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RESEARCH MEMORANDUM

WIND-TUNNEL INVESTIGATION OF EFFECTS OF VENTRAL FINS AT .
TWO POSITIONS ON LATERAL-STABILITY DERIVATIVES OF —
45° SWEPT HIGH-WING MODEL OSCILLATING IN YAW

By Byron M. Jaquet
SUMMARY

An investigation was made in the Langley stability tunnel to deter-
mine the effects of ventral fins at two positions (0° and -70° dihedral)
on the lateral stability derivatives of a 45° swept high-wing model
oscillating in yaw. The effect of the ventral fins on the stability
derivatives was determined with and without the vertical and horizontal
tails for an angle-of-attack range of 0° to 30° at a Mach number of 0.13

and a Reynolds number of 0.83 X 106, based on the wing mean aerodynamic

chord. The steady-state derivatives for a similar model without ventral
fins are also presented. No discussion of the data has been made in order
to expedite their publication.

INTRODUCTION

Maintaining sufficient directional stability at supersonic flight
conditions has become a difficult problem for designers of airplanes.
In many cases, the vertical tail, being in a position where it is greatly
influenced by the wing and fuselage wakes, loses its effectiveness at
comparatively low angles of attack. (See refs. 1 and 2, for example.)
The advantage of using a ventral fin to provide additional directional
stability is indicated in reference 3. Two serious disadvantages of the
fixed ventral fin are that the landing angle is restricted and the aspect
ratio of the ventral fin must be low in order to prevent further landing-
angle restrictions. To overcome these deficiencies, one aircraft manu-
facturer has suggested the use of twin ventral fins which would be used
at 0° dihedral for landing and take-off and at -70° dihedral for other
flight conditions.

The purpose of the present investigation was to determine the effects
at low speed of ventral fins at two positions (dihedral O° and -70°) on
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the lateral stability derivatives of a 45° swept high-wing model oscil-
lating in yaw. The steady-state static lateral stability derivatives
of similar models (without ventral fins) are presented in reference k.

SYMBOLS

The data presented herein are referred to the stability system of
axes (fig. 1) which have their origin at the projection of the quarter-
mean-aerodynamic-chord point of the wing on the fuselage reference line.
The coefficients and symbols are defined as follows:

Rolling moment

C, rolling-moment coefficient,
: 9Syby
Ch yawing-moment -coefficient, Taving moment
aSyby
b span, ft
S total area, sq ft
Se . exposed area, sq ft
1 tail length, distance parallel to fuselage center line

from cw[k to &/k of tail, ft

c local chord parallel to plane of symmetry, ft
5 b/2
¢ mean aerodynamic chord, gl/“ cldy, ft
' 0
pV2
a dynamic pressure, 1lb/sq ft, —
0 mass density of air, slugs/cu ft
v free-stream velocity, ft/sec
a angle of attack, deg
B angle of sideslip, radians

é rate of change of angle of sideslip with time, radians/sec‘
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¥ angle of yaw, radians

v rate of change of angle of yaw with time, radians/sec

r yawing angular velocity, @, radians/sec

T yawing angular acceleration, W, radians/sec

k reduced-frequency parameter, .§§E

w circular frequency of oscillation, 2xf, radians/sec

f frequency of oscillation, cycles/sec

y spanwise distance measured from and perpendicular to plane

of symmetry, ft

Q/

Cy

W
?]
wW

3y
8T 3

Q
i

Q

o~

H

1}
Q/
mj%“-;lo
<lo’ e~

Q
|
Q/
Q
=]

._;'3
|

drb
2V

Q/
Q
o~

wf]

Q/
Q

e

Q
o~
e
i
:Té |%’
o
ol Pl



N NACA RM L56J31a

Cpe =
yve
Subscripts:
f ventral fin
h horizontal tail
v vertical tail
W wing
w parameter measured under oscillatory conditions

MODEL AND APPARATUS

Model

The model used in the present investigation is shown in figure 2.
The fuselage was constructed of balsa with fiber-glass covering. The
wing and tail assembly (vertical and horizontal) were constructed of a
balsa core about which was moulded a plastic material. The wing had
Spruce spars to assure rigidity. The ventral fins, constructed of

g%'inch balsa, had beveled trailing edges and rounded leading edges.

A canopy was on the model at all times. Additional details of the model
are given in tables I to ITII.

