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SLJM.1ARY 

The buffet characteristics of a 1/10-scale model of an attack air
plane have been investigated at Mach numbers from 0.80 to 1.00. The wing 
had a modified delta plan form with an NACA 0008 (modified) airfoil sec
tion at the root and an NACA 0005 (modified) airfoil section at the tip, 
a leading-edge sweep of 41.110 , an aspect ratio of 2.91, and a taper ratio 
of 0.226. Modifications to the basic configuration included a tapered 
wing - leading -edge extension with camber, an addition to the wing trailing 
edge sweeping it forward 100 , and an area addition to the rearward fuse
lage section . In the speed range where the buffet boundary of the basic 
configuration was lowest, the buffet intensity was reduced substantially 
when these modifications were added to the model. 

During buffet, the wing vibrated pri marily in the first symmetrical 
mode . The damping of the vibrati on was not primarily aerodynamic as is 
the case for airplanes in fl i ght at these speeds but, instead, was mostly 
structural apparently because of friction in a dovetail joint. As a 
result, any attempt to predict fl i ght buffet stresses from the results 
of this investi gation must be based on an estimate of the aerodynamic 
damping for the airplane. 

A techniQue is described for making wind-tunnel buffet measurements 
and for deducing the system dampi ng from the power spectrum of the wing 
vibration. EQuations are derived for the buffet response of a platelike 
wing, the structural characteristics of which are described by mass and 
flexi bility-influence-coefficient matrices . 

For the mathematical mode l of the buffeting wing there is a relation
ship that connects the band yri dth , the peak response, and the mean-sQuare 
response . The experimental results show that this same relationship holds 
for the actual buffeting wing . 

In designing buffet models, it is desirable to keep the structural 
damping very low, because the aerodynamic damping ratio is much lower for 
solid metal model wings than for actual airplane wings. 
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INTRODUCTION 

Several attempts have been made to establish a correlation between 
the buffet boundary of an airplane and some quantity that is observable 
in wind - tunnel tests of a model. Certain quanti ties associated with the 
static lift characteristics have been used with some success for thi s 
purpose (refs. 1 and 2) , as have measurements of wake -pressure fluctua
tions (ref. 3) . The buffeting of models has also been observed directly 
by placing strain gages on the wings (ref. 3). With the aid of strain 
gages and modern data -handling techni ques, it has recently be come possible 
to give seri ous consideration to the more difficult problem of predicting, 
from wind- tunnel data, the loads that will be encountered during buffeting 
in flight . 

The suggestion is made in reference 4 that the methods of generalized 
harmonic analysis can be applied to the problem of a irplane buffet . Anal 
yses of flight buffet data have since indicated the validity of this 
approach (refs. 5 and 6) . By us ing these same techniques, a method has 
been derived for predicting fli ght buffet loads from model tests in a wind 
tunnel . Two comparisons between flight and wind-tunnel data are presented 
in reference 7 and the corr elation, while perhaps not entirely adequate, 
is certainly very encouraging . 

The primary purpose of the present buffet investi gation was to make 
a wind- tunnel study of the buffet characteristics of a model of an 
attack a irplane and, in particular, t o evaluate the effects of certain 
modifications on the buffet characteristics. The tests were conducted 
at Mach numbers from 0.80 to 1.00 in the Langley 8 -foot transonic pres 
sure tunnel. 

The instrumentation that was used was in accordance with the method 
of reference 7, and the tests were designed in such a way as to provide 
a check on some of the assumptions of that reference. The results show 
that an important assumption regarding the system damping did not apply 
in this test. Consequently, a large part of this paper is devoted to 
determining why this assumption did not apply, and to presenting the 
analysis techniques that were developed to circumvent this difficulty. 
This material is of particular i nterest to those readers who will be 
required to conduct buffet tests or to interpret the results of such 
tests. 

