K1 
=	

+	 oC - 2.K2 + K3 trim) ^ CNA (_ ^ ap 
+ e) 

(29) 

Values of	 were calculated from equation (29) by using pre-




liminary values of K1, K2, and K3 based on an unpublished analysis 

of the tail loads with angle of attack by the authors of the present 
paper and values of a.oC , mF, and a? already determined in the present 

paper as well as the measured trim root elevator angles btrth and 
normal-force coefficients CNAtim. The results are tabulated in table V 

and plotted in figure 18. Although considerable scatter still exists in 
the data from flight to flight, the data in any given flight show no 
consistent variation with Mach number. Dynamic pressure or flexibility 
effects are not evident either since data for flight 12, which consist 
of maneuvers at three different altitudes, exhibit no separation with 
altitude. 

Weighted mean values of	 are also listed in table V for each 

flight. The differences exhibited between weighted values of 	 from 

f light to flight may be due to unavoidable errors in ground-zeroing pro-
cedures. A weighted mean value of 	 was determined from all 68 maneu-

vers as

aOWB = -3.13° 

Design data (ref. )) based on wind-tunnel data listed the angle of zero 
lift of the wing-fuselage configuration as -0.5° with respect to the wing 
root chord line or _3.250 with respect to the present reference, the fuse-
lage axis. In addition, it was stated in reference -l- that there was no 
discernible variation with Mach number. The agreement between flight and 
wind-tunnel values of 	 is considered to be excellent. 

Calculation of tail on__as.- With a mean value of ay. 	 established 

as constant for all flights and nins, an adjusted value of a 0 for 
tail-on flight conditions may be calculated as 

aod. = -3.13 - aoWB + a 00	 (30) 

CONF IDENTIAL
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The results of these computations are listed in table V and plotted in 
figure 19. The differences exhibited in figure 19 are a result of varia-
tions of tail-on lift-curve slope, downwash, and elevator effectiveness 
with Mach number as well as fuselage flexibility effects but these dif-
ferences are not sufficiently great to warrant further analysis. 

DISCUSSION 

Analysis of the test results indicates that numerous corrections 
must be made to the measured data if proper values of lift-curve slopes 
are to be obtained from the type of nose-boom angle-of-attack installa-
tion used. The size of the corrections may be reduced but not eliminated 
by lengthening the boom (reducing interference effects) and stiffening 
the boom (reducing inertia effects). The particular corrections required 
to account for lag in the present case may, of course, be eliminated by 
the use of a better recording instrument. Corrections for angular veloc-
ity effects may be reduced somewhat if a slow windup turn type of maneu-
ver is used. The windup turn maneuver is not necessarily a more suitable 
maneuver since speed changes and roll and sideslip effects would then 
have to be considered in an analysis of the data. Another undesirable 
feature of the windup turn maneuver is the reduced range of angles of 
attack available for which normal-force coefficients are linear with 
angle of attack. 

The importance of obtaining a large amount of data with duplication 
of maneuvers at similar flight conditions is a factor which is sometimes 
overlooked. In the most carefully conducted flight test program with 
carefully corrected measurements, considerable scatter may still exist 
in the results. Least-squares procedures may be used to analyze results 
where scatter is present only if sufficient data are available with a 
reasonable range of variables. A good fit to the data is not proof that 
the coefficients derived in the process are final correct answers. 

The determination of equivalent rigid values of lift-curve slope 
from flight measurements on a flexible airplane requires a careful anal-
ysis of the data. As pointed out previously, a certain amount of scatter 
Is unavoidable; thus, simplified plotting techniques, even if the correct 
flexibility parameters are chosen, seldom produce curves that may be 
extrapolated to rigid conditions. In view of the fact that the basic 
flexibility parameter qIn is the product of the dynamic pressure q 

and the unknown rigid lift-curve slope m, the use of a plotting tech-
nique is doubly difficult. It is thus necessary to reduce the flight 
data to equivalent rigid values by theoretical load distribution calcu-
lations and calculated or experimental deflection characteristics. Since 
the basis of the theoretical load distribution calculations is an adequate 
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determination of the two-dimensional wing lift-curve slope distribution, 
the whole process is unfortunately somewhat dependent on wind-tunnel 
pressure-distribution tests. When the reverse process is used, that is, 
the calculation of flight test values from wind-tunnel tests and theory, 
the same accurate basic information is required. 