Tunnel and Oscillation Equipment

The tests were made in the 6- by 6-foot test section of the Langley
stability tunnel (ref. 5) with the walls at zero curvature.

The equipment used to oscillate the model is shown in figure 3 and
is basically that used in the investigation of reference 6 except that
V-belts and pulleys were used for the present investigation in place of
the gear reduction unit. The connecting rod was pinned to an eccentric
on the flywheel and transmitted a sinusoldal yawing motion to the model.
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Recording Equipment

The recording of data was accomplished by the equipment described
in detail in reference 7. A part of this equipment was a sine-cosine
resolver which was attached, through a thin shaft, to the flywheel and
modified the output signals from resistance-type strain gages used to
measure the rolling and yawing moments so that the measured signals were
proportional to the in-phase and out-of-phase components of the gage
signals. These signals were read visually on a highly damped direct-
current meter; and the readings, when multiplied by the appropriate con-
stants, gave the aerodynamic derivatives:

o + k2CZ.

B,w r,w
Cna,w + k2Cnf,w
“ir0 1,0
Cnr,w - Cné,w

In order to eliminate inertia effects, the wind-off values of these
derivatives were subtracted from their respective wind-on values.

TESTS AND CORRECTIONS

The model was tested through an angle-of-attack range of 0° to 30°
at 5° increments with the exception of one case where, in order to avoid
a resonant condition, an angle of attack of 26° was tested instead of 25°.
The amplitude of yaw was +4° and the frequency of oscillation was

ll cycles per_second. The reduced-frequency parameter k was equal

to 0.0843. The Mach number was 0.13, the Reynolds number (based on the

wing mean aerodynamic chord) was 0.83 x 106, and the dynamic pressure
was 24.9 pounds per square foot. With the complete model and with the
tall assembly off (vertical and horizontal) the ventral fins were tested
at 0° and -70° dihedral for the previously stated test conditions. The
tests were also made with the ventral fins off.
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It should be noted that the ventral fins were behind the strut for
all tests. The wing-fuselage combination with the ventral fins at -70C
was inverted and tested at angles of attack of 0°, 10°, and 20° to deter-
mine the influence of the strut.

The data are uncorrected for support-strut téres, blocking, or jet-
boundary effects.

RESULTS

The effect of the ventral fins on the in-phase derivatives

o + k2C,,. and C + X2, , and the out-of-phase derivatives
3w Dy w 'g,a L w
Cnr,w - Cné,w and Cir,w - Czé,w for the model with the tail assembly

off and on are presented in figures 4 and 5, respectively. The increments
in these derivatives caused by the ventral fins are shown in figure 6.
Also presented in figures 4 and 5 are steady-state derivatives previously
obtained in the Langley stability tunnel for a similar model without ven-
tral fins. This model was model D of reference 1, except for the differ-
ence in size. o

'As mentioned previously in the section entitled "Tests," the wing-
fuselage combination with the venRral fins at -TO° dihedral was tested
in an inverted position (to remove the fins from behind the strut) at
angles of attack of 09, 10°, and 20°. These data are not presented
herein, but it should be noted that when tested in this manner the
damping in yaw was almost identical to that presented in figure 5. The
directional stability was slightly more favorable (by about 0.03 at each
angle) than the corresponding curve in figure 4; the values of
Cy + k2Cy, and C, - Cys tended to be more positive, probably

B,w r,w T, B,w

because of a change in wing loading due to the strut projecting from the
upper surface of the wing.

CONCLUDING REMARKS

An investigation was made in the Langley stability tunnel to deter-
mine the effects of ventral fins at two positions on the lateral stability
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derivatives of a 45° swept high-wing model oscillating in yaw. The
data are presented without discussion in order to expedite publication.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., October 16, 1956.
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TABLE I.- PERTINENT DETAILS OF MODELS

Fuselage:

Iength, In. . @ 4 4 o 4 4 4 o o ¢ o o o ¢ ¢ 6 o o s o s 2 s s 6 6 o s a o oo

Ratio of nose length to rearward length o« « « o ¢ ¢ o s ¢ ¢ o 2 o o o = + « o o 1,563
Maximum height and width, In. . & v v 4 ¢ ¢ ¢ 4t 4 ¢ ¢ 4 e o s s o s v o s . . 5.40
Fineness Tatlo « o o o o o 4 4 4 o e 4 o o o e s e e b s s s s e e e e e . 9.26
Side area, sq in. S s 4 s s s s e e s s s e e e s s a6 s e e s s e s e e 12,7
Volume, CU 2Na o o o o 4« o o ¢ o o o o o o e s o o s 0 o s o o o o o o oo 96kM
Maximum cross-sectional area, 8q iNe + o ¢ o o 4 ¢ s+ 4 4o s 0 o 0 o s o 0 0. . 28.3