SYMBOLS 

square of absolute value of system admittance 

matrix of flexibility influence coefficients 
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b wing span, ft 

c wing chord, ft 

CIa, 1 , 

f 

g 

m 

1_ ... __ .. 

average chord, S b' ft 

lift coefficient, 
Lift 

qS 

first-mode generalized lift-curve slope for damping com
ponent of aerodynamic force due to wing vibration, 

L ~sm(%l(1))2 
m ) per radian 

8 2 

generalized 

vibration, 

normal -force 
Nl 
q81 

frequency, cps 

coefficient for first-mode 

natural frequency of first symmetrical wing mode, cps 

amplitude of force exciting vibration, lb 

dimensionless structural factor, 

structural damping factor 

constant relating the damping component of local pressure 
differential due to wing vibration to local angle of 
attack (in radians) and free-stream dynamic pressure 

generalized damping constant for first-mode wing vibra-

t . lb -sec 
~on, 

ft 

mass, slugs 
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m(y) 
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n 

R 
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wi ng mass per uni t span, slugs / ft 

mass of an e lement of the wi ng, slugs 

f r ee - stream Mach number 

di agonal iner t i a matrix f or wi ng, made up of the 
e l ements mm 

effect i ve moment (for f i rst -mode vibrati on) of mass out 

boar d of point Yg ' rb
/

2 
(Y - Yg)m(y)wl(Y)dy, slug-ft 

Jyg 

gener alized wi ng mas~ f or nth-mode vibr ation, 

Ib / 2 
m(y)wn

2 (Y)dY, slugs 
- b / 2 

mass of wi ng, ::- rnm or 2J:b
/

2 m( y )dy, slugs 

i nteger denoting wi ng vibr a t i on mode 

t i me - dependent generali zed (for first -mode vi br ati on) 
buffet f orce a ct i ng on wing , L 6PmsmCilm (1 ) lb 

m 

column matrix r epresenting a set of sta tic l oads applied 
to wing 

loca l pressure difference (between bottom and t op surfaces 
of wing) that excites the buffet vibr a tion 

free-stream dynamic pressure, lb/ s q ft 

Reynolds number based on mean aerodynamic chord of 12 .96 in. 

time-dependent displa cement of wing element f or which 
Cil(n ) = 1 

wing area, sq f t 
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weighted wing area 

~ s mel) or L- mTm 
m 

f or f i r st-mode bending, 

l b/ 2 
2 0 c(y)wl(y)dy, sq ft 

weighted wing area f or first-mode bending, 

~ sm(~(1))2 or ~b/2 c(y)w12(y)dy, sq ft 

area of mth element of wi ng, s q f t 

time , sec 

kinetic energy of vibrati ng system, lb -ft 

dynamic matrix for wing, [A] [M] 
free-stream velocity, f t /sec 

deflection of wing elasti c axis in nt h wing bending 
mode , normalized to unit deflection at the wing tip 

spanwise distance from fuse lage center line, ft 

5 

spanwise distance from f uselage center line to strain-gage 
l ocation , ft 

vertical displacement 

time-dependent displacement of the mth wing element , ft 

angle of a t t ack, deg or radians 

phase angle by which disp l acement lags the force 

aerodynamic damping r atio based on critical damping, 
C~ lqS2 , 
2Ml~V 

a ir dens i ty 

r oot-mean-s quare val ue 

normali zed deflection of mt h wing element for wing vibra
tion in the nt h normal mode 
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Subscripts : 

M 

n 

r 
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power spectral dens i ty 

circular frequency, 2rrf, radians / sec 

undamped natural circular frequency for nth mode 

resonant frequency 

frequency ratio , ro/run 

resonant frequency ratio, ~/run 

frequency ratio at half-power point 

difference between frequency ratio at half-power point 
above Dr and frequency ratio at half-power point 

below Dr 

buffet bending moment 

nth natural mode, where n is any integer 

at resonance 

Dots over symbols denote derivatives with respect to time. 

APPARATUS AND TESTS 

Tunnel 

The investigati on was conducted in the Langley 8 -foot transonic 
pressure tunnel which is a single -return tunnel with a rectangular slotted 
test secti on (fig . 1) capable of permitting continuous operation through 
the transoni c speed range at stagnation pressures from 1/4 to 1 atmosphere . 
Automatic temperature controls maintained a constant and uniform stagnation 
temperature of 1200 F during the tests. In order to prevent condensation, 
the dew point was mai ntai ned at 00 F or lower. 

Local Mach number distributions over the test -section length occupied 
by the model are shown in figure 2 . These distributions were obtained at 
a stagnati on pressure of 1 atmosphere from a multiorifice axial survey tube 
on the tunnel center line . Changes in stagnation pressure have essentially 
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no effect on the Mach number distributi ons. The design of the sting
support system, figure 1, is such that the model remains near the center 
line of the test section throughout the angle-of-attack range. 