CONCLUDING REMARKS 

Flight measurements of airplane lift-curve slopes and angles of 
zero lift for a large flexible swept-wing airplane as obtained for 
68 push-pull maneuvers in a Mach number range from O.12 to 0.81 at alti-
tudes from 20,000 to 35,OcXD feet have been presented. 

The lift-curve slopes obtained from flight conditions where flexi-
bility is a factor were analyzed to determine airplane tail-off rigid-
wing values which showed excellent agreement with rigid wind-tunnel data 
for a model of the airplane up to a Mach number of 0.70. In the Mach 
number range from 0.10 to 0.81, however, the flight rigid values of lift-
curve slope show a more rapid increase with Mach number than the wind-
tunnel data. 

The agreement obtained between flight and wind-tunnel results indi-
cates that in the Mach number range tested standard design calculation 
methods would accurately predict flexible lift-curve slopes if the basic 
two-dimensional lift-curve-slope data and wing-stiffness data are 
accurate. 

Analysis of angles of zero lift for tail-off conditions indicated 
good agreement with wind-tunnel results both in magnitude and in lack 
of variation with Mach number. 

In the course of the investigation and as detailed in the present 
paper, new approaches to analysis procedures believed to be of interest 
were used. Specifically these were (a) the determination during abrupt 
maneuvers of lift-curve slopes from instrumentation which had a large 
amount of lag and (b) the conversion of flight measurements of lift-
curve slopes on a flexible airplane to rigid conditions according to 
physically correct equations. 

Langley Aeronautical Laboratory, 
National Advisory Coirmiittee for Aeronautics, 

Langley Field, Va., May 9, 1956. 
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APPENDIX 

CORRECTIONS TO BASIC DATA 

Corrections to Angle-of-Attack Measurements 

At any instant in a maneuver, the measured angle of attack at the 
vane (assuming no alinement errors and that the floating angle is zero) 
is related to the true angle of attack of the airplane through the fol-
lowing equation: 

	

a1 = a2 + (twjng + boom + fuselage • 	 + &L11 + la)	 (Al) 

where the terms in parenthesis are in the nature of small corrections 
due to upwash, pitching velocity, and boom bending. 

The upwash at the vane due to the wing may be calculated from the 
following expression which uses a swept-horseshoe-vortex system to deter-
mine the flow direction at points in space not on the quarter-chord line 
of the wing:

I	 /(r + tan A) 2
 + 1 - ¶ tan A1 

wing	 -	
ITI j(aw)	 (A2) 

The angle of attack of the wing is the angle of attack of the fuselage 
reference axis plus the wing incidence angle of 2.15 0 . With numerical 
values inserted, equation (A2) becomes 

= O.O1 6(a + 2.75) 

(Since this is a correction, an average value of c Za = 0.100 as used.) 

The upwash at the vane due to the flow around the boom may be esti-
mated with good accuracy from the equation for two-dimensional flow 
around a cylinder as

	

boom = ()2a2	 (A3) 

Withnumerical values inserted, this becomes 

11boom = O.0l35a2 
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The upwash induced at the vane from the fuselage based on some very 
limited flight test data is approximated by 

	

= Ir\2	 (Alt) 

	

'fuselage	 I x) 2 

Substituting the dimensions of the fuselage radius at the original nose, 
equation (A ll-) is numerically equal to 

Tuselage = O.0375a,2 

Equation (Al) may be rewritten as 

	

a1 - 0.12 - &r'lÔ -	 li -	 la	
(A5) a2 =

i + o.oll li-6 + 0.0135 + 0.0375 

or

	

a2 O.913(cLl - 0.12 - &L1 . -	 - Ltl) 

The correction due to the aerodynamic loading la on the boom 

was found to be so small that even at the highest dynamic pressure of 
the tests the measuring error due to this parameter would be less than 
0.010. 

