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By G. Morrell. 

Flow theory of l iquid f o a m  was applied t o   t h e  rocket-engine  injec- 
t i on  process. By foaming the  propellants and thereby changing their   bulk 
densit ies it i s  possible,  in  theory, t o  vary  rocket  thrust  continuously. 
An analysis of the method, aesuming constant  orifice flow coefficients, 
f a  presented and. discu6sed. 

I D a t a  from preliminary  experiments i n  a 1000-pound-thrust amnonia - 
7 
7 six times  the  theoretical gas-fluw r a t e  was required in the experiments. 
3 , .  It was demonstrated, however, tha t   the  "foam-flow" method of  thrust v a r i -  

nitr ic  acid  rocket engine agreed only qualitatively with theory; t w o  t o  

ation is feasible. 

Continuous thrust variation  in  rocket  engines (throttling) is es- 
pecially  desirable  for  piloted  aircra9t  applications. In guided missiles 
the  use of a single powerplant f o r  both  boost and sustainer  operations 
would be  possiblej  vernier thrust control  near cut-off is another  possi- 
b l e   f i e l d  of application.  Currently,  rocket-thrust  variation is accom- 
plished by using  multiple  fixed-thrust  cylinders. 

Mechanical methods f o r  varying thrust by injection orifice control 
are described i n  references 1 and 2. T h i s  report describes a method for  
controlling thrust  by varyin@; propellant  density. Continuous density 
variation is achieved by foaming the  propellants with an inert,  insoluble 
gas. To maintain high propulsive  efficiency,  the  exhaust-nozzle  area 
must a lso  be varied. This complementazy problem of  exhaust-nozzle-area 
control is treated in reference 3. 

Fm-flow  theory i s  discussed i n  reference 4, and  ha^ been applied 

ences 5 and 6. RefErence 6 also reports  experimental data which ~ ; p e  in 
substantial  Ebgreement with theory. 

I t o  the hydrcduct, an underw&cer propulsion  device, 88 reported  in refer- 

- 
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I n  this report  the foam-flow theory is applied to   the   in jec tor  ori- 
f i c e  of a rocket engine to   calculate  the reduction i n  the  propellant flow * 

as a function of t he   r a t io  of the flow ra tes  of the Inert  gas and the  
propellant. Other parameters involved are the initid injection  pressure 
ratio,  the gas specific  heat  ratio, and a term including  the fluid 
properties. 

Several  preliminary  experiments w e r e  conducted i n  a nominal 1000- 
pound-thrust ammonia - nitric  acid  rocket t o  measure the  reduction i n  
l iquid flow over a smal l  range of gas flows. The deviation of the re-  
su l t s  from calculated  values is discussed as w e l l  as the   feas ib i l i ty  of 
t h i s  method of thrust control. 
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SYMBOM 

The following symbols me used i n  this report : 

cross-sectional area 

orifice  discharge  coefficient 

conversion  constant 

pressure 

gas constant 

absolute  temperature 

velocity 

volume 

weight 

weight-flow ra t e  

r a t i o  of injection pressure t o  chauiber pressure  for full flow, 
P l k ,  0, dimensionless  (see  subscript list) - *  

rnpZ/pc, o, dimensionless 

r a t i o  of specific heat.6, dimensionless , .  

r a t i o  of part-thrust flow r a t e   t o  =-thrust flow rate, wz/wzI0, 
d i m e n s  ionles B 

c 



NACA RM E56K27 - 3 

t r a t i o  of gas-flow rate t o  liquid-flow rate, w$w2,  dimensionless 

p propellant  density 

z r a t i o  of p&-thrust burning t i m e  t o   t o t a l  burning time, 
dimensionlees 

d 
2 -  

subscripts : 

C 

f 

g 

2 

0 

th 

1 

2 

couibustion c h m e r  

foam 

gas 

l iqu id  

f’ull-thrust condition 

theoret ical  

upstream of inject ion  or i f ice  

inject ion  or i f ice  discharrge s ta t fon 

ANALYSIS 

In the fol larfng analysis,  expresaions are derived  for the reduction 
i n  liquid flow as a function of  t he  gas ’to l r q i d  r a t i o  e f o r  s e v e r a l  
values of a and p and f o r %  W u e  of r of 1.67. Two flow cases axe 
treated: co~npressible,  isothermal gas flow, assuming thermal  equilibrium 
between the gas and the l iqu id  and essentially conetant internal energy] 
and  compressible  adiabatic f l o w ,  assuming no interchange of energy between 
the gas and the liquid. In both cases, any heat transfer between the  
f luid and the  surroundings is ignored. 