Model 

Tests were performed with a 1/10-scale model of an attack airplane. 
A three-view drawing of the model is shown in f igure 3. The modified 
delta wing, made of 24sT alwpinum alloy, had an NACA 0008 (modified) 
airfoil sect i on at the root and an NACA 0005 (modified) airfoil section 
at the tip, a leading -edge sweep of 41.110 , an aspect ratio of 2.91, and 
a taper ratio of 0.226 . 

Modifications to the basic confi guration included a tapered wing
leading-edge extension wi th camber, an addition to the wing trailing edge 
sweeping it f orward 100 , and an area addition to the rearward fuselage 
section. A drawing of the basic wi ng and the leading-edge modification 
is shown in figure 4 and the ordinates are listed in table I. The wing 
trailing-edge modification required the extension of the trailing edge at 
the wing root and this resulted in a gap between the trailing edge of the 
wing and the bottom of the fuselage . This gap was eliminated by a fairing . 
Details of the tra iling-edge extension and the fairing are shown in fig 
ures 5 and 6 , respectively. The addition of area to the rearward fuselage 
sec t i on was based on the transonic area rule (refs. 8 and 9). Details of 
the area addition (called the modified full area bump) are shown in fig
ure 6. The cross-sectional area distribution of the basic model is shown 
in figure 7. Also shown are the effects of two of the modifications on 
the area distributi on; the area distribution for the leading-edge modifi
cation was not available. The inlets were open during the test. The area 
distribution rearward of t he inlet has been modified by deducting an area 
equal t o inlet area multiplied by mass-flow ratio (0.75) to account for 
the interna l flow. 

The model was mounted on a six- component strain-gage balance that 
was in turn supported by a sting mounting system. Photographs of the 
mode l installed in the 8 -foot transonic pressure tunnel, with all three 
modifications in place, are presented in figures 8(a) and 8(b). The 
weights of the various model components were as follows: 

Component Weight, lb 

Fuselage and tail surfaces · · · · 69.0 
Strain-gage balance . · · · · · · · · 4.25 
Wing, inside fuselage · · · · · · · · · · 6.1 
Wing, outside fus elage : 

Basic . . . . . · · · · · · · · · 18.9 
Basic + leading edge · · · · · · 19.0 
Basic + leading edge + trailing edge · · 20.1 

CONFIDENTIAL 
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Shake tests were made to establish the natural f r equencies of all 
vi bration modes that seemed likely to appear in the test results . The 
frequencies determined with the model mounted in the tunnel are shown 
i n the following table : 

Mode Natural frequency, cps 

Rigi d -body vertica l trans l ati on (on sting) · 7 
Ri gi d -body pitching . · · · · · · · · 14 

Ri gid-body rolling . . . · · · · · · · 22~ 
4 

First wing mode . · · · · 184 
Second '\-ling mode . . . · · · · · · · 240 
Third wing mode . . · · · · · · · 388 

Shake tests of the various configurations showed that none of the modifi 
cations changed the first-mode natural frequency by more than 1 percent. 
The node lines for the first three wing modes are sketched in figure 9 . 

In connection wi th the type of buffet analysis that is used. in ref
erence 6, certain constants are required . For thi s model, these constants 
have the fol l owing values based on the mode shape used in reference 6 : 

di mens ionless struc tural factor, 0 . 052 

phys ical factor, 2,197 ft2 _lbl / 2 

I nstrumentation 

The model lift was determined from the normal force and chord force 
indicated by a s i x - component electrical strain-gage balance that was 
mounted withi n the model. The lift coefficients are based on the area 
of the basic wi ng, 2 .60 square feet . Through consideration of the static 
cal i br ations of the bal ance and repeatabi lity of data, the lift coeffi
cient is estimated to be accurate within t o . 007 for data taken at a 
stagnati on pressure of 0 .80 atmosphere and ±0 . 017 f or data taken at a 
stagnati on pressure of 0 . 33 atmosphere . 

Angle of attack was detennined with a pendulum-type strain-gage unit 
located in the model support strut . Corrections were made for sting and 
balance deflecti ons under load. The estimated accuracy of the angle of 
attack i s 0 .10 • 

A bending-momeGt strain-gage bridge was mounted in a recess at the 
57 . 14 -percent -chord location near the root of the left wing as shown in 
figures 3 and 8 (b) . Analysi s of static load calibrati ons showed that 
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this bridge measured pure bending moment about an axis that intersects 
the longitudinal axis of the model at an angle of 280 • The bending
moment axis is shown in figure 3. 

