https://ntrs.nasa.gov/search.jsp?R=19930089505 2020-06-17T05:46:11+00:00Z

RM L56106

RESEARCH MEMORANDUM

NACA

NACA RM L56106

PRESSURE DISTRIBUTION INDUCED ON A FLAT PLATE BY A

SUPERSONIC AND SONIC JET EXHAUST AT A

FREE-STREAM MACH NUMBER OF 1.80

By Abraham Leiss and Walter E. Bressette

Langley Aeronautical Laboratory Langley Field, Va.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON January 10, 1957 Declassified February 8, 1960 D

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PRESSURE DISTRIBUTION INDUCED ON A FLAT PLATE BY A

SUPERSONIC AND SONIC JET EXHAUST AT A

FREE-STREAM MACH NUMBER OF 1.80

By Abraham Leiss and Walter E. Bressette

SUMMARY

As a continuation of previous research at Mach numbers of 2.02 and 1.39, an experimental investigation was made of the pressures induced on a flat plate by a propulsive jet exhausting from sonic and supersonic nozzles at a free-stream Mach number of 1.80. Measurements of the pressure distribution on a flat-plate wing were made at zero angle of attack for four different locations of the jet exhaust nozzle beneath the wing. Both a choked convergent nozzle and a convergent-divergent nozzle on the nacelle were used. The nozzles were operated at nacelle-exit total-pressure ratios from 2 to 16 and the Reynolds number per foot was approximately 13×10^6 .

Two distinct shock waves impinged on the wing surface and greatly altered the pressure distribution at all nozzle positions. Positive incremental normal force resulted on the wing at all positions. Comparisons are presented for two free-stream Mach numbers.

INTRODUCTION

A series of investigations to determine the effect of a propulsive jet, issuing from the rear of a nacelle into free-stream supersonic flow, on a zero-angle-of-attack flat-plate wing surface has been completed. References 1 and 2 contain the results of the tests at free-stream Mach numbers of 2.02 and 1.39. The data presented herein were obtained for a free-stream Mach number of 1.80 using a cold helium propulsive jet. The results presented in references 1 and 2 show that a propulsive jet issuing from the rear of a nacelle into free-stream supersonic flow produced strong disturbances which were responsible for the formation of shock waves in the free stream, downstream of the jet exit. Induced lift was produced when these shock waves in the external flow impinged upon an adjacent surface. Mach number comparisons as well as sonic and supersonic nacelle-exit comparisons are presented in this paper.

The data presented were obtained over a range of nacelle-exit totalpressure ratios from 2 to 16 at a free-stream Mach number of 1.80. The

free-stream Reynolds number per foot was approximately 13×10^6 . The investigation was conducted in the preflight jet of the Langley Pilotless Aircraft Research Station at Wallops Island, Va.

SYMBOLS

incremental normal-force coefficient, $\frac{N_n - N_f}{q_n A_e}$

A area, sq in.

ACN

Cp

 $\triangle C_p = C_{p,n} - C_{p,f}$

 C_{T} gross-thrust coefficient, $T/q_{m}A_{e}$

pressure coefficient, $\frac{p_w - p_{\infty}}{q_{\infty}}$

D diameter, in.

M Mach number

N normal force, 1b

p static pressure, lb/sq in.

 p_e/p_{∞} nacelle-exit static-pressure ratio

q dynamic pressure $\gamma p M^2/2$, lb/sq in. T gross thrust, $\gamma p_e M_e^2 A_e + p_e A_e - p_{\infty} A_e$ x chordwise distance from nacelle exit, in.

NACA RM 156106

у	spanwise distance from nacelle center line, in.
θ	exit shock angle, deg
α	jet shock angle, deg
γ	specific-heat ratio; 1.40 for air, 1.67 for helium

Subscripts:

Ъ

C

e

f

n

T

W

00

nacelle base
combustion chamber
nacelle exit
propulsive jet off
propulsive jet on
nozzle throat (for sonic
wing
free stream

APPARATUS

T = e

The tests were made in the preflight jet facility (described in ref. 3) of the Langley Pilotless Aircraft Research Station at Wallops Island, Va. A Mach number 1.80, 27- by 27-inch nozzle was used for these tests. A photograph of the nacelle mounted in the test position beneath the flat-surface wing at the exit of the 27- by 27-inch nozzle is shown as figure 1.

A sketch of the nacelle with its principal dimensions is shown in figure 2. The exit areas A_e of the supersonic and sonic nacelles were 0.567 and 0.407 square inch, respectively. The body of the nacelle had a maximum diameter of 1.12 inches with an overall length of 11.65 inches. A convergent-divergent nozzle providing a supersonic exit was constructed for the nacelle. In addition, a convergent nozzle providing a sonic nacelle exit was installed for one test position. The nacelle was mounted on a hollow support strut which served as a housing for the pressure tubes and helium feed line. The leading edge of the strut was swept back from the nacelle at a 25° angle, while the trailing edge was swept back at a 40° angle. The strut had a hexagonal cross section as shown in figure 2. Figure 3 shows the location of the nacelle with respect to the wing and preflight-jet-nozzle exit. The wing as shown in figures 1 and 3 is described in reference 2.

INSTRUMENTATION

The internal static pressure and the manifolded total pressure of the nacelle were measured for all tests. The location of these orifices is shown in figure 2. The total drag (nacelle jet off) and the net thrust (nacelle jet on) were measured with a ± 150 -pound maximum thrust drag balance at position I_b (fig. 3).

The position of 47 static-pressure orifices (0.06-inch diameter) on the wing are shown in figure 4. The free-stream total pressure and the stream static pressure (1/2 inch up stream from preflight nozzle exit) were the pressures measured on the preflight jet 27- by 27-inch nozzle.

All pressures were recorded by electrical pressure recorders of the strain-gage type. A 10-cps timer correlated all time histories on recording paper. Shadowgraphs, which were photographed at an exposure of approximately 0.003 second, were obtained by using a carbon-arc light source and an opaque-glass screen.

TESTS AND METHODS

The nacelle was mounted within the Mach number 1.80 rhombus of the preflight jet. The wing was stationary and the nacelle was moved horizontally and vertically between test runs to the four positions shown in figure 3; tests were made at each position. At position I_b , a sonic nozzle was substituted for the supersonic nacelle-exit nozzle as illustrated in figure 2. At all positions, the nacelle was at an angle of attack and sideslip of 0° with respect to both the wing surface and the center line of the test nozzle. The tests were made using a helium propulsive jet, which as shown in reference 4 will yield jet-effect data comparable to a hot jet engine over the range of nacelle-exit static-pressure ratios tested. Although helium has a γ of 1.667 and a typical turbojet with afterburner has a γ of 1.27, the effect of this difference in γ is minor on the wing pressure coefficients at a nacelle-exit static-pressure ratio of 8 or less as shown in reference 4.

The tests were made by first starting the Mach number 1.80 preflight jet and recording jet-off data, then starting the flow of helium and

NACA RM 156106

recording jet-on data. The pressure ratio at the nacelle exit was varied automatically as the helium supply decreased. At position Ib with free-stream jet on, a high-frequency strain-gage balance was used to measure both the total drag (jet off) and the net thrust (jet on). The gross thrust then was obtained by an algebraic summation of the jet-on and jetoff data. The nacelle-exit static-pressure and the nacelle-exit totalpressure were then computed from the gross thrust. At all test positions H_c and p_c were measured inside the nacelle as illustrated in figure 2. From the measured values of H_c and p_c, the Mach number in the nacelle chamber was calculated to be approximately 0.30. By using this value of $M_{\rm C}$ and assuming one q decrease in pressure between $H_{\rm C}$ and $H_{\rm e}$, H_{ρ} was calculated from the measured values of H_{c} . This calculated value of He obtained from the measured values of Hc is presented in figure 5. Also included in figure 5 is the value of H_e/p_{∞} calculated from the thrust drag measurements at position Ib (by the method presented in ref. 2) plotted against the measured values of H_c/p_m . Figure 5 indicates that the assumption of one q decrease in pressure from H_c to H_e is a valid one and therefore all values of H_e/p_m as used herein were obtained from the measured $H_{\rm c}/p_{\infty}$ values assuming a one q difference. The relationship between nacelle-exit static-pressure ratio and nacelle-exit total-pressure ratio is presented in figure 6. Figure 6 also indicates the range of pressure ratios covered in these tests.

ACCURACY

By accounting for the instrument error of 1 percent of full-scale range, the probable error is believed to be within the following limits:

м			•	•	•	•	•	•	•		•	•	•	•	•		•	•						•	•	•					±0.02
C _{p,f}	•	•	•	•	•	•	•	•	•	•	•	·	·	·	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	±0.02
C _{p,n}														•																	±0.02
H_e/p_{∞}	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•		•			•	•	±0.20
p_e/p_{∞}	•	•		•	•	•		•	•			•		•.		•	•			•				•	•						±0.03

RESULTS AND DISCUSSION

Jet-Off Pressure Coefficients

Jet-off pressures were measured at 47 orifices on the wing at each of the four nacelle positions. The jet-off pressure coefficients $C_{p,f}$

were computed and given in table I for all test positions. Figure 7 shows the variation of jet-off pressure coefficients with orifice location for all test positions. Note that the curves are similar to those that are presented in references 1 and 2 with position Ib lagging behind Ia and position Ic lagging behind Ia and Ib. The value of Cp,f as plotted includes all the interference effects on the wing. After the Cp,f rise at x/DT of 10.76, Cp,f always has a nearly common value due to the intersection on the wing of the nacelle trailingwake shock wave (described in ref. 5). However, when the trailing-wake shock intersects the wing downstream of x/DT of 10.76, the Cp,f value at x/D_{T} of 10.76 is negative as shown in figure 7(c) at position I_c and, in all positions of figure 7(d). This negative value, which is caused by the expansion over the nacelle boattail, is consistent with the negative values of Cp,f preceding the intersection of the trailing-wake shock wave for the other profiles presented and is unaffected when the intersection of the trailing-wake shock wave is downstream of the wing trailing edge. The nacelle was moved 3 inches toward the trailing edge of the wing to position II_{h} . The jet-off pressure coefficients $C_{p,f}$ for test position II_b are included in figure 7. At position II_b , the value of $C_{p,f}$ at orifice x/D_T of 6.59, along the nacelle center line, was about the same as Cp,f at position Ib and not appreciably reduced due to the location of the wing trailing edge as it was in reference 2 at $M_{\infty} = 1.39$ for two identical vertical positions. This indicates that the base-pressure effects on the pressure data along the nacelle center line, owing to the location of the wing trailing edge, were not as severe for the Mach number 1.80 tests as they were for the Mach number 1.39 tests of reference 2. Figure 8 illustrates the shock waves originating from the nacelle wake for the four test positions. These were photographed with a shadowgraph screen.