Derivation of Flow Equations 

The foam-flow equations are derived on the basis that the gas is 
uniformly  dispersed and is insoluble i n  the  Uquid and that the flow is 
one-dimensional. The continuity  equation is  

wg + wz = wz (1 + e) = p h  



4 - NACA RM E56K27 

Gas and l iquid V O l W e f 3  may be considered add i t ive ,  80 that 

v = vg + VI 
or since 

v = -  W 
P 

Substituting  the  gas-liquid  ratio 

gives  the following equation for foam density: 

The simplified Euler  equation for one-dimensional  comgressible-flow is 
written BB 

In solving equation (3), the  following assumptions were made: (1) flow 
veloci ty   a t   s ta t ion 1 is  negligible colnpared with  that at s ta t ion 2; 
(2) at s ta t ion 2 t h e  pressure i s  equal t o  the conibustion-chamber s t a t i c  
pressure,  that is, p2 = pCi (3) the   character is t ic   velodty based on 
liquid flow (p&-g/wzJ where % is nozzle-throat area) remains  constant, 
o r  pc cc wZf (4) the  l iquid f low i s  isothermal3 (5) the gas behaves ideal- 
ly,  tha t  is, pg - p/RTj and (6) t h e  propellant mixture r a t i o  remains 
constant. 

” 
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and  substitution in equation (1) gives 

s m  . 1 
. .  

PC p2 

a2 

Dividing  equation (5) by (6) gives the liquid-flow  ratio, 

-a 

W a ,  0 

or 
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If on the other Plana the gas-phase flow through the  injector i s  
adiabatic,  the gas density derived from the ideal gas l a w  and the  &a- 
batic  equation of state is 

which  upon substitution  with  equation (2) i n  equation (3) followed by 
integration fleld.s 5 

& 

Following the same procedure as above and substituting  equation (9) 
i n  equation (1) gives the   l iquid flow per unit  area 

Division of equation (10) by w2,,/A2 f r o m  equation ( 6 )  yields t h e  
liquid r a t i o  
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6 

which reduces t o  

(12) 

Equations (8) and (12) were solved on a cera-programmed calculator 
f o r  several  values of OG and B, for  a single v d u e  of y (helium gas 
assumed; y, 1.67 1, and f o r  a constant discharge coefficient, that is, 
when cu equals 1. The last condition waa assumed i n  order t o  simplify 
the  calculation. There is no experimental  evidence ei ther  t o  support  or 
negate this assungtion. Figures 1 and 2 show the relat ions between the 
l i qu id   r a t lo  6 and the gas-to-uqufd r a t i o  6 for compressible, iso- 
thermal fluw and  compressible, adtabatic flow, respectively. The depend- 
ence of t on a is shown In figure 3, and the  dependence of 6 on p 
is shown i n  figure 4 both f o r  a 6 value of 0.5. 

Discussion 

In terms of gas requirements,  adiabatic gas f low is less economical 
than  isothermal  flow. From the nature of the flow process,  especially 
the short  s tay time i n  the infector, it appears  probable that the amount 
of energy  interchange between l iqu id  and gas wfll be small, and the  gas- 
phase flow will be more nearly a a b a t i c  than isothermal. 

For the a range normally encountered i n  rocket  practice (1.1 t o  
1.31, injection  pressure has a large effect  on gas economy. F r o m  figure 
3 it appears that engines using the foam-flow technique  should be de- 
signed with  injection  pressure ratios i n  the range of 1.5 t o  2.0, if 
possible. 
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The parameter f3 also has a W g e  influence on g&s economy; the 
larger  the value of  B, the lower is the value of c fo r  a given  value 
of 6, as sham in  f igure 4. I n  effect, this m e a n s  that for  a given  gas 
and chamber pressure, foam-flow thrust variation is most prac t ica l   for  
high-density  propellants. In  the following table are listed values of 
fl for  several  propellauts for the cme where R is 386 foot pounds per 
pound per OR (helium gas) and pc, i s  450 pounds per  square  inch: 

Propellant 

4.4 37 Hydrogen 
~ 

p2 T l ,  

Ammonia 460 41.3 
Jet f i e 1  530 

93  530 Nitric  acid 
47 

?R lb/cu f t  

, Oxygen 71 167 

B 

0.97 
70.7 
113.0 
150.7 
290.1 

It is appaxent  immediately tha t  f’uel - n i t r i c  acid systems are best 
sui ted  to   the foam-flow  method  of thrust variation, and that   the  method 
w o u l d  be irnpractical  for hydrogen systems. 