The pitching-velocity correction term is 

-x e 

	

=	 V 

e	 V 

With Xv equal to 58 feet and V measured in feet per second, Ô 
in radians per second, and	 in degrees, the pitching-velocity cor-

rection term becomes

	

= -3323
	

(A6) 

The negative sign is due to the fact that positive pitching velocities 
deflect the vane tail downward relative to the boom (a negative indica-
tion of angle of attack). 

The boom inertia bending correction term 	 was calculated by 
1 

using measured influence coefficients and the known weight distribution 
of the boom and head as
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1	 (nboom - i) = -0.353 

The negative sign results from positive load factors decreasing the angle 
between the boom and the vane axis. 

With 

boom = rim + -(distance between vane axis and accelerometer) 

then

'lj =	 353(m - 1) - O.65O	 (A7) 

The substitution of equations (A6) and (AT) into equation (A5) with 
la = 0 results in the equation used to correct the flight measure-

ments of angle of attack: 

= O. 9i - 0.11 + 3O3	 + O.322(	 - 1) + O .593	 (A8) 

Corrections to Airplane Normal-Force Coefficients 

The airplane normal-force coefficient is defined as 

flcgW 

CNA = qS 

Since normal-load factors were measured with NACA accelerometers mounted 
at fuselage station 638 (3 1i-.2 percent of the wing M.A.C.), a correction 
is required to the measured load factor to determine the normal-force 
coefficient for particular center-of-gravity positions. Thus, equa-
tion (A9) becomes

(Alo) CNA_Th— gqs 

where d is the distance between the accelerometer and the center of 
gravity. 

With numerical values inserted, equation (AlO) becomes 

= - +	 I0.34-2 -	 9	 (All) CNA	
O.4-O2W/	 c.g. 

	

qS \	 ioo)

(A9) 
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During the maneuvers used for the analysis of the data of the present 
report, pitching accelerations as high as ±0.5 radians/sec2 were encoun-
tered. Since the airplane is out of trim whenever appreciable pitching 
accelerations exist, the angle of attack and the airplane normal-force 
coefficients are no longer linearly related. A correction can be.made 
to the values of CNA, deduced from the data by assuming that LCNö. 

(the vertical-reaction load coefficient due to pitch) is proportional to 
the pitching moment of inertia tail load as follows: 

dI 
L CN.. =	 -	 (Al2) 

de qS 

An estimated average value of 28,000 lb/radian/sec 2 based on an average 
pitching moment of inertia was used for dL i2 /dO. The value of airplane 

normal-force coefficient for trimmed flight corresponding to the cor-
rected angle of attack a2 becomes 

n W O.O2W(02 -
	

+ 19.61	 (Al)) 
CN_q + qS \ 
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TABLE I.- TEST AIRPlANE CHARACTERISTICS AND DIMENSIONS 

Total wing area, sq ft • • • • •	 ............. .	 1,i-28 
Wing span, ft . . .	 ..................... •	 116 
Wing aspect ratio . .	 ..................... 9.)+2 
Wing taper ratio	 ..........• • • • • ........ . O.!i-2 
Wing mean aerodynamic chord, ft ................	 l3

Wing sweepback (25-p ercent-chord line), deg .......... . 
Total horizontal-tail area, sq ft ................ 268 
Airfoil section ........................ BAC ]).i-5 
Airfoil thickness ratio (parallel to center line), percent . . . 	 12 
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TABLE II.- SUMMARY OF FLIGHT CONDITIONS 

May q5, Pressure Center-of-gravity 
location, F11g8t Run

lb/sq ft
a1titue,

lb percent M.A.C. 