Jet-On Pressure Coefficients

<u>Shock waves</u>.- Presented in figure 9 are the shadowgraph pictures for various nacelle-exit total-pressure ratios of the flow field about the nacelle exit for the supersonic propulsive jet at the four test positions. Visible downstream of the nacelle exit, in most of the shadowgraph pictures, are two shock waves that impinge upon the wing surface and then are reflected. The first of these shock waves is known as the exit shock, and the second is called the jet shock. In some publications, the exit shock wave and jet shock wave are referred to as the primary and secondary shock waves, respectively. The effect of these exit and jet shock waves is amply described in references 4 and 6.

NACA RM 156106

Figure 10 illustrates the variation of the exit-shock-wave angles (angle between the point of intersection on the wing of the exit shock wave and the nacelle exit) and jet-shock-wave angle with nacelle-exit total-pressure ratio at test positions I_a , I_b , and I_c for the supersonic nacelle exit as measured from the shadowgraph pictures. The jet-shock-wave angles at position I_a are not shown as the shadowgraph pictures were not clear enough to detect them. The nacelle distance from the wing was very small at this position.

It can be shown that an imaginary apex for the jet shock wave, in these tests, originates at the nacelle center line the same distance from the nacelle exit for both positions I_b and I_c . This fact is substantiated by the method described in appendix A. Figure 11 presents this computed chordwise distance of the apex of the jet shock as it varies with nacelle-exit total-pressure ratio. This curve shows that varying the nacelle location from position I_b to I_c had no effect on the origin of the jet-shock-wave angle for these free-stream Mach number 1.80 tests. Therefore, by a simple conical projection, the apex locations can be used in conjunction with the pressure data presented to determine the intersection of the jet shock wave on surfaces other than a flat plate.

Figure 12 presents the data of the sonic nacelle-exit test at position I_b and shows the corresponding data of the supersonic nacelle exit for the exit-shock-wave and jet-shock-wave angles and their point of intersection and origin with respect to nacelle-exit total-pressure ratio. The exit-shock-wave angles (fig. 12(a)) decreased with an increase in nacelle-exit Mach number because p_{e}/p_{∞} is less for the supersonic exit than it was for the sonic exit at a given value of H_e/p_{m} . As shown in references 4 and 6 the exit-shock-wave angle is primarily a function of P_e/P_{∞} , nozzle geometry, and free-stream Mach number. These angles were obtained by direct measurement of the shadowgraph pictures. The jetshock-wave angles and jet-shock-wave intersection points on the wing were also obtained from the shadowgraph pictures. Note how these are almost identical (within the accuracy of the data) for both the sonic and supersonic nacelle exits. The location of the apex of the sonic-jet shock wave was computed (as described in appendix A) for the supersonic-jet shock wave. The apex of the sonic- and supersonic-jet shock waves is almost identically located as seen in figure 12(c). These results show that the location of the jet-shock-wave apex is only a function of H_e/p_m .

Figure 13 compares the exit and jet-shock-wave angles for the sonic exit at free-stream Mach numbers of 1.39, 1.80, and 2.00 as a function

of nacelle-exit static-pressure ratio. These curves have an increasing trend with increasing values of p_e/p_∞ for all Mach numbers, and they increase in angle with a decrease in free-stream Mach number at a common value of p_e/p_∞ . The jet-shock-wave angle is only a function of the free-stream Mach number.

<u>Nacelle position</u>.- In figure 14, the chordwise variation of jet-on pressure coefficients for all test positions is presented at four spanwise positions as a function of distance from the nacelle exit x/D_T at a nacelle-exit total-pressure ratio of 7 for all pressure orifices. Tabulated in table II are the experimental jet-on pressure coefficients for individual orifice locations at all test positions for integer values of nacelle-exit total-pressure ratios. As shown in reference 2 for jet-on data, there is a reduction in the maximum positive pressure and a rearward movement of the complete pressure profile as the nacelle is lowered in position as well as a general reduction in pressure at each position, increasing the vertical distance between the nacelle exit and the wing moved the point of intersection of the shock wave toward the trailing edge of the wing.

Figure 15 presents the trend of jet-on pressure coefficients as a variable of total-pressure ratio. It can be concluded, by examining these curves (fig. 15(c), in particular), that the higher the total-pressure ratio, the nearer the intersection of the exit shock wave on the wing is to the exit of the nacelle. Note the direct similarity between position I_b and II_b . Since position II_b was 3 inches closer to the wing trailing edge than position I_b , similar data for these two positions indicate no wing trailing-edge effects as was found in reference 2 for $M_{\infty} = 1.39$.

<u>Nacelle-exit Mach number</u>.- Figure 16 presents the chordwise variation of jet-on pressure coefficients at test position I_b for both sonic and supersonic nacelle exits at a nacelle-exit total-pressure ratio of 7. Very little difference in the sonic and supersonic $C_{p,n}$ profiles are noted for the same nacelle-exit total-pressure ratio. This similarity can be expected because as shown in figure 12(d) the jet shock wave intersects the wing at approximately the same value of x/D_T for both the sonic and supersonic exits. However, as shown in figure 12(a), the exit-shock-wave angle is greater for the sonic exit than it is for the supersonic exit. Therefore it can be expected that a slight dissimilarity exists downstream of the intersection of the exit shock wave as shown in figure 16 and also as presented in reference 2.

NACA RM L56106

For identical nacelle-exit static-pressure ratios, the C_{D.n} curves are dissimilar downstream of the intersection of the exit shock wave, as illustrated in figure 17. Figure 17(a) presents the chordwise variation of Cp,n along the wing center line at test position Ib for both sonic and supersonic nacelle exits, at a nacelle-exit static-pressure ratio of 1.96. As can be seen in the pictures presented in figure 17, the jet shock wave from the supersonic exit intersects the wing further downstream than the jet shock wave from the sonic exit while the exit shock wave appears to be similar. Reference 4 shows a theoretical increase in the size of a jet boundary with an increase in nozzle divergence angle at the same values of nacelle-exit static-pressure ratio. Therefore, the supersonic nozzle exit would cause a larger value of θ than would the sonic exit (illustrated in fig. 2) at the same values of nacelle-exit static pressure. Since D_e/D_b is greater for the supersonic exit nacelle than the sonic exit nacelle, the base annulus area might cause a larger θ for the supersonic nacelle exit. This larger θ for the supersonic nacelle exit is indicated in figure 17(a) by a greater positive pressure rise due to the exit shock wave for the supersonic exit. Figure 17(b) makes the same type of comparison as figure 17(a), except at a nacelleexit static-pressure ratio of 0.98.

Incremental Pressure Coefficients

<u>Nacelle position</u>.- Since all the interference effects of each of the test configurations are included in both jet-off $(C_{p,f})$ and jet-on $(C_{p,n})$ pressure coefficients, incremental pressure coefficients ΔC_p have been compiled and are presented in figures 18 through 20. The values of the incremental pressure coefficients were used to indicate the magnitude of the jet effects as obtained for these tests. In table III, the incremental pressure coefficients are presented for all test positions for the complete range of total-pressure ratios tested.

Figure 18 presents the chordwise variation of incremental pressure coefficients at two spanwise stations for positions I_a , I_b , and I_c at a total-pressure ratio of 7. The result of combining jet-on and jet-off wing-profile pressure coefficients as shown in figure 18 indicates positive incremental pressures immediately downstream of the exit shock wave. This positive ΔC_p decreases to negative values then approaches a common negative value for all test positions. Figure 19 presents the chordwise variation of incremental pressure coefficients for test positions I_b and II_b at a nacelle-exit total-pressure ratio of 7 along the nacelle center line. These curves are identical even though the $C_{p,f}$ and $C_{p,n}$ curves were not correspondingly equal for test

positions I_b and II_b . This is significant in that it substantiates an earlier statement concerning the elimination of the interference effects accumulated in the jet-on and jet-off tests.

<u>Nacelle-exit Mach number</u>.- Shown in figure 20 are the incremental pressure ratios for both sonic and supersonic nacelle exits. Comparisons are illustrated showing H_e/p_{∞} as a constant (12) for both exits and also p_e/p_{∞} as a constant (1.96) for both exits. For the same nacelle-exit static-pressure ratio of 1.96, both the exit- and jet-shock-wave intersection points are at different values of x/D_T as indicated by the positive incremental-pressure rises. However, for the same nacelle-exit total-pressure ratio of 12, the first positive pressure rise from the exit shock intersection is still at a different value of x/D_T and the second incremental pressure rise from the jet shock waves occurs at the same value of x/D_T .

<u>Normal force</u>.- Since the wing trailing-edge effect and other interferences are all eliminated when ΔC_p profiles are computed, ΔC_N can be computed for any length flat wing less than $x/D_T = 11.4$. Presented in figure 21 are the ΔC_p profiles across the flat wing at a nacelle-exit total-pressure ratio of 15. The cross-sectional area was integrated for this nacelle-exit total-pressure ratio as well as the complete range of total-pressure ratios tested and cross plotted. Typical curves, illustrating this method, are presented in figure 22 for H_e/p_{∞} of 8 and 15. Figure 22 and the corresponding curves for other nacelle-exit total-pressure ratios were then integrated and ΔC_N was determined.

The incremental normal-force coefficients ΔC_N based on A_T with respect to H_e/p_{∞} for test positions I_a , I_b , and I_c for both sonic and supersonic nacelle exits are shown in figure 23. At all nacelle test positions, positive incremental lift was obtained, and ΔC_N resulted with a positive rise as H_e/p_{∞} increased. Note that at lower nacelleexit total-pressure ratios, the ΔC_N curve tends to level off and remain constant. Also, the farther away the nacelle position is to the wing, the longer this constant level persists. This indicates that the value of ΔC_N at each test position remains constant to a higher value of H_e/p_{∞} as the nacelle is moved away from the wing surface.

Free-stream Mach number. - Combining the data of reference 2 with these test data results in figure 24 which compares the incremental pressure coefficients at two free-stream Mach numbers. Shown in this figure is the chordwise variation of incremental pressure coefficients

NACA RM 156106

at test position I_b for both sonic and supersonic nacelle exits at free-stream Mach numbers of 1.39 and 1.80 for $\rm H_e/p_{\infty}$ = 7. Note that the exit shock wave moves downstream with an increase in free-stream Mach number (also indicated in fig. 13). The ΔC_p maximum due to the exit shock wave decreases in value with an increase in free-stream Mach number. Note also that the values of ΔC_p downstream of $x/D_T > 6$ are about the same for both free-stream Mach numbers.