To i l lustrate  the  application of the analysis, t h e  following example 
is presented. The model chosen is a rocket  missile  using  Jet  fuel and 
nitric acid at a mixture r a t i o  of 4. Full-tbrwt conditione were assumed 
t o  be as follows:  thrust, 20,000 pounde~ net  specific impulse, 220  pounds 
per second per  pound^ chaniber pressure, 500 pounds per 6quert.e inch; in- 
jection  pressure, 650 pmd.6 per square inch; and injection  temperature, 
530° R. Powered flight duration was held constant at 2 minutes, and 
helium gas w a s  used, which w a s  stored at 3OOO pounds per square  inch and 
530° R. For maximum total impulse the volume of propeUants required is 
140 cubic  feet. Helium density at storage  conditions, 1.93 pounds per 
cubic  foot, w a ~  ca3culEcted f’rom the data of  reference 7. The average 
density of the  propellants is 78 pounds per  cubic  foot,  equivalent t o  a 
B value of 222. When compressible, adiabatic flow i s  aesumed, t,he re la-  
t ion  of 6 and 8 from figure 2 i s  

EEFl c 0.0085 0.0235 0.065 

These data and assumptfons w e r e  used to  calculate  the  required gas and 
l iquid volumes as a function of the fraction of t o t a l  powered flight 
time fo r  one-quarter,  one-half, and three-quarters thrust operation. 
The resu l t s  of the  calculations are shown in figure 5. To provide half 
thrust for  half t he  fl ight  duration would require  a gas volume equal t o  
about 30 percent of the l iquid volume. Total .  volume w o u l d  be only 
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sl ight ly   less   than that f o r  full-thrust, full-duration flight. Since 
high-pressure  gas  tankage w i l l  be  heavfer than liquid t e e  on a uni t  
volume basis, it is clear   that   the  foam-flow technique f o r  thrust  varia- 
t i on  imposes a weight penalty on the  vehicle  structure, even though the 
gross vehicle  w e i g h t  is less   than that for   ful l - thrust  flight. 

How t h i s  weight penalty compares with  the added w e i g h t  due t o  mul- 
t iple   thrust   cyl inders  and the  gear for varying injection  orifice  area 
w i l l  depend on the flight progrsm and vehicle design and cannot be stated 
in  generallzed terms. Qualitatively, however, it is apparent from figure 
5 that   the  foam-flow technique is most advantageous f o r  smaller values of 
1; and larger values of 6. For lasge  values of 6, precise  control of 
gas flow may be a problem. 

A short series of experiments were run i n  a nominal 1000-pound- 
thrust  water-cooled rocket t o  check the analysis. The propellant system 
was  ammonia - white fuming nf t r i c   ac id  (WFNA) with helfum used BB the 
pressurizing and foaming gas. Each propellant w a s  foamed separately 
before  entering  the  injection manifold. Flow-line addition of lithium 
metal to the ammonia caused spontaneous ignition i n  the conibustor. A 
schematic drawing of the  flaw system is shown in  f igure 6. 

The thrust  cylinder had an inside diameter of 4 inches and an over- 
all length of 1% inches. The cylindrical  portion of the conibustor w a s  

8- inches long; nozzle-throat diameter, lj-j- inches3 and nozzle-exit diam- 

eter, % inchee. The characteristic  length of the rocket was 47 inches. 

3 

5 13 
8 

3 

The doublet-type infector consisted of 24 pairs of f'uel and olddant 
orif ices  arranged i n  a c i r c l e  with a mean dAameter of 2.5 inches. The 
fuel-orifice diameter w a s  0.0515 inch, and the oxidant-orifice  diameter, 
0.072 inch. 