2 27 0.636 ± 0.002 137 ± 2 37,200 112,600 21.1 
28 0.7)5 ± 0.001 1814 ± 1 34,900 112,300 21.3 
29 0.796 ± 0.004 216 * 2 314,800 1)2,200 21.5 

3 11 o.7so ± 0.001 196 ± 1 34,600 120,300 13.6 
12 0.728 ± 0.007 188 * 5 34,100 120,100 -'	 13.6 
13 0.689 * 0.006 167 * 3 34,400 119,900 13.5 
14 0.631 * 0.002 1140 * 1 36,600 119,000 13.4 

4 19 0.699 ± 0.002 264 * 3 25,000 108,900 21.0 
20 0.591 ± 0.001 190 t 1 25,000 108,700 20.9 
21 0.486 * 0.003 128 * 1 25,300 108,400 20.8 

6 11 0.789 ± 0.001 264 * 3 30,800 108,800 13.1 
12 0.790 * 0.001 268 * 1 30,500 108,700 13.1 
13 0.741 * 0.001 2144 * 1 29,800 108,1400. 13.1 
14 0.690 ± 0.001 215 ± 1 29,400 108,200 13.2 
15 0.6143 ± 0.003 187 ± 2 29,400 107,60) 13.0 

8 4 0.544 ± 0.008 163 ± 4 24,90) 324,800 22.6 
5 0.6148 ± 0.004 233 ± 3 24,800 124,500 22.8 
6 0.758 ± 0.002 3114 ± 4 25,100 124,000 23.2 

9 1 0.598 * 0.003 125 * 1 36,800 126,700 22.6 
2 0.647 ± 0.004 147 ± 2 34,900 126,200 22.5 
3 0.681 t 0.001 161 ± 1 35,200 126,100 22.7 
4 0.731 ± 0.003 185 ± 1 35,200 125,700 22.9 
5 0.779 ± 0.002 2114 ± 1 34,900 125,400 23.1 
6 0.795 ± 0.001 216 * 1 35,500 125,200 23.3 
7 0.810 * 0 225 ± 1 35,300 124,900 23.5 

10 3 0.598 t 0.003 159 t 2 29,800 327,200 22.6 
4 0.647 ± 0.001 185 ± 0 29,900 126,500 22.3 
5 0.681 ± 0.001 200 * 1 30,500 126,300 22.4 
6 0.726 ± 0.001 230 ± 1 30,200 126,100 22.5 
7 0.763 ± 0 2514 ± 0 30,200 125,1400	 . 23.0 
8 0.789 ± 0.001 260 ± 1 31,100 3.25,200 23.1 
9 0.8)2 ± 0.001 274 * 1 31,300 3,24,900 23.3' 

n U 0.1495 ± 0.003 138 t 1 24,1400 109,200 21.8 
12 0.5142 t 0.003 164 t 1 24,600 108,900 21.7 
13 0.597 ± 0.001 194 * 1 25,100 108,500 21.8 
14 0.636 * 0 222 * 0 25,000 108,500 21.8 

15 0.681 t 0 247 ± 0 25,700 108,400 21.9 
16 0.702 ± 0.001 266 ± 1 25,1400 107,800 21.7 
17 0.734 ± 0 291 ± 0 25,300 107,500 21.8 
24 0.1427 * 0.001 126 ± 1 19,700 103,700 22.2 

12 6 0.584 ± 0.001 127 ± 1 33,700 120,400	 ' 14.5 

7 0.642 * 0.001 1147 t 1 34,400 120,300 14.6 
8 0.679 ± 0.001 162 ± 0 34,900 119,900 14.6 