Vertical tail:
Total area to fuselage center line, Sy, 5@ IN¢ & v o « o o s « « o o o & o« . » 68.7

Exposed area, Sg vy 8Q 10 o 4 4 ot bttt i ittt e e e ... BB

Span from fuselage center 1ine, in. & & ¢ o ¢ 4 v 4 ¢ ¢ e s s 4 s e s s 0. . 9.81
Root .chord, INe’ o 4 o 4 o o o o o o o o o s o o o 5 o 2 s s s s s s o oo 8.7
Mean aerodynamic chord, in. L I R S N Y Y
Sweepback of quarter-chord 1line, deg . + « « ¢« 4+ o o « o o o o ¢ 0 6 o s o o o L5
Taper ratlo o o o o o o ¢ o o o o 2 o o 0 6 2 8 s 0 8 o s s s o s e e a s eeas 0.6
Aspect TAE10 & & o 4 o 6 4 o 4 4 s o 8 5 s s 6 0 8 0 6 6 s e o s e e s e o 1
NACA airfoll section parallel t0 Yoot chOrd o o o « o o ¢ o« o « o o o o o o o 654008

)
:
)
)
)
)
:
)
Q
E
3

1
Tail volume, Bfg% s o o o o 8 0 6 8 0 5 s s s 6 s 8 s

Canopy:

Length, in. ® o o 8 a e s s e 6 0 s s s s s 0 6 s 6 s s s s s e s e s s e s 1.0
Side area, sq in. ® s 4 s 6 8 s s 6 e s s 5 s s s e s s s e e s s e e s s 11.9
Maximum cross-sectional area, 8 INe « 4 o ¢ o ¢ ¢ o ¢ ¢ o o o 6 6 s o 0 0 o o 2.0
Volume, cU I0s o 4 o o o o o o = ¢ o 2 o o o o o o o o s s s 0 000060 ee . 151
Ratio of length to maximum width . . . . s s o s s s s s e e s e s s s 599
Ratio of distance from fuselage nose to fuselage width o 6 o ¢ o s o & & » o « 1.11
Wing:
Area, 8Q INo o o o o 4 4 4 o o 4 ¢ 4 4 5 4 6 e s e s s s e e s 6 s 6 o s s e« 3240
Span, INe & « o« o o o o 6 o o o o o s v s o8 06 6 8 s s s o s e s e e s s s 31,18
Root chord,- in. © 6 4 4 o 6 6 s 6 o s s s s s s e s s s s e e s s e e e s e 12,99
Mean aerodynamic chord, INe & 4 o o ¢ o o o o s o s s s o o o s o e o s o+« 10.63
Sweepback of quarter-chord line, deg s s 5 e e 6 e e 5 s e s s e s e a s e e s 45
Taper ratlo o o« o o o o o o o o s o o o 2 s 2 s o o s o.0 e 0o 06 a0 0 s e e e 0.6
Aspect Tt10 o o o ¢ ¢ o e 6 o s 0 6 o s s e 0 0 s o s s s s 0 s 0 s e s s s 3
NACA airfoll section parallel to the plane of SymMELTY 4+ « o o o o« o o o « « 654008
Horizontal tail:
Total area, 5 INe 4 o o o o 4 ¢ o o o o o o o o s o s a s s s s o s o ¢ a0, 64.8
Span, INe 4 4 o 6 e ¢ s ¢ s 4 o 0 6 s s e 6 4 b s s s s s s e e e s e .. 16,10
Root chord, in. @ ¢ 8 8 s 6 6 4 s o e s s s s 0 s s s e e s a0 e s s s e e s 503
Mean aerodynamic chord, INe o ¢ o & o o o o o o o o s o o o o o o s s o o« o o b1
Sweepback of quarter-chord 1ine, deg 6 4 s o 0 o o s s s s s s e s e e 45
Taper TAt1O o o o o o o o o o o o « o o s o o 6 s s s°2 o s o 6 0606 e 060 0e. 0.6
Aspect TAE10 4 4 4 4 ¢ 4 e e 6 o e e e s e o s s e s s s e e s e ae e e s 4
NACA airfoll section parallel to plane of SYMIELTY o ¢ ¢ o « o« o o o « « o« o 654008