Gas-Injection Device 

Several  gas-injection devices w e r e  qual i ta t ively tested w i t h  water 
i n  a, transparent  tube t o  check the degree of gas dispersion and flow 
s tab i l i ty .  The f i n a l  design, shown i n  the in se r t  of figure 6, consisted 
of a 2-inch length of 5/16-diameter tubing with 220 holes, each v l t h  a 
0.0135-inch diameter, arranged i n  ll c i rc les  of 20 holes each. The tube 
was f i t t e d   i n t o  a T so tha t  the- tube axis coincided with the through axis 
of the 9. 
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Calibration of the  gas-injection  device  with water as the  l iquid in  
the  propulsion  system  indicated  that flow w a s  f ree  from surges when the 
gas-inJection  pressure was not more than 100 pounds per square Inch 
greater than the liquid-injection  pressure. 

Instrumentation 

Flow rates of the  propellants were measured by rotating-vane-type 
meters with an e r r o r  of about I percent. --flow rates w e r e   m e a s u r e d  
by orifices  with an error of &out 2 percent.  Pressures were measured 
with  strain-gage-type  transducers  having an error of abwt 2 percent. 
Thrust w a s  measured with a etrain-gage  load c e l l  having an accuracy of 
about 1 percent.  Temgeratures w e r e  measured witb c b r o m e l - d ~ ~ ~ ~ l  
thermocouples. 

Operating  Procedure 

The engine waa star ted and operated at f'ull-flow conditions f o r  . I 

about 10 t o  15 seconds, then helium was admitted and the engine  operated 
at part  thrust f o r  an additional 10 t o  15 seconds.  Operation was f ina l ly  
shifted t o  full-flow condltions  for approximately 3 t o  5 seconds prior t o  .. 
shut down i n  order t o  check the initial data. 

Data for  the  four experiments  performed are   Usted i n  tab le  I. 
Table I1 shows the  values of the analytic parameters and a comparison of 
the experimental and theoretical  gas-liquid  ratios. The aasumption of 
constant c b a c t e r i s t i c  velocity ( & d e r  pressure  proportional t o  flow) 
was nearly fulfilled i n  the experiments as shown i n  t&le  I. The largest  
deviation  occurred in   t he  second run. The assumption of a constant mix- 
ture r a t i o  w a ~  not f u l f i l l e d   i n   t h e  f i rs t  two runs, (i.e., 6 for  the Fuel 
and the oxidant were not the  same (table II) ), which may account f o r  some 
of the variation i n  the c k a c t e r i s t i c  velocity. 

Conpariaon of --Liquid m t i o s  

Although the experiments definitely show that substantial  thrust 
variation can be obtained by foaming the propellants t o  alter their bulk 
density,  the  eqerimental gas-=quid ratios were about txice  the  theoret- 
i c a l  values for  the  f'uel and three t o  six times the theoretical  values 
for the oxidant. 

There are a number of probable  reasons for  the discrepancy between 
the exgerimental and predicted  results: (1) the analysis assumed the 
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same dischmge  coefficient  for foam and liquid, and the experiments de- 
parted  seriously from t h i s  condition, as is shown in   t ab l e  I11 (discharge 
coefficients were calculated by eqs. (6) and (10)); (2) the gas-injection 
device may not have produced a uniform gas dispersion  since the design 
w a s  selected on the basis of gross visual observations~ and (3) the in- 
jector manifold design  tended t o  produce a  centrifugal component of ve- 
l o c i t y  i n  the f l u i d  which may have caused gas-liquid  separations. The 
anomaly of dischwge coefficients greater than  unity may have been  caused 
by experimental error. 

More resewch is  needed t o  improve the  foam-flow  method of rocket- 
thrust  variation.  Studies aze needed on the methods f o r  producing mi- 
form, stable foams md f o r  t he  design of flow 3a~isages which w i l l  minimize 
gas-liquid  sepasation. The fluw of foams through orifices  should also be 
studied to   es tab l i sh  discharge coefficients 88 a function of the flow 
conditions and the fluid  properties.  Since one of the  propellants will 
be used as a coolant, studies should be conducted on the heat-transfer 
characterist ics of  foamed l iquids.  It might be expected tha t  f o r  moder- 
.ate gas-liquid ratios, the heat-transfer  characteristics of foams will 
approach those f o r  liquids under nucleate  boillng  conditions. It was 
found in  water calibrations of the  flow systems that large pressure dif- 
ferences between l iquid and gas produced. intermittent flow of liquid. 
Flow of  this type would certainly result i n  low-frequency  combustion os- 
c i l la t ions  in  a  rocket  engine. When apprying the foam-flow technique t o  
a powerplant, therefore,  special  attention will be required  in the design 
of the  flow system to avoid this type of f low.  