9 0.721 ± 0.001 178 * 1 35,300 119,600 14.6 
10 0.773 ± 0.001 202 ± 1 35,400 119,100 14.7 
U 0.790 ± 0 215 * 0 35,200 118,800 14.6 
12 0.812 ± 0 228 ± 0 35,200 118,700 14.4 
17 0.483 ± 0.001 130 * 1 24,600 116,600 13.8 
18 0.532 t 0 157 ± 0 24,700 116,500 13.7 

19 0.600 * 0.001 198 ± 1 24,900 116,400 13.7 
20 0.637 ± 0 223 * 0 25,000 116,300 13.8 
21 0.682 * 0.001 255 t 1 25,000 116,100 13.9 
22 0.694 ± 0.001 262 ± 0 25,200 115,800 14.1 

23 0.735 ± 0.001 298 ± 1 24,900 115,400 14.3 
24 0.6142 ± 0.002 279 ± 3 20,000 111,100 21.5 
25 0.595 ± 0.002 242 ± 1 19,800 111,100 21.5 
26 0.543 ± 0 202 ± 1 19,700 110,600 21.6 
27 0.482 ± 0.002 159 ± 1 19,700 110,300 21.9 
28 0.427 * 0.001 126 ± 1 19,600 110,200 21.6 

16 1 0.642 ± 0.001 282 t 1 19,900 117,100 14.6 
2 0.599 ± 0.002 246 ± 2 19,800 116,800 114.3 

3 0.542 * 0.002 200 ± 2 20,000 116,600 , 13.6 
4 0.482 ± 0.002 160 t 1 19,800 116,000 13.9 

5 0.428 ± 0.003 127 ± 2 19,500 115,500 13.7 
6 0.433 ± 0.002 , 131 ± 2 19,300 115,100 13.5 

17 5 0.808 ± 0.001 364 ± 1 24,600 116,400 14.2 
6 0.762 ± 0 326 ± 0 24,500 116,200 14.2 

7 0.725 ± 0 295 ± 0 24,500 115,600 14.0
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TABLE III.- VALuES OF LEFT-CURVE SLOPE AND ANGLE OF ZERO Lfl'T 


DFTERMILIED FROM ANALYSIS OF INDIVIDUAL RUNS 

Pressure 
altitude, Flight Run Mar 'lay' '°'

Number of 
points

Standard 
error,	 s, 

ft lb/s'l ft per deg deg used deg 

20,000 11 24 0.1427 126 0.0815 -3.17 23 ± 0.07 
12 28 .427 3.26 .0878 -2.78 32 
16 5 .428 3.27 .0848 -2.55 25 1.08 
16 6 .43 131 .08146 -2.53 37 1.07 
32 27 .482 159 .0884 -2.71 39 ±.12 
i6 14 .482 160 .0855 -2.54 33 

16 3 .542 200 .0845 -2.65 32 .O8 
12 26 .543 202 .0847 -2.79 37 ±.09 
12 25 .595 242 .0829 -2.82 36 1.09 
16 2 .599 246 .0843 -2.71 314 1.10 
12 24 .642 279 .0795 -3.01 35 1.11 
16 1 .642 282 .0824 -2.83 314 1.07 

25,000 12 17 0.483 130 0.0847 -2.96 23 ±0.11 
14 21 .1486 3.28 .0838 -3.35 20 ±.C8 

11 11 .49 138 .0854 _3.014 26 
32 18 .532 157 .0850 -2.88 214 ±.o8 
U 12 .5142 1614 .0857 -3.03 32 ±.09 
8 14 .544 163 .0839 -3.21 27 ±.05 
14 20 .591 190 .0894 -2.97 23 ±.09 

U 13 .597 1914 .0866 -2.98 32 ±.o6 

12 19 .600 198 .0815 -3.00 26 
11 14 .636 222 .0860 -3.03 28 ±.o6 
12 20 .637 223 .0835 -2.95 32 ±.11 

8 5 .648 23) .0815 -3.28 36 ±.09 
11 15 .681 247 .0882 -2.97 30 ±.07 
32 21 .682 255 .0845 -2.98 22 1.08 
32 22 .694 262 .0863 -2.83 24 1.08 