1
Tail volume, L 0.32k

Ventral fin (dimensions of. one panel unless otherwise noted):

Total area to hinge 1ine, 8Q INe ¢« o o ¢ s « o o o & a ¢ o s o o 0 o o o o o & 16,3
Span from hinge 1ine to t1P, INe ¢ ¢ o o 4 o o s o o o ¢ s s o o s o o o o o o L.58
Root chord on hinge 1iIne, Ine - « & o o ¢ o o ¢ o o o o » s o « s s ¢ o s a o s 532
Mean serodynamic chord, In. « ¢ o & o o o o o o s o o s o o o o o o o o o . s 3.8
Sweepback of quarter-chord 1ine, @8 « « «.2 o o o o o « o o o o 6 o o s s o o 45
Taper Tatlo o o o o o ¢ o o o o » o ¢ o o o 5 o 2 o o o s s s s a s s o o s o s 034
Aspect TBLIO & o 4 4 ¢ o 4 o 4 4 4 4 4 4 s e 6 5 0 s s e s s o s s 0 s e e e s 129
ALrfoll 8ectlon « o « o ¢ o e o s ¢ ¢ ¢ o o ¢ s s s o e+ o o « o Modified flat plate

Distance from Gy/4 to leading edge of root chord on hinge line, in. . . . . . 6.82
Distance between hinge lines of right and left panels, fraction of

One Panel SPANL o o« o o o « s o o o s 4 o o o s o o o s s s s s s s s s oo « 0.698
Distance from leading edge of root to cf/h in, e e s o e o s s s s s e e e s 3,21
Ratio of total aree of both panels to exposed vertical-tail area . « « « o« o« o 0.60
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TABIE II.- FUSEIAGE COORDINATES

[Fineness ratio 8 .3&]

lp
— X |
/- _ - 1
\ I |
! )
r 6 M
f.
=~ W ™
AN = ,
x/lp w/lp
0 ; 0
Ol .012
.08 .022
W12 .030
.16 : 038
.20 043
02’4’ 00)4'8
.28 051
A32 '053
.36 054
40 054
Ak 054
48 L5k
.52 054
05 0053
.60 052
.64 051
.68 049
.72 .048
.76 , .0k6
080 , Qé‘i‘tj
08& ' [ ] O
.88 ' .038
.92 .03k
.96 .031
1.00 .027
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TABLE III.- CANOPY COCRDINATES

=T 1,

fr——————— , lc —
£ - - b1l
y ——~ X
1 & - - —
ST —— ==
1. = 14.00 inches
x[1le v/l z/le _ x[le | ¥/l z/1,
0 o} 0.108 0.429 0.08k4 0.171
.080 179
.018 .025 JA11 071 .196
o} 122 .061 214
: 051 .232
036 .032 11k . .036 .250
0 .136 +OL4 .268
: 0 271
.071 LOl6 .121
.039 132 «500 .081 179
.031 JAh3 0 ' .268
.021 154 .
o} 164 STL .073 .183
0 : 261
143 .063 134
o} 211 643 .063 .186
, 057 <196
214 073 A5 | 046 214
' 066 161 032 2232
.059 W179 .009 250
049 .196 _ o] 252
038 214
024 232 rar 052 .190
0 241 0 24
.286 .079 .155 .786 .039 .191
0 259 0 .229
T W357 .082 164 .857 .026 .193
o] .269 .019 .200
.016 .207
.006 214
0 .216
.928 .013 +193
0 220k
1.000 o} .193
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Relative
wind

O

Relative wind . \

2?

Figure l.- Stability system of axes. (Arrows indicate positive coeffi-
cients, velocities, and displacements.)
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Figure L4.- Variation with angle of attack of the 1n-phése lateral oscil-
latory derivatives of 45° swept high-wing model.
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Figure 5.- Variation with angle of attack of the out-of-phase lateral
oscillatory derivatives of L45° swept high-wing model.
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Figure 6.~ Effect of ventral fins on lateral oscillatory derivatives of
45° swept high-wing model.

NACA - Langley Field, Va.
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