Operating Characteristics 

The t rans i t ion  f r o m  ful l - thrust   to   par t - thrust  and back to full- 
thrust  was f r ee  f r o m  surge in dl, runs. Since  the  pressure  difference 
between l iquid and gas was maintdned at a low value, the conibuEition was  
also f r ee  from oscil lations.  

This work has  demonstrated that it i s  technically  feasible t o  m y  
rocket-engine thrust by the foam-flow method. Research on severa l  prob- 
lems is needed Fn order t o  improve the  efficiency of the process,  partic- 
u l a r ly   i n  v i e w  of the  fact tha t  two t o  six times the theoret ical  gas-flow 
ra tes  were required in the few exgeriments  performed.  Further than this ,  
detailed analyses are required t o  es tabl ish the re la t ive  merits o f  foam- 
f low thrust vwiat ion against mechanical  techniques such as ori.fice-area 
variation o r  pump-speed variation. It is  quite  probable that no one 
method will be best, but rather tha t  the application and propellants 
chosen will determine the optimum method. 
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S-Y OF RES- . 
An analysis i s  presented on a method f o r  continuously  varying  rocket 

thrust by foaming the  propellants  to change their  bulk denaity. For a 
given thrust   ra t io ,   the   gas- l iquid  ra t io  depends on the full-thrust- 
injector  pressure  ratio,  the molecularr weight  and  temperature  of the gas, 
the  liquid  density,  the normal conibustion pressure, and the  gas expansion 
process. 

From a ser ies  of four wer imen t s  in a nominal 1000-pound-thrust 
e 
21 

rocket  using ammonia - nitric  acid  propellants  with helium as the foaming OJ 

gas, the  following  results were obtained: 

1. The technical feas ib i l i ty  of the foam-flow method f o r  thrust 
variation was sham. 

2. The experimental  gas-Uquid ra t ios  w e r e  two t o  sFX times the 
predicted  values. 

3. The characteristic velocity  for  pwt-thrust  operation was within " 

10 percent of that for  full-thrust operation,  indicating that foaming of 
the  propellants does  not Lmpair conibustion efficiency. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for  Aeronautics 

Cleveland, Ohio, Noveniber 27, 1956 
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(a)  Ratio of inject ion pressure to chamber pressure for full fbw, 1.1. 

Figure 1. - Variation of l lquid  r a t i o  for ieathermal gas flov. 
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Figure 1. - ContTnued. Variation of liquid r a t i o  for isothermal gas flow. 
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Figure 1. - concluded. Variation of liquid r a t io  for isothermal gas flow. - 
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Figure 2. - Variation of l iquid  r a t i o  for adiabatic gas flow with a specific heat 
r a t i o  of 1.67. 
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(b) Ratio of injection pressure t o  chsmber pre8sme 
f o r  full f l o w ,  1.3. 

'Figure 2. - Continued. Variation of 'Liquid r a t i o  fcrr adiabatic gae flow with a 
specific heat r a t io  of 1.67. .. ., 
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(c) Ratio of ~ n ~ e c t i o n  pressure t o  chamber pressure 
for  full flow, 1.9. 

Figme 2. - Concluded. Variation of l i m a  ratio far adfabatlc ~ E S  flow with a 
specific heat ratio of 1.67. 
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Figure  3. - Variation of gas-liquid ratio with i n i t i a l   i n j e c t i o n  
pressure.  ratio; liquid r a t i o  of 0.5. 
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F l m e  4. - Variation of gas-liquid ra t io  ulth the paa9nu3ter B; l iquid ra t io  of 0.5. N 
rJl 
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Figure 5. - Gas and liquid requirements f o r  par t -  
thrust  flight. 
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~ i g u r e  6. - Schematic diagram of experimental  rocket system. 