Presented in figure 25 are the variations of incremental pressure coefficients with nacelle-exit total-pressure ratio at free-stream Mach numbers of 1.39 and 1.80 for three different pressure-orifice locations at test position I_b for both supersonic and sonic nacelle exits. Figures 25(a) through 25(d) indicated the pressure disturbance due to the exit shock wave. The jet-shock-wave effect is noticed in figures 25(e) and 25(f). Note the simular trend for the sonic and supersonic nacelle-exit data for the same pressure orifice and that the supersonic data lags behind the sonic data for each free-stream Mach number at the same pressure orifice. The exit-shock-wave angle effect for the M = 1.80 tests can be seen in figures 25(c) and 25(d), and the exit-shock-wave-angle effect for the $M_{\infty} = 1.39$ tests are indicated in figures 25(a) and 25(b). This was expected since the larger shock-wave angle of the $M_{\infty} = 1.39$ data produced the pressure rise on the closer nacelle orifice (x/D_T = 2.43, y/D_T = 0).

<u>Thrust coefficient</u>.- Figure 26 presents the gross-thrust coefficient C_T , based on A_e , as it varies with H_e/p_{∞} for the sonic and supersonic nacelle exits. Figure 27 presents the variation of $\Delta C_N/C_T$ with respect to H_e/p_{∞} for both sonic and supersonic nacelle exits at test positions I_a , I_b , and I_c . These values were obtained by dividing the data of figure 23 by the value of C_T in figure 26. The ΔC_N increases for both sonic and supersonic nacelle exits at a much slower rate than C_T at the lower values of H_e/p_{∞} and at approximately a constant rate for $H_e/p_{\infty} > 6$. Position I_a (only 1.74 D_T from the wing surface) also follows this trend but not as severely at the lower nacelle-exit total-pressure ratios.

Figure 28 presents the variation of incremental normal force to thrust ratio with nacelle-exit total-pressure ratios at position I_b for both sonic and supersonic nacelle exits at free-stream Mach numbers of 1.39 and 1.80. The change in free-stream Mach number from 1.80 to 1.39 seems to have little or no effect on $\Delta C_N/C_T$.

CONCLUSIONS

Experimental studies have been made at a free-stream Mach number of 1.80 of a small-scale propulsive jet exhausting from sonic and supersonic nozzles parallel to a flat surface wing. The scope and results of these tests are summarized as follows.

1. Shock waves, formed in the external flow because of the presence of the propulsive jet, impinged on the flat surface and greatly altered the pressure distribution.

2. The jet-shock-wave angle is only a function of free-stream Mach number and its theoretical apex originates at the same distance from the nozzle exit for the same nacelle-exit total-pressure ratio at all test positions.

3. Both the jet-shock-wave and exit-shock-wave angles decrease with an increase in free-stream Mach number at the same values of nacelleexit total-pressure ratios.

4. Positive incremental normal force on the wing was obtained at all test positions.

5. The incremental normal force increased with increased nacelleexit total pressure.

Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., August 24, 1956.

APPENDIX A

THE METHOD USED TO CALCULATE THE DISTANCE FROM THE NACELLE EXIT TO THE APEX OF THE JET SHOCK WAVE ON THE NACELLE CENTER LINE TO PROVE THAT THIS DISTANCE IS A CONSTANT

FOR ALL NACELLE TEST POSITIONS

A geometric layout to the location of the jet shock wave is shown in figure 29. The algebraic solution was determined as follows:

$$\frac{Y_{b}}{X_{b}} = \tan \alpha = \frac{Y_{b} - y_{b}}{x_{b}}$$

$$x_{b} = \frac{Y_{b} - y_{b}}{\tan \alpha}$$

$$\frac{Y_{c}}{X_{c}} = \tan \alpha = \frac{Y_{c} - y_{c}}{x_{c}}$$

$$x_{c} = \frac{Y_{c} - y_{c}}{\tan \alpha}$$
(1)
(2)

$$x_{b} = \frac{x_{b} \tan \alpha - y_{b}}{\tan \alpha} = X_{b} - \frac{y_{b}}{\tan \alpha}$$

$$x_c = X_c - \frac{s_c}{\tan \alpha}$$

As an example, prove that $x_b = x_c$ at $H_e/p_{\infty} = 8$. Then from figures 3, 10, and 12(d), respectively, the following values are obtained:

 $y_b = 3.48D_T$ $y_c = 4.98D_T$ $\alpha_b = \alpha_c = 35.5^{\circ}$ $X_b = 5.84D_T$ $X_c = 7.94D_T$ Therefore

$$x_{b} = 5.84 D_{T} - \frac{3.48 D_{T}}{0.713} = 0.96 D_{T}$$

$$x_c = 7.94 D_T - \frac{4.98 D_T}{0.713} = 0.96 D_T$$

Thus

$$x_b = x_c$$

For other nacelle-exit total-pressure ratios, the following values of X_b , X_c , x_b , and x_c may be obtained:

H_{e}/P_{∞}	Х _р	Х _с	х _р	xc
7	5.50	7.60	0.62	0.62
9	6.20	8.30	1.32	1.32
11	6.90	9.00	2.02	2.02
13	7.40	9.50	2.52	2.52
15	7.90	10.00	3.02	3.02

These results are plotted in figure 11.

NACA RM 156106

REFERENCES

- 1. Bressette, Walter E.: Investigation of the Jet Effects on a Flat Surface Downstream of the Exit of a Simulated Turbojet Nacelle at a Free-Stream Mach Number of 2.02. NACA RM L54E05a, 1954.
- 2. Bressette, Walter E., and Leiss, Abraham: Investigation of Jet Effects on a Flat Surface Downstream of the Exit of a Simulated Turbojet Nacelle at a Free-Stream Mach Number of 1.39. NACA RM L55L13, 1956.
- 3. Faget, Maxime A., Watson, Raymond S., and Bartlett, Walter A., Jr.: Free-Jet Tests of a 6.5-Inch-Diameter Ram-Jet Engine at Mach Numbers of 1.81 and 2.00. NACA RM L50L06, 1951.
- Bressette, Walter E.: Some Experiments Relating to the Problem of Simulation of Hot Jet Engines in Studies of Jet Effects on Adjacent Surfaces at a Free-Stream Mach Number of 1.80. NACA RM L56E07, 1956.
- 5. Cortright, Edgar M., Jr., and Kochendorfer, Fred D.: Jet Effects on Flow Over Afterbodies in Supersonic Stream. NACA RM E53H25, 1953.
- 6. Love, Eugene S., and Grigsby, Carl E.: Some Studies of Axisymmetric Free Jets Exhausting From Sonic and Supersonic Nozzles Into Still Air and Into Supersonic Streams. NACA RM 154131, 1955.

TABLE I.- VALUES OF JET-OFF PRESSURE COEFFICIENTS FOR

ALL WING ORIFICE POSITIONS

Orif ordin	ice ates	C _{p,f} a	t test posit	ions -	Orif ordin	ice ates	C _{p,f} at test position
x/D_T	y/D _T	Ia	Ib	Ic	x/D_T	y/D _T	IIb
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35 69	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	-0.006 .001 .014 .010 .018 .023 .039 .039 .039 .039 .117 087 095 030	0.002 .019 .027 .028 .035 095 065 103 087 047 016 0	0.005 .027 .023 075 060 092 069 025 012 0 .009 .009	6.59 5.55 4.51 3.47 2.43 1.39 .35 69 -1.73 -2.77 -3.82 -4.86	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	0.019 079 056 101 079 055 037 003 .008 .065 .035 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35 69	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	002 .018 .020 .019 .010 .018 .031 119 119 119 097 097 030	.005 .023 .034 .037 040 109 081 117 068 012 0	.009 .032 068 064 067 104 062 027 012 .011 .010 .010	6.59 5.55 4.51 3.47 2.43 1.39 .35 69 -1.73 -2.77 -3.82 -4.86	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	055 077 063 105 053 053 058 037 0 .017 .042 0 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35	4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17	.008 .024 .020 031 089 099 097 052 020 020 020	.018 .031 078 064 115 094 057 034 010 007 007	042 060 061 070 054 027 007 0 0	6.59 5.55 4.51 3.47 2.43 1.39 .35 69 -1.73 -2.77 -3.82	4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17	079 132 048 031 032 026 .005 .026 0 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	6.94 6.94 6.94 6.94 6.94 6.94 6.94 6.94	078 075 055 032 047 050 045 030	085 071 033 034 036 035 023 010	084 047 022 019 016 024 020 0	6.59 5.55 4.51 3.47 2.43 1.39 .35 69	6.94 6.94 6.94 6.94 6.94 6.94 6.94 6.94	048 023 016 .026 .008 001 0 0
10.76 9.72 8.68 7.63	11.11 11.11 11.11 11.11	057 044 035 020	027 010 006 005	036 021 027 021	6.59 5.55 4.51 3.47	11.11 11.11 11.11 11.11	.008 .004 030 0

.

.

.

.

POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 16

(a) Test position $I_{\rm B}$ (supersonic exit)