14 19 .699 264 .0881 -3.17 26 +.c6 

U 16 .702 266 .0877 -2.95 25 ±.o6 
17 7 .725 295 .0918 -2.69 20 1.07 
11 17 .734 291 .0903 -3.00 22 ±.07 
12 23 .735 298 .0837 -2.94 26 t.o8 

8 6 .758 314 .0907 -2.97 314 1.05 
17 6 .762 326 .0899 -2.72 26 ±.09 
17 5 .808 364 .0956 -2.68 27 1.09 

30,000 10 3 0.598 159 0.09014 -2.67 37 ±0.09 
6 15 .643 187 .0857 -2.93 35 1.04 

10 14 .6147 .185 .0887 -2.79 148 
10 5 .681 200 .0964 -2.44 29 ±.07 

6 14 .690 215 .0876 -2.87 21 ±.o4 
10 6 .726 230 .0921 -2.75 38 ±.oB 

6 13 .741 2144 .0869 -3.00 29 ±.05 
10 7 .763 254 .1001 -2.57 25 ±.04 
6 U .789 264 0954 -2.84 40 ±.o6 
6 12 .790 268 .1009 -2.61 21 ±.o6 

10 8 .789 260 .1001 -2.71 23 ±.06 
10 9 .812 274 .1033 -2.69 314 ±.07 

35,000 32 6 0.584 127 0.0849 -3.00 28 ±0.10 
9 1 .598 125 .0896 -2.71 30 1.3.2 
3 14 .631 1140 .0830 _3.145 28 
2 27 .636 137 .0932 -2.74 31 1.03 

12 7 .6142 147 .0883 -2.82 25 ±.10 
9 2 .647 147 .0935 -2.59 41 ±.12 

12 8 .679 162 .0887 -2.86 23 1.15 

9 3 .681 161 .09141 -2.67 37 ±.10 
3 13 .689 167 .0853 -3.51 28 ±.07 

12 9 .721 178 .0928 -2.87 24 ±.13 
3 12 .728 188 .0922 -3.22 36 ±.o4 
9 4 .731 185 .1006 -2.42 29 ±.08 
2 28 .735 1814 .1018 -2.59 29 1.014 
3 11 .750 196 .0953, -3.10 26 1.05 

12 10 .773 202 .0973 -2.86 19 ±.08 
9 5 .779' 2114 .1032 -2.48 44 ±.0 

12 11 .790 215 .1015 -2.72 22 1.11 
9 6 .795 216 .1056 -2.514 34 ±.12 
2 29 .796 216 .11314 -2.30 25 1.03 
9 7 .810 225 .1073 -2.64 3 1.10 

12 12 .812 228 .1055 -2.67 21 ±.09
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TABlE TV.- RIGID WING-BODY VAlUES OF L1?T-CURVE SlOPE 

Run Group Weighting
OR Group Flight Run Mach Mach factor,

eq. eq. number number 

11 24 0.427 0.429 21 0.0870 0.0931 
ID 28 .427 19 .0953 
16 5 .428 15 .0950 
16 6 .4.33 29 .0950 

2 22 27 0.482 0.486 17 0.0984 0.0946 
16 4. .482 10 .0978 
ID 17 .483 20 .0925 
4 21 .486 13 .0919 

11 11 .495 23 .0936 

3 12 18 0.532 0.541 16 0.0955 0.0960 
11 12 .542 28 .0960 
16 3 .542 9 .0996 
12 26 .543 16 .0969 
8 4 .544 16 .0936 