Orif ordin	ice ates				I	Pressure co	efficients	for nacel	le-exit to	tal-pressu	re ratio	H_e/p_{∞} of	-			-
x/D _T	y/D _T	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43		-0.024 0 .001 004 001 .010 .004 .022 .032	-0.025 .001 .001 004 0. 003 .011 .032 .035	-0.025 0 003 .001 002 .008 .022 .054	-0.026 .001 .002 003 .003 001 .009 .025 .057	-0.027 .001 .001 003 .004 001 .002 .024 0	-0.027 0 .001 004 .003 005 .005 .023 .003	-0.027 001 001 004 .003 006 .007 009 .008	-0.029 001 001 004 001 001 .009 030 .013	-0.029 002 0 005 0 .003 .009 036 .017	-0.029 003 0 008 001 .007 .005 036 .023	-0.009 003 002 013 .006 .009 035 036 .028	-0.007 0 017 .015 .013 .011 076 035 .031	-0.004 004 011 011 .020 .010 082 033 .036	-0.001 006 014 023 .023 085 085 026 .040	-0.002 007 015 0 .030 004 087 028 .044
1.39 .35 69	0 0 0	083 092 050	085 091 050	082 094 050	010 099 050	.023 093 050	.044 094 050	.061 094 050	.075 094 050	.088 094 050	.105 094 050	.114 094 050	.126 094 050	.137 094 050	.150 094 050	.155 095 050
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .55 69	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	013 .004 .006 007 016 004 .021 .023 094 097 030	008 .005 .008 004 010 .004 .031 .005 096 097 030	013 .003 .007 .003 003 011 .004 .027 026 096 097 030	011 .005 .008 .004 002 008 004 .034 008 094 094 097 030	010 .004 .007 .003 007 012 001 .037 .013 099 099 097 030	010 .005 .005 .003 004 .001 .006 .022 097 097 030	010 .004 .004 006 012 0 013 .034 095 097 030	009 .004 .005 008 008 002 014 .043 086 097 030	009 .004 .007 004 004 043 014 .050 050 050 030	008 .005 .006 005 .001 004 064 013 .058 016 097 030	004 .003 .003 003 004 065 010 .064 .044 097 030	007 003 004 .003 004 025 067 009 .071 .074 097 030	006 007 005 .008 .010 070 069 005 .078 .090 097 030	005 008 003 .013 097 067 003 .081 .098 097 030	007 012 001 .019 103 067 .001 .086 .108 097 030
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35	$\begin{array}{c} 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\end{array}$	013 .005 .003 .001 019 095 095 054 020 020 020	008 .006 .008 .005 014 100 097 052 020 020 020	008 .007 .006 0 013 100 098 054 020 020 020	007 .009 .007 001 088 095 052 020 020 020	007 .008 .003 002 018 058 059 053 020 020 020	007 .007 .001 0 023 036 097 054 020 020 020	007 .005 .002 004 026 024 029 054 020 020	006 .005 .004 011 025 016 096 096 020 020 020	009 .005 .004 020 024 024 020 054 020 020 020	011 .007 .004 025 022 081 055 055 020 020 020	011 .010 006 027 021 0 063 054 020 020 020	009 .010 025 028 020 .001 037 055 020 020 020	006 .011 041 030 019 .003 016 055 020 020 020	004 .013 048 034 017 .005 004 054 020 020	001 .010 050 029 016 .006 .011 055 020 020 020
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 10.76 9.72 8.68 7.63	6.94 6.94 6.94 6.94 6.94 6.94 6.94 11.11 11.11	033 069 054 034 049 047 045 030 037 023 013 020	031 069 054 034 049 047 045 030 041 028 018 020	030 068 055 035 047 049 045 030 038 027 017 020	026 063 053 034 049 049 045 030 039 026 025 020	026 049 053 034 045 049 045 030 044 035 023 020	028 038 052 034 046 049 045 030 042 033 021 020	031 027 051 035 045 045 030 039 028 017 020	032 019 048 034 042 047 045 030 037 027 016 020	032 013 044 034 047 045 030 037 027 016 020	033 009 036 034 043 047 045 030 037 026 015 020	032 006 026 033 043 045 045 030 030 038 027 016 020	032 002 014 043 045 045 030 040 029 018 020	031 001 006 033 042 047 045 030 041 030 021 020	030 0 .005 033 041 047 045 030 043 032 023 020	030 .001 .010 032 041 048 045 030 044 034 024 020
p_e/p_{∞}		.33	.49	.69	.82	.98	1.15	1.31	1.48	1.64	1.80	1.96	2.13	2.29	2.46	2.62

NACA RM 156106

D

.

TABLE II.- VALUES OF JET-ON PRESSURE COEFFICIENTS FOR ALL WING ORIFICE

POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 16 - Continued

(b) Test position I_b (supersonic exit)

Orif ordir	'ice nates	95-1 A		40		Pressure	coefficier	ts for nac	elle-exit	total-pres	sure ratic	H_e/p_{∞} o	f -			
x/DT	y/DT	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35 69	000000000000000000000000000000000000000	-0.010 .005 .007 .014 .004 065 101 087 048 016 0	-0.009 .006 .009 .007 .017 .003 064 101 087 048 015 0	-0.009 .006 .009 .019 .016 025 101 048 048 016 0	-0.008 .006 .010 .008 .011 .022 010 101 087 047 016 0	-0.008 .006 .010 .005 .015 .022 .003 101 087 049 017 0	-0.008 .006 .001 .018 010 .015 101 088 048 017 0	-0.008 .006 .005 .018 -010 .022 -101 -087 048 016 0	-0.008 .004 .002 .008 .011 009 .030 101 087 048 017 0	-0.009 -001 .007 -025 -008 .037 -101 -088 -048 -048 -017 0	-0.010 003 .012 .009 027 006 .043 098 048 048 018 0	-0.015 001 .017 .004 028 005 .048 080 088 049 018 0	-0.019 .004 .020 037 030 004 .051 031 088 049 019 0	-0.020 .010 .022 057 030 002 .056 .015 088 048 019 0	-0.019 .015 .023 060 030 001 .058 .054 089 049 019 0	-0.016 .020 .023 063 031 0 .062 .080 089 048 019 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35 69	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	007 .010 .015 .012 .005 014 083 119 067 012 0	005 .009 .015 .013 .007 0 083 119 067 012 0	006 .009 .015 .009 .011 082 118 068 037 012 0	004 .009 .015 .015 .010 .018 076 117 067 012 0	005 .009 .015 .008 .010 019 020 118 069 012 0	005 .010 .014 .009 .010 018 .003 118 069 012 0	005 .010 .013 .008 015 .014 117 068 037 012 0	005 .007 .012 .014 012 .025, 116 067 036 012 0	007 .001 .015 .013 024 009 .034 117 068 012 0	008 .003 .019 .005 025 007 .040 116 068 037 012 0	015 .007 .023 043 026 005 .046 117 068 012 0	016 .013 .026 048 026 002 .052 117 069 038 012 0	014 .018 .027 049 026 0 .056 116 068 012 0	014 .023 .025 051 025 .002 .060 116 068 012 0	008 .027 003 052 025 .004 .063 113 069 038 012 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35	$\begin{array}{c} 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\end{array}$.002 .011 .008 011 111 094 059 035 010 007 007	.002 .015 .009 013 111 095 058 034 010 007 007	.002 .016 .011 010 111 095 058 035 010 007 007	.002 .014 .013 010 111 095 057 034 010 007 007	.001 .011 .015 008 110 055 058 035 010 007 007	0 .013 .000 002 109 057 057 035 010 007 007	002 .015 004 .002 107 095 057 034 010 007	0 .015 -011 .005 -091 -094 -057 -034 -010 -007 -007	.003 005 014 .009 050 055 056 034 010 007	.005 016 014 .012 017 056 034 010 007 007	.006 028 013 .015 094 057 034 010 007	.006 030 011 .016 035 056 035 010 007	005 030 009 .019 056 056 034 010 007 007	031 031 009 .018 .030 096 056 035 010 007	053 031 008 .018 .035 095 056 035 010 007 007
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 10.76 9.72 8.68 7.63	6.94 6.94 6.94 6.94 6.94 6.94 6.94 6.94	082 070 033 036 035 023 010 023 007 .001	078 070 033 036 035 023 010 023 007 .001	070 070 034 035 035 023 010 028 009 002	064 070 035 035 036 034 023 010 024 006 0	050 070 033 036 035 023 010 026 008 001	035 070 032 035 036 034 023 010 024 006	025 070 031 035 035 033 023 010 023 005	020 070 032 035 035 023 010 024 006	017 067 032 034 035 034 023 010 028 010 003 005	014 054 030 034 035 025 025 010 032 015 009 005	012 039 031 035 037 036 023 010 034 017 010 005	.075 .048 -032 -035 -035 -036 -023 -010 -034 -019 -005	008 008 032 034 034 023 010 034 019 010 005	006 .006 031 034 035 036 023 010 036 018 009 005	005 .016 030 035 034 023 010 034 018 007 005
Pe/Po	11.11	.33	.49	.69	.82	.98	1.15	1.31	1.48	1.64	1.80	1.96	2.13	2.29	2.46	2.62

NACA RM 156106

.

.

.

.

POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 16 - Continued

(c)	Test	position	Ic	(supersonic exit)	
---	----	------	----------	----	-------------------	--

Orif ordin	lice nates				P	ressure co	efficients	for nacel	le-exit to	tal-pressu	re ratio	H_e/p_{∞} of	-			
x/D _T	y/D _T	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
10.76 9.72	0	-0.007 .010	-0.010	-0.010	-0.009	-0.008	-0.009	-0.013	-0.012	-0.012	-0.004	0	0.003	0.005	0.005	0.005
8.68	0	.008	.013	.011	.010	.013	.013	.012	010	020	022	023	023	023	022	023
7.63	0	.006	.015	.018	.021	.022	005	004	003	002	0	.001	.003	.003	.004	.005
5.55	0	001	001	061	056	007	.009	.020	.027	.031	.036	.040	.043	.045	.046	.048
4.51	0	068	092	092	091	090	091	091	090	091	090	090	089	088	082	064
3.47	0	025	024	024	024	023	024	024	007	000	000	068	069	068	069	069
2.43	0	010	011	011	011	010	011	011	012	011	012	013	013	024	029	025
1.39	0	.001	0	0	0	.001	0	0	001	001	001	001	001	002	003	003
.35	0	.013	.014	.014	.015	.016	.015	.017	.017	.016	.015	.015	.015	.014	.014	.014
09	0	.009	.009	.009	.009	.009	.009	.009	.009	.009	.009	.009	.009	.009	.009	.009
10.76	1.40	008	006	005	005	004	005	008	007	004	002	002	003	004	001	037
8.68	1.40	.012	.019	.013	.012	.020	.000	.009	.000	.010	.001	034	038	039	040	040
7.63	1.40	.010	.016	.026	.029	0	001	.003	009	009	012	012	012	015	012	012
6.59	1.40	065	068	066	065	061	042	.003	.014	.020	.022	.025	.030	.01)	.010	.011
5.55	1.40	105	110	104	104	103	103	104	103	103	103	103	103	104	103	104
4.51	1.40	060	061	062	062	060	062	061	061	061	062	062	062	062	063	062
2.43	1.40	025	028	028	027	026	027	027	027	027	027	027	028	027	028	028
1.39	1.40	014	014	015	015	011	015	012	013	014	013	013	013	013	014	014
.35	1.40	.010	.010	.010	.010	.010	.010	.015	.012	.010	.015	.010	.010	.011	.011	.010
69	1.40	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010
10.76	4.17	001	004	003	003	002	001	003	023	031	033	032	032	033	032	031
9.12	4.17	.025	.022	.022	.023	.019	001	0	.001	.003	.006	.009	.010	.009	.009	.008
7.63	4.17	062	064	064	064	052	015	.008	.014	.021	.025	.028	.030	.032	.035	.036
6.59	4.17	062	062	069	069	000	067	065	065	066	068	068	067	064	059	050
5.55	4.17	053	056	056	055	054	055	051	062	062	001	001	001	061	061	062
4.51	4.17	025	028	028	027	027	028	028	028	028	028	028	028	028	028	029
3.47	4.17	004	007	007	006	005	006	006	006	006	006	005	005	006	006	006
2.43	4.17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.39	4.17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
.))	4.1(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.76	6.94	080	082	082	082	081	081	081	081	080	079	070	054	040	026	012
8.68	6.94	=.023	023	045	044	045	040	045	045	045	046	046	046	047	046	047
7.63	6.94	017	016	015	022	022	022	021	022	022	021	022	022	021	022	023
6.59	6.94	018	017	016	016	016	015	017	017	016	015	014	015	014	014	019
5.55	6.94	018	021	021	021	020	022	021	020	020	021	021	022	021	022	023
4.51	6.94	020	020	020	020	020	020	020	020	020	020	020	020	020	020	020
3.47	6.94	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.76	11.11	015	017	016	015	015	014	012	013	015	019	022	025	028	030	032
9.12	11.11	.003	0006	.001	.001	.002	.003	.005	.006	.003	002	005	008	011	013	015
7.63	11.11	003	000	005	004	004	003	001	0	002	007	010	013	015	017	019
1.05	AL FAS	TIVEL	- OLL	vel	021	021	021	021	021	021	021	021	021	021	021	021
p_e/p_{∞}		.33	.49	.69	.82	.98	1.15	1.31	1.48	1.64	1.80	1.96	2.13	2.29	2.46	2.62
								Contraction of the		Contraction of the	100000000000000000000000000000000000000		ACCOUNT ON THE OWNER			

NACA RM 156106

r

.