4 12 6 0.584 0.595 39 0.0933 0.0968 
4 20 .591 9 .1029 

2.2 25 .595 15 .0966 
11 13 .597 18 .0990 
10 3 .598 22 .1008 

9 1 .598 36 .0971 
16 2 .599 9 .1010 
12 19 .6(X) 25 .0930 

5 3 14 0.631 0.635 14 0.0935 0.0983 
2 27 .636 10 .1036 

II 14 .636 17 .1003 
12 20 .637 19 .0971 

6 ID 7 0.642 0.644 34 0.0990 0.0991 
2.2 24 .642 13 .0941 
16 1 .642 10 .1011 
6 15 .643 6 .1002 
9 2 .647 30 .1042 

10 4 .647 27 .1003 
8 5 .6118 31 .094.6 

7 2.2 8 0.679 0.681 37 0.0998 0.1034 
9 3 .681 35 .1051 

10 5 .68]. 8 .1117 
U 15 .681 16 .1050 
22 21 .682 9 .1012 

8 3 13 0.689 0.695 17 0.0982 0.1029 
6 14 .690 4. .1047 

12 22 .694 10 .1046 
4 19 .699 7 .1062 

11 16 .702 15 .1052 

9 ID 9 0.721 0.726 16 O.1OT2 0.1103 
17 7 .725 4 .1151 
10 6 .726 11 .1080 

3 12 .728 15 .1085 
9 4 .731 14. .u6o 

10 U 17 0.734 0.736 7 0.1106 0.1081 
22 23 .735 13 .1031 

2 28 .735 5 .1186 
6 13 .741 2 .1055 

11 3 11 0.750 0.758 4 0.1135 0.1150 
8 6 .758 11 .1126 

17 6 .762 10 . .1147 
10 7 .763 5 .2219 

32 ID 10 0.773 0.776 17 0.1140 0.1185 
_________ 9 5 .779 20 .1224 

13 6 11 0.789 0.791 3 0.1200 0.1246 
10 8 .789 4 .1213 

6 12 .790 2 .1280 
ID 11 .790 11 .1225 

9 6 15 .ID57 
2 29 .796 2 .1386 

17 5 0.808 0.810 5 0.1262 0.1285 
9 7 .810 11 .1290 

10 9 .812 5 .1280 
12 12 .812 6 .1297
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223L2 V. - ANGI-0E-Z2R0-LTh'2 DETERMINATION 

act aoj 

F11g1t Run N °' (eq.	 (26)), (eq.	 (29)), (weIghted mean), (eq.	 (30)), 
deg deg deg deg 

2 27 0.636 -2.74 -2.94 -3.16 -3.06 -2.91 
28 .735 -2.59 -2.83 -3.11 -2.85 

29 .796 -2.30 -2.60 -2.92 -2.81 

3 U 0.750 -3.10 -3.08 -3.40 -3.47 -2.81 
12 .728 -3.22 -3.16 -3.149 -2.80 

13 .689 -3.51 -3.26 -5.54 -2.85 
14 .631 -3.145 -3.17 -3.43 -2.87 

14 19 0.699 -3.17 -3.21 -3.51 -3.49 -2.83 
20 .591 -2.97 -3.19 -5.45 -2.91 
21 .1486 -3.35 -3.31 -3.52 -2.92 

6 U 0.789 -2.84 -2.81 -3.14 -3.11 -2.80 
12 .790 -2.61 -2.73 -3.07 -2.79 
13 .741 -3.00 -2.80 -3.07 -2.86 
14 .690 -2.87 -2.89 -3.14 -2.88 
15 .6143 -2.93 -2.92 -3.15 -2.90 

8 14 0.544 -3.21 -3.14 -3.38 -3.27 -2.89 
.6148 -3.28 -3.04 -3.26 -2.91 

6 .758 -2.97 -2.91 -3.22 -2.82 

9 1 0.598 -2.71 -2.67 -2.96 -2.98 -2.84 
2 .6147 -2.59 -2.79 -3.01 -2.91 

3 .681 -2.67 -2.78 -.o6 -2.85 
14 .731 -2.43 -2.61 -2.89 -2.85 

5 .779 -2.48 -2.54 -2.85 -2.82 
6 .795 -2.54 -2.60 -2.95 -2.78 

7 .810 -2.64 -2.69 -3.09 -2.73 

10 3 0.598 -2.67 -2.83 -3.10 -5.05 -2.86 

4 .647 -2.79 -2.79 -3.04 -2.88 

5 .681 -2.44 -2.75 -3.01 -2.87 
6 .726 -2.75 -2.74 -3.03 -2.84 

7 .763 -2.57 -2.68 -2.97 -2.84 

8 .789 -2.71 -2.72 -3.07 -2.78 

9 .812 -2.69 -2.73 -3.32 -2.74 

11 U 0.495 -.o4 -.o4 -3.26 -3.25 -2.91 
12 .542 -3.03 -3.07 -3.27 -2.93 

13 .597 -2.98 -3.03 -3.24 -2.92 
14 .636 -5.05 -5.05 -3.28 -2.90 
15 .681 -2.97 -.o4 -3.28 -2.89 

16 .702 -2.99 -2.95 -3.21 -2.87 

17 .734 -3.00 -3.00 -3.29 -2.84 

24 .427 -3.17 -2.80 -3.10 -2.83 

12 6 0.584 -3.00 -2.72 -3.04 -3.12 -2.81 

7 .642 -2.82 -2.75 -3.05 -2.83 
8 .679 -2.86 -2.73 -3.06 -2.80 

9 .721 -2.87 -2.82 -3.13 -2.82 

10 .775 -2.86 -2.77 -3.15 -2.75 
11 .790 -2.72 -2.73 -3.10 -2.76 

12 0.812 -2.67 -2.72 -5.15 -2.70 

17 .485 -2.96 -2.93 -3.28 -2.78 

18 .532 -2.88 -2.92 -3.19 -2.86 

19 .600 -3.00 -2.77 -.o6 -2.84 

20 .637 -2.95 -2.86 -3.15 -2.84 

21 .682 -2.98 -2.94 -3.21 -2.86 

22 0.6914 -2.83 -2.84 -3.12 -2.85 

23 .735 -2.914 -2.75 -3.04 -2.84 

24 .6142 -3.01 -2.84 -3.09 -2.88 

25 .595 -2.82 -2.79 -3.01 -2.91 

26 -2.79 -2.85 -5.07 -2.91 

27 .1482 -2.71 -2.97 -3.20 -2.90 
28 .427 -2.78 -3.06 -5.32 -2.87 

16 1 0.642 -2.83 -2.85 -3.08 -3.02 -2.90 

2 .599 -2.71 -2.82 -3.08 -2.87 

3 .5142 -2.65 -2.83 -3.03 -2.93 

14 .482 -2.54 -2.81 -2.97 -2.97 

5 .1428 -2.55 -2.85 -2.98 -2.98 

6 .1453 -2.53 -2.79 -2.94 -2.98 

17 5 0.808 -2.68 -2.67 -3.06 -3.05 -2.74 

6 .762 -2.72 -2.68 -3.01 -2.80 

7 .725 -2.69 -2.80 -3.09 -2.814
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Figure ).- Time histories of measured and calculated quantities for 

flight 9, run 1. 
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Figure 5.- Variation of corrected airplane normal-force coefficient with 

angle of attack a2 and angle of attack corrected for lag a for 

data of figure 3.
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Figure 6.- Variation of corrected airplane normal-force coefficient with 

angle of attack a2 and angle of attack corrected for lag a3 for 
data of figure Ii..
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Figure 9.- Lift-curve-slope ratio as a function of flexibility parameter. 
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Figure 10.- Inertia flexibility parameter as a function of flexibility 

parameter. 
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Figure 11.- Flexible lift-curve slope as a function of 	 and qm. 
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Figure 12.- Lift-curve-slope ratio f(qmR) = mR/mf. as a function of 


flexibility parameter. 
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Figure 115.- Flight values of tail-off lift-curve slopes converted to 

rigid conditions (qmR = o). 
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