TABLE II.- VALUES OF JET-ON PRESSURE COEFFICIENTS FOR ALL WING ORIFICE

POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 16 - Continued

(d) Test position II_b (supersonic exit)

Oriz	fice nates				1	Pressure c	oefficient	s for nace	lle-exit to	otal-press	ure ratio	H_e/p_{∞} of	-			
x/D_{T}	y/D _T	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6.59 5.55 4.51 3.47 2.43 1.39 .35 69 -1.73 -2.77 -3.82		0.002 .024 .056 102 079 056 059 007 .008 .057 .035	0.004 .021 .055 101 079 055 039 006 .007 .065 .037	-0.004 .041 010 101 056 038 007 .009 .065 .037	0.001 009 .004 101 080 056 039 007 .010 .065 .036	0.005 010 .020 101 079 055 038 006 .011 .066 .037	0.004 010 .029 101 080 055 039 007 .011 .065 .037	-0.002 007 .039 100 079 055 039 007 .012 .065 .037	-0.036 .006 .046 101 079 056 039 007 .012 .065 .037	-0.039 .007 .051 100 079 055 039 007 .013 .065 .037	-0.041 .010 .058 099 080 055 038 008 .013 .064 .037	-0.042 .011 .062 094 079 055 039 009 .013 .064 .035	-0.041 .014 .067 049 055 039 039 009 .013 .064 .036	-0.041 .015 .071 013 080 055 039 009 .014 .064 .035	-0.042 .016 .075 .052 079 055 040 009 .014 .065 .036	-0.042 .017 .076 .076 081 055 040 010 .013 .064 .035
-4.86 6.59 5.55 4.51 3.47 2.43 1.39 .35 -69 -1.73 -2.77 -3.82 -4.86	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	0 .006 .028 -067 -099 -054 -057 -040 -02 .015 .043 0 0	0 .010 .033 066 106 052 058 058 039 001 .016 .043 0 0	0 .005 065 106 054 057 039 001 .016 .051 0 0	0 .010 .018 053 106 051 058 040 001 .017 .049 0 0	0 .012 .016 .010 105 050 058 040 0 .018 .046 0 0	0 .009 .013 .030 106 059 040 001 .017 .049 0 0	0 018 .015 .044 105 049 058 040 0 .018 .051 0 0	0 024 .017 .053 104 058 040 058 040 .018 .056 0 0	0 026 .017 .061 104 049 058 040 0 .018 .052 0 0	0 026 .022 .069 106 058 058 040 0 .018 .060 0	0 027 .029 .075 106 050 058 040 0 .018 .061 0 0	0 027 .028 .080 106 051 058 040 0 .018 .066 0 0	0 027 .030 056 055 058 040 001 .018 .070 0 0	0 032 .034 .091 105 052 058 040 001 .019 .090 0	0 026 .035 .093 106 053 058 041 002 .018 .076 0
6.59 5.55 4.51 3.47 2.43 1.39 .39 69 73 -2.77 -3.82 6.59	$\begin{array}{c} 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\end{array}$	074 136 052 034 030 030 .003 .022 0 0 0 0 051	067 136 052 033 029 .003 .027 0 0 0 0 049	069 137 051 034 035 030 .003 .027 0 0 0 0 0 0 0 0 0 0	066 136 052 035 032 030 .003 .027 0 0 0 0 0 0 0	065 138 049 026 031 029 .005 .028 0 0 0 0 0 049	065 137 050 030 031 030 .004 .028 0 0 0 0 049	059 137 050 027 031 029 .005 .030 0 0 0 0 048	025 137 050 027 031 030 003 .030 0 0 0 049	.003 135 050 032 031 029 .005 .030 0 0 0 049	.021 138 050 027 031 030 .005 .039 0 0 0 0 050	.033 135 051 032 029 .005 .030 0 0 0 0 0 0 0	.040 136 050 033 032 030 .005 .031 0 0 0 049	.047 135 050 033 032 029 .006 .032 0 0 0 0 049	.051 -134 -050 -024 -031 -029 .006 .033 0 0 0 0 049	.053 132 050 034 035 030 .005 .032 0 0 0 0 049
5.55 4.51 3.47 2.43 1.39 .35 69 6.59 5.55 4.51	6.94 6.94 6.94 6.94 6.94 6.94 6.94 11.11 11.11	024 014 .023 .006 009 0 0 .007 .004 030	024 .003 .025 .008 .001 0 0 .017 .012 019	024 001 .025 .008 .002 0 .014 .010 025	024 .005 .026 .009 .001 0 0 .018 .014 021	023 .007 .026 .010 .003 0 0 .019 .016 019	023 .008 .029 .009 .002 0 0 .020 .016 019	023 .006 .028 .010 .003 0 0 .019 .015 019	024 .005 .027 .009 .002 0 0 .018 .015 020	023 .003 .019 .010 .002 0 0 .018 .014 022	022 .002 .026 .013 .001 0 0 .016 .013 023	021 001 .027 .012 .001 0 0 .015 .011 024	021 005 .028 .011 .001 0 0 .013 .010 026	023 009 .027 .010 .002 0 0 .012 .008 028	021 009 .028 .015 .002 0 0 .012 .008 028	024 013 .027 .025 001 0 0 .010 .005 029
3.47 P _e /P _∞	11.11	•33	0 .49	.69	0 .82	0 •98	0	0	0	0	0	0	0	0	0 2.46	0

.

•

NACA RM 156106

TABLE II.- VALUES OF JET-ON PRESSURE COEFFICIENTS FOR ALL WING ORIFICE

.

1

. .

POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 16 - Concluded

(c) TEPO LOBICION IN (PONTC CVIO	(e) Test	Position	In	(sonic	exit
----------------------------------	----	--------	----------	----	--------	------

Orif ordin	ice ates	Pressure coefficients for nacelle-exit total-pressure ratio ${\rm H_e/p_{\infty}}$ of -														
x/D _T	y/D _T	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35 69	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.011 .004 .005 .002 .010 .002 .003 102 091 046 018 0	-0.019 .006 .007 .004 .013 .010 045 010 045 017 0	-0.010 .005 .006 .003 .012 .012 002 102 090 046 019 0	-0.011 .004 .005 .003 .009 .007 .010 101 091 047 019 0	-0.010 .003 .006 003 .020 035 .019 101 089 046 018 0	-0.011 .004 .005 001 .025 035 .025 100 090 046 016 0	-0.011 .004 005 .008 .020 033 .031 097 090 046 018 0	-0.010 .002 003 .015 055 032 .036 040 089 045 017 0	-0.009 004 .003 .020 059 030 .040 089 045 017 0	-0.012 009 .029 060 030 .043 .060 045 018 0	-0.015 006 .022 .017 061 029 .046 .100 089 045 018 0	-0.024 001 .032 058 061 028 .049 .124 090 045 018 0	-0.026 .003 .036 085 062 027 .052 .130 090 046 018 0	-0.024 .011 .039 088 062 027 .052 .142 091 046 019 0	-0.022 .016 .040 089 063 025 .055 .149 091 046 020 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35 69	1,40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.	009 .006 .011 .008 .001 013 084 118 066 037	007 .007 .013 .011 .004 003 083 118 067 036 012 0	008 .007 .013 .010 .002 .006 080 119 068 012 0	009 .006 .011 .008 .004 038 .006 118 068 012 0	008 .006 .010 .007 .013 034 .021 118 067 036 012 0	008 .007 .008 .013 002 032 .030 117 036 012 0	008 .007 0 019 042 029 .036 116 067 012 0	007 .002 .008 .024 041 027 .041 116 068 012 0	007 005 .015 .025 042 025 .047 115 068 012 0	011 004 .021 015 041 024 .051 114 068 036 012 0	016 0 .028 071 042 022 .055 090 067 036 012 0	021 .008 .036 074 039 021 .059 015 068 035 012 0	020 .012 039 076 042 020 .061 .030 069 037 012 0	017 .020 .035 077 043 019 .064 .090 069 038 012 0	013 .027 010 078 042 018 .065 .112 070 038 012 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35	$\begin{array}{c} 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\end{array}$	003 .008 .004 006 109 100 058 036	002 .010 .009 005 108 100 057 034 010 007 007	002 .009 .006 005 109 100 058 010 007 007	004 .005 .013 009 112 101 058 035 010 007 007	003 .009 006 004 105 034 010 056 034 010 007	008 .015 028 001 070 100 057 035 010 007	006 .019 032 .005 012 000 056 034 010 007 007	003 .005 031 .004 .012 100 056 034 010 007 007	.003 028 030 .005 .021 100 056 034 010 007 007	.006 048 030 .007 100 056 034 010 007 007	.010 053 029 .007 .032 100 057 034 010 007	.007 054 027 .006 036 039 056 034 010 007 007	010 055 028 .007 039 056 035 010 007 007	060 054 028 .006 .040 048 057 034 010 007	074 054 027 .007 .042 022 057 034 010 007 007
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	6.94 6.94 6.94 6.94 6.94 6.94 6.94 6.94	071 074 032 037 039 036	073 074 032 035 037 035 028 010	067 074 032 037 038 036 028 010	046 075 032 037 038 036 028 010	032 074 032 035 037 035 028 010	023 071 031 036 037 034 028 010	020 059 031 034 036 034 028 010	017 038 031 034 036 033 028 010	015 030 034 036 033 028 010	014 0 030 034 036 035 028 010	013 .016 029 034 035 033 028 010	012 .022 026 034 036 033 028 010	012 .027 022 035 035 035 034 028 010	011 .030 006 034 036 034 028 010	011 .032 .006 035 035 034 028 010
10.76 9.72 8.68 7.63	11.11 11.11 11.11 11.11	027 010 004	025 007 001 005	027 010 005 005	031 014 006 005	026 008 002 005	023 006 .002 005	023 005 .004 005	023 006 .004 005	023 005 .004 005	023 005 .004 005	023 006 .004 005	024 007 .005 005	025 008 0 005	025 009 004 005	026 010 005 005
₽ _e /₽∞		.98	1.47	1.96	2.45	2.94	3.43	3.92	4.41	4.90	5.37	5.88	6.37	6.86	7.35	7.84

NACA RM L56106

*

.

POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 16

(a) Test	position	10	(supersonic	exit,
----------	----------	----	-------------	-------

Orif ordin	ice ates	Pressure coefficients for nacelle-exit total-pressure ratio ${\rm H_e/p_{\infty}}$ of -														
x/D _{T'}	y/D _T	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35 69	000000000000000000000000000000000000000	-0.018 -011 -013 -014 -019 -015 -035 -017 -149 -004 -003 0	-0.019 -010 -013 -014 -018 -026 -028 -007 152 -002 .002 -004 0	-0.019 -011 -014 -013 -017 -021 -031 -018 -018 -018 -005 .001 0	-0.020 010 012 013 025 030 014 014 077 004 0	-0.021 001 013 013 014 024 037 015 .117 .110 .002 0	-0.021 -011 -013 -014 -015 -028 -035 -016 -120 -132 -001 0	-0.021 012 015 014 015 029 031 048 .125 .148 .001 0	-0.023 -013 -015 -014 -019 -024 -030 -069 -130 .161 .001 0	-0.023 -013 -014 -015 -018 -020 -030 -075 -134 -175 001 0	-0.025 -014 -014 -018 -019 -016 -035 -075 -140 .192 .001 0	-0.003 014 016 023 012 013 075 075 075 .145 .201 .001 0	-0.001 -011 -021 -025 -005 -012 -115 -074 .148 .212 .001 0	0.002 015 025 021 .002 013 121 072 .153 .224 .001 0	0.005 017 028 016 .005 016 124 065 .157 .237 .001 0	0.004 011 029 010 .012 027 126 067 .161 .242 0 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35 69	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	011 014 014 .013 017 034 035 .140 .142 .003 0	006 013 012 016 014 028 027 .150 .124 .001 0 0	011 015 013 .035 014 029 026 .146 .093 .001 0 0	009 013 012 019 012 026 035 .153 .111 .003 0	008 014 013 019 017 030 032 .156 .132 002 0 0	008 015 015 016 013 032 030 .125 .141 0 0 0	008 014 016 030 031 .106 .153 .002 0 0	007 014 014 006 018 026 033 .105 .161 .009 0 0	007 014 013 002 014 024 074 .105 .169 .047 0 0	006 013 014 009 014 095 .106 .177 .103 0	002 015 017 .009 006 018 096 .109 .183 .141 0 0	005 021 024 .013 004 043 098 .110 .190 .171 0	004 025 025 .017 0 068 100 .114 .197 .187 0	003 026 023 006 .003 115 098 .116 .200 .195 0 0	005 030 021 0 .002 121 098 .120 .205 .205 0 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35	$\begin{array}{c} 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \end{array}$	021 019 017 .032 .070 .004 .002 002 0 0 0	016 018 012 .026 .075 001 0 0 0 0 0	016 014 .031 .076 001 001 002 0 0	015 015 013 .030 .079 .011 .002 0 0 0 0 0	015 016 017 .029 .071 .041 002 001 0 0	015 017 019 .031 .066 .063 0 002 0 0 0	015 019 018 .027 .063 .075 002 002 0 0 0	014 018 016 .020 .064 .083 .001 002 0 0	017 019 016 .011 .065 .092 .005 002 0 0	019 017 016 .006 .067 .016 003 0 0 0	019 014 026 .004 .068 .099 .034 002 0 0 0	017 014 045 .003 .069 .101 .060 003 0 0	012 013 061 .001 .070 .102 081 002 0 0	012 011 068 002 .104 .093 002 0 0	009 014 070 .002 .073 .105 .108 003 0 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	6.94 6.94 6.94 6.94 6.94 6.94 6.94 6.94	.045 .006 .001 002 002 .003 0	.047 .006 .001 002 002 .003 0 0	.048 .007 0 003 0 .001 0	.052 .012 .002 002 .002 .001 0 0	.052 .026 .002 .002 .002 .001 0 0	.050 .037 .003 002 .001 .001 0	.047 .048 .004 003 .002 .002 0 0	.046 .056 .007 002 .005 .003 0	.046 .062 .011 002 .003 .003 0	.045 .066 .019 002 .004 .003 0	.046 .069 .041 001 .004 .003 0	.046 .073 .049 001 .004 .004	.047 .074 .049 001 0 .003 0	.048 .075 .060 001 .001 .003 0	.048 .076 .065 0 .001 .002 0
10.76 9.72 8.68 7.63	11.11 11.11 11.11 11.11	.020 .020 .022 0	.016 .016 .017 0	.018 .017 .018 0	.018 .018 .020 0	.013 .009 .012 0	.015 .010 .015 0	.018 .016 .018 0	.020 .017 .019 0	.020 .017 .019 0	.020 .018 .020 0	.019 .017 .019 0	.017 .015 .017 0	.016 .014 .014 0	.014 .012 .012 0	.013 .010 .011 0
p _e /p _∞		.33	.49	.69	.82	.98	1.15	1.31	1.48	1.64	1.80	1.96	2.13	2.29	2.46	2.62

.

.

. .

NACA RM 156106

.

.

*

.

.

.

POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 16 - Continued

(b) Test position I_b (supersonic exit)

Orif	ice	Pressure coefficients for nacelle-exit total-pressure ratio $~H_{\rm g}/p_{\infty}~$ of -														
x/D _T	y/D _T	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .3569		-0.012 014 020 021 021 .099 0 .002 0 001 0 0	-0.011 013 018 021 018 .001 .002 0 001 .001 0	-0.011 -013 -018 -021 -016 -111 .040 .002 0 001 0 0	-0.010 013 017 020 024 .117 .055 .002 0 0 0 0	-0.010 -013 -017 -023 -020 -117 .068 .002 0 002 001 0	-0.010 -013 -019 -027 -017 -085 .080 .002 -001 -001 -001 0	-0.010 013 021 023 017 .085 .087 .002 0 001 0	-0.010 015 025 020 024 .086 .095 .002 0 001 001 0	-0.011 020 020 019 060 .087 .102 .002 001 001 0	-0.012 022 015 019 062 .089 .108 .005 001 001 002 0	-0.017 020 010 024 063 .090 .113 .023 001 002 002 0	-0.021 015 009 065 065 .091 .116 .072 001 002 003 0	-0.022 009 005 085 065 .093 .121 .118 001 001 003 0	-0.021 004 088 065 .094 .123 .157 002 002 003 0	-0.018 .001 004 091 066 .095 .127 .185 002 001 003 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35 69	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	012 013 019 025 047 095 002 002 001 002 0 0	010 014 019 024 .047 .109 002 002 .001 .002 0 0	011 014 019 022 .049 .120 001 001 0 .001 0	009 014 019 022 .050 .127 .005 0 .001 .001 0 0	010 014 019 029 .050 .090 .061 001 001 0 0	010 013 020 028 .050 .091 .084 001 .002 0 0	010 013 024 024 .024 .024 .094 .095 0 .001 0 0 0	010 016 022 023 .019 .097 .106 .001 .002 0 0	012 022 019 024 .016 .100 .115 0 0 .003 0 0	013 020 015 032 .015 .102 .121 .001 0 .001 0	020 016 011 080 .014 .127 0 0 001 0 0	021 010 008 085 .014 .107 .133 0 001 0 0 0	019 005 007 086 .014 .109 .137 .001 0 0 0 0	019 0 009 088 .015 .112 .141 .001 0 0 0 0	013 .004 037 089 .015 .114 .144 .004 001 0 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35	$\begin{array}{c} 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \\ 4.17 \end{array}$	016 020 .086 .053 .004 0 002 001 0 0	016 016 .087 .051 .004 001 001 0 0 0	016 015 .089 .054 001 001 001 0 0	016 017 .091 .054 001 0 0 0 0 0	017 020 .093 .056 .005 001 001 001 0 0	018 018 .088 .064 002 0 001 0 0 0	016 016 .074 .066 .008 001 0 0 0 0 0	018 016 .067 .069 .024 0 0 0 0 0 0 0	015 026 .064 .074 .065 001 .001 0 0 0	013 015 .064 .076 .098 0 .001 0 0 0	012 059 .065 .079 .120 0 0 0 0 0 0 0	012 061 .067 .080 .133 001 .001 001 0 0 0	023 061 .069 .083 .140 001 .001 0 0 0 0	049 062 .069 .082 .145 002 .001 001 0 0	071 062 .070 .082 .150 001 .001 001 0 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	6.94 6.94 6.94 6.94 6.94 6.94 6.94 6.94	.003 .001 0 002 0 0 0 0	.007 .001 0 002 .001 0 0	.015 .001 001 001 .001 0 0	.021 .001 0 001 0 .001 0	.035 .001 0 002 .001 0 0 0	.050 .001 .001 001 0 .001 0	.060 .001 .002 001 .001 .002 0 0	.065 .001 .001 001 .001 0 0	.068 .004 .001 0 .001 .001 0	.071 .017 .003 0 .001 0 0	.073 .032 .002 001 001 001 0 0	.075 .048 .001 001 .001 001 0	.077 .063 .001 C .002 001 O 0	.079 .077 .002 0 .001 001 0	.080 .087 .003 001 .002 001 0 0
10.76 9.72 8.68 7.63	11.11 11.11 11.11 11.11	.004 .003 .007 0	.004 .003 .007 0	.001 .001 .004 0	.003 .004 .006 0	.001 .002 .005 0	.003 .004 .007 0	.004 .005 .002 0	.003 .004 .008 0	001 0 .003 0	005 005 003 0	007 007 004 0	007 009 004 0	007 009 004 0	009 008 003 0	007 008 001 0
p_e/p_{∞}		.33	.49	.69	.82	.98	1.15	1.31	1.48	1.64	1.80	1.96	2.13	2.29	2.46	2.62

NACA RM L56106

.

*

POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 16 - Continued

(c) Test position I_c (supersonic exit)

Orif ordin	ice ates				1	Pressure c	oefficient	s for nace	lle-exit to	otal-press	ure ratio	H_e/p_{∞} of	-			
x/Dm	y/Dm	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35 69		-0.012 017 015 .081 001 001 0 .002 .002 .004 0	-0.015 020 010 .090 001 0 .001 .001 .001 0 .005 0	-0.015 020 012 .093 001 0 .001 .001 0 .005 0	-0.014 019 013 .096 .004 .001 .001 .001 0 .006 0	-0.013 021 010 .097 .002 .001 .002 .002 .001 .007 0	-0.014 024 010 .070 .051 .001 .001 .001 0 .006 0	-0.018 022 011 .071 .080 .001 .001 .001 .001 0 .008 0	-0.017 -019 -033 .072 .087 .002 .002 .001 0 001 .008 0	-0.017 -019 -043 .073 .091 .001 .001 .001 -001 .007 0	-0.009 021 045 .075 .096 .002 .001 .001 0 001 .006 0	-0.005 069 046 .076 .002 .001 001 001 .006 0	-0.002 071 046 .078 .103 .003 0 .001 001 002 .006 0	0 072 046 .078 .105 .004 .001 002 002 .005 0	0 073 045 .079 .106 .010 0 002 002 003 .005 0	0 073 046 .080 .108 .028 0 002 002 003 .005 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35 69	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	017 023 .080 .074 .002 001 .002 .002 .001 .003 0 0	015 020 .087 .080 001 006 .001 002 0 0 0	014 019 .081 .090 .001 0 001 001 0 0 0	014 020 .084 .093 .002 0 0 0 001 .001 0 0	013 023 .088 .064 .006 .001 .002 .001 .002 .001 .002 0	014 024 .088 .063 .025 .001 0 001 001 0 0	017 023 .086 .071 .064 0 .001 0 .002 0 0	016 021 .059 .070 .081 .001 .001 0 001 .001 0 0	013 022 .057 .073 .078 .001 .001 0 002 0 0	011 031 .056 .075 .089 .001 0 001 .004 0 0	007 066 .056 .076 .092 .001 0 001 0 0 0	006 070 .056 .079 .097 .001 001 .001 .001 0 0	005 071 .0555 .079 .098 0 0 001 0 0	008 072 .056 .080 .100 .001 001 002 0 0	043 072 .056 .081 .101 0 001 002 001 0 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17	.041 .085 001 .003 001 .002 .003 0 0	.038 .082 003 0 001 002 001 0 0 0	.039 .082 003 .001 001 002 001 0 0 0	.039 .083 .003 .001 001 0 .001 0 0 0 0	.040 .079 .009 .002 .001 0 .002 .002 0 0 0	.041 .059 .044 .003 0 001 .001 .001 0 0	.039 .060 .066 .005 0 001 .001 .001 0 0	.019 .061 .075 .005 001 0 001 .001 0 0 0	.011 .063 .087 .004 001 001 .001 0 0 0	.009 .066 .086 .002 0 001 .001 0 0 0	.010 .069 .089 .002 0 001 .002 0 0 0	.010 .070 .091 .003 0 001 .002 0 0 0	.009 .069 .093 .006 0 001 .001 0 0 0	.010 .069 .096 .011 0 001 .001 0 0	.011 .068 .097 .020 001 0 002 .001 0 0 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	6.94 6.94 6.94 6.94 6.94 6.94 6.94 6.94	.004 .001 001 .002 002 .006 0	.002 0 001 .003 001 .003 0	.002 .002 0 .004 0 .003 0	.002 .003 0 .003 0 .003 0	.003 .002 .004 0 .004 0 .004	.003 .001 0 .004 .001 .002 0 0	.003 .002 .001 .004 001 .003 0 0	.003 .002 0 .005 001 .004 0 0	.004 .002 0 .004 0 .004 0 0	.005 .001 .001 .004 .001 .003 0 0	.014 .001 0 .005 .001 .003 0 0	.030 .001 0 .004 .001 .002 0 0	.044 0 .001 .005 0 .003 0 0	.058 .001 0 .005 0 .002 0 0	0 0 001 .004 0 .001 0
10.76 9.72 8.68 7.63	11.11	.024 .024 .024	.019 .021 .021	.022 .022 0	.022 .023 0	.023 .023 0	.024 .024 0	.026 .026 0	.027 .027 0	.024 .025 0	.019 .020 0	.016 .017 0	.013 .014 0	.010 .012 0	.007 .010 0	.004
pe/pm		.33	.49	.69	.82	.98	1.15	1.31	1.48	1.64	1.80	1.96	2.13	2.29	2.46	2.02

.

*

.....

.

NACA RM L56106

3

.

.

\$

POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 16 - Continued

(d) Test position II_b (supersonic exit)

Orif ordir	ice ates	Pressure coefficients for nacelle-exit total-pressure ratio $H_{\rm e}/p_{\infty}$ of -														
$x/D_{\rm T}$	y/D _T	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6.59 5.55 4.51 3.47 2.43 1.39 .35 69 -1.73 -2.77 -3.82 -4.86		-0.017 .103 0 001 0 001 002 004 0 008 0 0	-0.015 .100 .001 0 0 002 003 001 0 .002 0	-0.015 .120 .046 0 001 001 001 004 002 0 .002 0	-0.018 .070 .060 0 001 001 002 004 003 0 .001 0	-0.014 .069 .076 0 0 001 003 004 001 .002 0	-0.015 .069 .085 0 001 0 002 004 0 .002 0	-0.021 .072 .095 .001 0 002 004 005 0 .002 0	-0.055 .085 .102 0 001 002 004 005 0 .002 0	-0.058 .086 .107 .001 0 002 004 006 0 .002 0	-0.060 .089 .114 .002 001 0 001 005 006 001 .002 0	-0.061 .090 .118 .007 0 002 006 006 001 0	-0.060 .093 .123 .052 0 0 002 006 001 .001 0	-0.060 .094 .127 .088 001 0 002 006 007 001 0	-0.061 .095 .131 .162 0 0 -003 -003 -006 007 0 .001 0	-0.061 .096 .132 .177 002 0 003 007 006 001 0 0
6.59 5.55 4.51 3.47 2.43 1.39 .35 69 -1.73 -2.77 -3.82 -4.86	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	.061 .105 004 .006 001 003 002 002 002 .001 0 0	.065 .110 -003 -001 .001 0 002 001 .001 0 0	.060 .092 002 001 001 002 001 001 .009 0	.065 .095 .010 001 .002 0 003 003 001 002 .007 0	.067 .093 .073 0 .003 0 .003 0 .001 .004 0	.064 .090 .093 001 003 001 0 .007 0	.037 .092 .107 0 .004 0 003 0 .009 0 0	.031 .094 .116 .001 .003 0 003 001 .014 0 0	.029 .094 .124 .001 .004 0 003 0 .001 .010 0 0	.029 .099 .132 001 .003 0 003 0 .001 .018 0 0	.028 .106 .138 001 .003 0 003 0 .001 .019 0 0	.028 .105 .143 001 .002 0 003 0 .001 .024 0 0	.028 .107 .149 0 .001 0 003 001 .028 0 0	.023 .111 .154 0 .001 0 003 .001 .002 .048 0	.029 .112 .156 001 0 004 004 .001 .034 0 0
6.59 5.55 4.51 3.47 2.43 1.39 .35 69 -1.73 -2.77 -3.82	$\begin{array}{c} 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\\ 4.17\end{array}$.005 004 003 .002 004 002 004 0 0	.012 004 002 .001 003 002 .001 0 0	.010 005 003 001 004 002 .001 0 0	.013 004 004 004 0 004 002 .001 0 0 0	.014 006 001 .005 .001 003 0 .002 0 0 0	.014 005 002 .001 .001 004 002 0 0 0	.020 005 001 .004 .001 003 0 .004 0 0	.054 -005 -001 .004 .001 -004 -002 .004 0 0	.072 003 001 001 003 0 .004 0 0 0	.100 006 .001 .004 .001 004 0 .004 0 0 0	.112 005 002 001 0 .003 0 .004 0 0 0	.119 004 001 002 0 004 0 .005 0 0 0 0	.126 005 001 002 0 003 .001 .006 0 0 0	.130 002 001 .008 .001 003 .001 .007 0 0 0	.132 0 001 003 004 0 .006 0 0
6.59 5.55 4.51 3.47 2.43 1.39 .35 69 6.59 5.55 4.51	6.94 6.94 6.94 6.94 6.94 6.94 6.94 6.94	003 001 .002 003 002 008 0 0 001 0	001 001 .019 001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	001 001 .015 001 0 .003 0 0 .006 .006 .006	001 001 .021 0 .001 .002 0 0 .010 .010 .009	001 0 .023 0 .002 .004 0 0 .011 .012 .011	001 0 .024 .003 .001 .003 0 0 0 .012 .012 .011	0 0 .022 .002 .004 0 0 .011 .011	001 001 .021 .001 .001 .003 0 0 0 .010 .010 .010	001 0 .019 007 .002 .003 0 0 .010 .010 .008	002 .001 .018 0 .005 .002 0 0 .008 .009 .007	001 .002 .015 .001 .003 .002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	001 .002 .011 .002 .010 .002 0 0 0 .005 .010 .004	001 0 .007 .001 .002 .003 0 0 0 .004 .004 .004	001 .002 .007 .002 .007 .003 0 0 0 .004 .004 .004	001 001 .003 .001 .017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.47 Pe/Po	11.11	0 .33	0 .49	0 .69	.82	0 •98	0	0	0	0	0	1.96	2.13	2.29	2.46	2.62

NACA RM 156106

•

POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 16 - Concluded

(e) Test position I_b (sonic exit)

Orifordin	ice ates			Pressure coefficients for nacelle-exit total-pressure ratio $H_{\rm e}/p_{\infty}$ of -												
x/D _T	y/D _T	2	3	4	5	6	7	8	9	10	ш	12	13	14	15	16
10.76	0	-0.013	-0.021	-0.012	-0.013	-0.012	-0.013	-0.013	-0.012	-0.011	-0.014	-0.017	-0.026	-0.028	-0.026	-0.024
9.72	0	015	015	014	02)	- 021	022	024	024	024	018	005	.005	.009	.012	.013
8.68	0	022	020	021	052	- 031	029	020	013	008	006	011	086	113	116	117
7.63	0	020	024	02)	0)1	015	010	015	090	094	095	096	096	097	097	098
6.59	0	025	022	025	044	01)	.060	.062	.063	.065	.065	.064	.067	.068	.068	.070
5.55	0	.091	.105	.101	.102	084	.000	.096	.101	.105	.108	.111	.114	.117	.117	.120
4.51	0	.000	.020	.005	.002	.002	.003	.006	.063	.133	.163	.203	.211	.233	.245	.252
3.47	0	.001	.002	.001	.002	.002	- 003	- 003	002	002	003	002	003	003	004	004
2.43	0	004	005	005	004	001	.001	.001	.002	.002	.002	.002	.002	.001	.001	.001
1.39	0	100.	002	001	003	- 002	0	002	001	001	002	002	002	002	003	004
.35	0	002	001	005	005	002	0	0	0	0	0	0	0	0	0	0
69	0	0	0	0	0			U					1215	1.1		
10 76	7 10	- 014	- 012	013	014	013	013	013	012	012	016	021	026	025	022	018
10.70	1.40	014	- 016	016	017	017	016	016	021	028	027	023	015	011	003	.004
9.12	1.40	017	- 021	021	023	024	026	034	026	019	013	006	.002	.005	.001	044
0.00	1.40	02)	- 026	027	029	030	024	018	013	012	052	108	111	113	114	112
(.0)	1.40	041	Oluli	.042	.044	.053	.038	002	001	002	001	002	.001	002	003	002
0.99	1.40	.096	.106	.115	.071	.075	.077	.080	.082	.084	.085	.087	.088	.089	.090	.091
2.22	1.40	.090	- 002	.001	.087	.102	.111	.117	.122	.128	.132	.136	.140	.142	.145	.146
4.71	1.40	00)	- 001	002	001	001	0	.001	.001	.002	.003	.027	.102	.147	.207	.229
2.41	1.40	002	001	0	0	.001	.001	.001	0	0	0	.001	0	001	001	002
2.43	1.40	.002	.002	.001	.001	.002	.002	.003	.002	.002	.002	.002	.003	.001	0	0
1.39	1.40	.001	.002	0.001	0	0	0	0	0	0	0	0	0	0	0	0
.22	1.40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09	1.40		, i i i i i i i i i i i i i i i i i i i					0.01	003	015	010	- 008	011	028	078	094
10.76	4.17	021	020	020	022	021	026	024	021	019	012	000	085	086	085	085
9.72	4.17	024	021	022	036	022	016	012	020	0)9	019	040	.051	050	.050	.051
8.68	4.17	.082	.087	.084	.091	.072	.050	.046	.041	.040	.040	071	.070	.071	.070	.071
7.63	4.17	.068	.059	.059	.055	.060	.003	.069	.000	.009		117	151	.154	.155	.157
6.59	4.17	.006	.007	.006	.003	.010	.045	.103	.12(.130	.142	.141	- 005	.007	.046	.072
5.55	4.17	006	006	006	007	006	006	006	000	000	000	000	.001	.001	0	0
4.51	4.17	001	0	001	001	.001	0	.001	.001	.001	.001	0	0.001	001	0	0
3.47	4.17	002	0	001	001	0	001	0	0	0	0	0	0	0	0	0
2.43	4.17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.39	4.17	0	0	0	0	0	0	0	0	0	0	0	0	l õ	0	0
.35	4.17	0	0	0	0	0	0	0	0	0	0	0				
	6 -	000	010	019	030	.053	.062	.065	.068	.070	.071	.072	.073	.073	.074	.074
10.76	6.94	.000	510.	.010	.004	- 003	0	.012	.033	.056	.071	.087	.093	.098	.101	.103
9.72	6.94	003	005	005	001	00)	.002	.002	.002	.003	.003	.004	.007	.011	.027	.039
8.68	6.94	.001	.001	.001	.001	.001	- 002	0	0	0	0	0	0	001	0	001
7.63	6.94	003	001	005	005	001	002	0	0	0	0	001	0	.001	0	.001
6.59	6.94	003	001	002	002	001	001	001	-002	.002	0	.002	.002	.001	.001	.001
5.55	6.94	0	0	001	001	0	.001		0	0	0	0	0	0	0	0
4.51	6.94	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.47	6.94	0	0	0	0	0									000	007
10 76	11 11	- 001	-002	0	004	.001	.004	.004	.004	.004	.004	.004	.003	.002	.002	.001
10.10	11.11	001	003	0	004	.002	.004	.005	.004	.005	.005	.004	.003	.002	100.	001
9.12	11.11	0	.005	1 .001	0	.004	.008	.010	.010	.010	.010	.010	.011	.006	.002	.001
0.08	11.11	000		0.001	0	0	0	0	0	0	0	0	0	0	0	0
1.03	11.11	002	0			-	-		1.1.	1	E 75	E 00	6 37	6.86	7 35	7.84
p_e/p_{∞}		.98	1.47	1.96	2.45	2.94	3.43	3.92	4.41	4.90	5.57	5.00	0.57	0.00	1.00	1.04

i

.

4

2

NACA RM 156106

. .

•

26

~

L-86661

Figure 1.- Photograph of the nacelle mounted beneath the flat-surface wing in the 27- by 27-inch preflight-jet nozzle.

Figure 2.- Schematic diagram of nacelle. All dimensions are in inches.

ł.

2

1

.

NACA RM 156106

3

.

.

.

2

.

Figure 3.- Arrangement of the nacelle relative to the exit of the 27- by 27-inch preflight-jet nozzle and wing for the four test positions. Dimensions are in inches except as otherwise noted.

NACA RM 156106

*

6

Figure 4.- Location of the wing static-pressure orifices.

Figure 5.- Variation of nacelle-combustion-chamber total-pressure ratio with nacelle-exit total-pressure ratio for the supersonic nacelle exit.

Figure 6.- Variation of static-pressure ratio with total-pressure ratio for both supersonic and sonic propulsive jets.

X

.

(b) 1.40D $_{\rm T}$ spanwise from nacelle center line.

Figure 7.- Chordwise variation of jet-off pressure coefficients for test positions I_a , I_b , I_c , and II_b .

(d) 6.94D $_{\rm T}$ spanwise from nacelle center line.

Figure 7.- Concluded.

Jet-off pressure coefficient, $\mathbb{C}_{p,f}$

Position Ib

Position I_c 0 1 2 3 4 5

Position II_b

L-95804

Figure 8.- Shadowgraph pictures of the flow field about the nacelle exit with jet off for test positions I_a , I_b , I_c , and II_b .

H_e/p_∞ = 7

H_e/p₀₀ = 10

(a) Position Ia.

L-95805

Figure 9.- Shadowgraph pictures of the flow field about the nacelle exit with jet on for test positions I_a , I_b , I_c , and II_b .

 $H_e/p_{co} = 7$

 $H_{e}/p = 10$

H_e/p_{co} = 12

L-95806

NACA RM 156106

x/D_T -4 -2 0 2 4 1 1 1 1 1 1

 $H_{e}/p_{\infty} = 5$

 $H_{e}/p_{\infty} = 9$

L-95807 (c) Position I_c.

NACA RM 156106

H_e/p_{co} = 4

H_/p_ = 6

 $H_e/p_{\infty} = 8$

 $H_{e}/p_{\infty} = 10$

 $H_{e}/p_{\infty} = 12$

H_p_ = 14

(d) Position II_b.

L-95808

Figure 9.- Concluded.

(b) Jet-shock-wave angle.

Figure 10.- Variation of the angles of inclination from the nacelle center line of the exit and jet shock waves with nacelle-exit total-pressure ratio at test positions I_a , I_b , and I_c for the supersonic nacelle exit as measured from the shadowgraph pictures.

.

.

Figure 11.- The calculated chordwise-distance ratio of the apex of the jet shock wave for test positions I_b and I_c as it varies with nacelle-exit total-pressure ratio for the supersonic nacelle exit.

NACA RM L56106

.

.

(c) Jet-shock-wave apex location.

(d) Jet-shock-wave wing-intersection point.

Figure 12.- Variation of θ , α , jet-shock-wave apex, and wing-intersection point with nacelleexit total-pressure ratio for the nacelle sonic and supersonic exits at test position I_b , as measured from the shadowgraph pictures.

NACA RM L56106

.

.

.

Figure 13.- Variation of exit- and jet-shock-wave angles with nacelleexit static-pressure ratio for free-stream Mach numbers of 1.39, 1.80, and 2.02 for the nacelle sonic exit.

.

(b) 1.40 $\! D_{\rm T}$ spanwise from nacelle center line.

Figure 14.- Chordwise variation of jet-on pressure coefficients for test positions I_a , I_b , I_c , and II_b at a supersonic nacelle-exit total-pressure ratio of 7.

NACA RM 156106

(d) 6.94DT spanwise from nacelle center line.

Figure 14. - Concluded.

Figure 15.- Variation of jet-on pressure coefficient with total-pressure ratio for various orifices located on the nacelle center line at all test positions.

NACA RM 156106

.

.

(b) 1.40D_T spanwise from nacelle center line.

Figure 16.- Chordwise variation of jet-on pressure coefficients at test position I_b for both sonic and supersonic nacelle exit at a nacelleexit total-pressure ratio of 7.

Supersonic nacelle exit, $H_{\Theta}/p_{\infty} = 12$, $M_{\Theta} = 1.79$

(a) Nacelle-exit static-pressure ratio of 1.96.

Figure 17.- Chordwise variation of jet-on pressure coefficients with shadowgraph pictures at test position I_b for both sonic and supersonic nacelle exits.

Jet-on pressure coefficient,

D

Supersonic nacelle exit, $H_e/p_{\infty} = 6$, $M_e = 1.79$

(b) Nacelle-exit static-pressure ratio of 0.98.

(b) 1.40De spanwise from nacelle center line.

Figure 18.- Chordwise variation of incremental pressure coefficient $p_n - p_f$ at two spanwise stations for positions I_a , I_b , and I_c at a nacelle-exit total-pressure ratio of 7.

Figure 19.- Chordwise variation of incremental pressure coefficients for test positions I_b and II_b at a nacelle-exit total-pressure ratio of 7 along the nacelle center line.

Figure 20.- Chordwise variation of incremental pressure coefficients at test positions I_b for both sonic and supersonic nacelle exit at a nacelle-exit total-pressure ratio of 12 and a nacelle-exit static-pressure ratio of 1.96.

Figure 21.- Incremental-pressure-coefficients profile for a nacelle-exit total-pressure ratio of 15 at position I_b showing area that was integrated to compute ΔC_n .

1

.

NACA RM L56106

¢

.

.

(b)
$$H_e/p_m = 15$$
.

Figure 22.- Variation of a typical $\Delta C_p d(x/D_T)$ with y/D_T showing second process of integration in obtaining ΔC_N for position I_b .

Incremental normal-force coefficient, $\Delta G_{\rm N}$

Figure 23.- Variation of incremental normal-force coefficient, based on $A_{\rm T}$, with nacelle-exit total-pressure ratio for both the sonic and supersonic nacelle exits at test positions $I_{\rm a}$, $I_{\rm b}$, and $I_{\rm c}$.

.

NACA RM L56106

r

+

(b) Supersonic nacelle exit. $H_e/p_{\infty} = 7$.

Figure 24.- Chordwise variation of incremental pressure coefficients at test position $I_{\rm b}$ for both sonic and supersonic nacelle exits along the nacelle center line at free-stream Mach numbers of 1.39 and 1.80.

(b) Sonic nacelle exit for orifice. $x/D_{\rm T}$ = 2.43; $y/D_{\rm T}$ = 0.

Figure 25.- The variation of incremental pressure coefficients with nacelle-exit total-pressure ratio for free-stream Mach numbers 1.39 and 1.80 at test position I_b for supersonic and sonic nacelle exits.

(d) Sonic nacelle exit for orifice. $x/D_T = 3.47$; $y/D_T = 0$.

Figure 25.- Continued.

Figure 25.- Concluded.

NACA RM 156106

Figure 27.- Variation of incremental normal force to thrust-coefficient ratio with total-pressure ratio at test positions I_a , I_b , and I_c for both sonic and supersonic nacelle exits.

(b) Sonic nacelle exit.

Figure 28.- Variation of incremental normal force to thrust ratio with nacelle-exit total-pressure ratios at position I_b for both sonic and supersonic nacelle exits at free-stream Mach numbers of 1.39 and 1.80.

.

.

F

NACA RM L56106