9 

During the tests) the output of the bending-moment gage was recorded 
on magnetic tape. A record of about 45 seconds in duration was taken at 
each test point. The power spectral density was determined from the tape 
record by means of the equipment and procedure described in reference 10. 
The filter band width used in the analysis varied from 30 cps, for a broad 

picture of the overall spectrum, to lt cps for detailed study of the spec-

trum in the vicinity of the natural frequency of the first mode of the 
wing. 

Tests 

Buffet tests were made at Mach numbers from 0.80 to 1.00, with an 
angle -of -attack range of approximately _40 to 90 • All configurations 
were tested at a tunnel stagnation pressure of 0.80 atmosphere. (Balance 
force limits prevented testing at higher pressure.) In order to determine 
the effect of density on the magnitude of the buffet bending moment, the 
basic configuration was also tested at a much lower stagnation pressure) 
0.33 atmosphere. The Reynolds number ranges for the two stagnation pres
sures are shown in figure 10. 

RESULTS AND DISCUSSION 

The discussion starts with an examination of the frequency spectrum 
of the wing bending moment in order to learn which vibration modes are 
evident and which are significant . The effect of air density on the root
mean-square bending moment is then shown, and is followed by an extensive 
examination of the system damping coefficients. The results of this part 
of the analysis determined the process that was used to reduce the buffet 
data . The next section covers the buffet input force and the effect of 
the modifications on this force. The discussion closes with comments 
regarding the prediction of flight buffet loads from wind-tunnel tests. 

Frequency Spectrum of Bending Moment 

The power spectral density of the output of the bending-moment gage) 
as determined by electrical analysis with a filter band width of 30 cps, 
is plotted in figure 11 for a typical buffet condition. These results 
are for a lift coefficient beyond the buffet boundary at a Mach number 
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of 0.95. The most striking feature of this spectrum is the high concen
tration of energy in a few narrow frequency bands. The indication is 
that for the purposes of analysis the model and supporting structure 
could be regarded as a system with only a few degrees of freedom. 

Influence of support flexibility.- The low -frequency peak shown in 
f igure 11 was found t o be present throughout the investigation . The 
shake tests show the presence of three well-defined low -frequency modes 
that are connected with the flexibility of the sting and the strain- gage 
balance . In order to determine which of these modes was responsible for 
the observed low - frequency response) the data for several test points were 
analyzed wi th a 3-cps band wi dth filter . Samples of these analyses are 
shown in figure 12 . Figure 12(a) shows data obtained at a ~ 00 at a 
Mach number of 0 .95 . Peaks are observed at frequencies that correspond 
approximately to the natural frequencies of vertical translati on and 
rolling) respectively . The vertical translation response predominates . 
Fi gure 12(b) shows similar results obtained during buffet (a ~ 40 ) . Note 
the change in scale. The same two modes are present) but in this case 
t he rolling response predominates. These results indicate that the buffe t 
excitation contains sizable antisymmetrical components even at low fre
quencies . The spectral-density values in figure 12(b) are much higher 
than those in figure 11 because of the increase in tunnel pressure and 
t he decrease in filter band width . 

Because support flexibility is a factor that is not present in flight) 
it is desirable to eliminate the effects of the low-frequency response in 
the analysis of the wind-tunnel data . Two effects must be considered. 
First) there is the direct contribution of the low-frequency response to 
the wing stress. This contribution will be eliminated simply by disre
garding the low-frequency part of the power spectrum in the analysis and 
in the discussion that follows. Second, there is the possibility that 
the low-frequency motion of the wing might change the flow over the wing 
in such a manner that the buffet excitation at higher frequencies would 
be affected. This effect is assumed to be negligible. In this connection) 
a previous investigation (ref. 11) showed that oscillating an airfoil at 
one frequency had negligible effect on the random air forces due to turbu
l ence and buffeting at higher frequencies under the conditions of that 
experiment. 

In buffet testing, it is highly desirable to have the support r oll 
f requency far removed from the first wing bending frequency. If this 
condition cannot be satisfied, it is necessary to take steps to remove 
the roll response from the output by other means, as for instance by 
combining left- and right-wing gage outputs in such a way as to cancel 
t he antisymmetrical outputs. 

Wing modes .- In addition t o the low -frequency peak in the spectrum 
shown in figure 11) which i s to be neglected) there are several other 
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peaks. Most prominent is the peak in the vicinity of the wing first 
bending frequency. Smaller peaks are shown at frequencies corresponding 
to the natural frequencies of the second and third wing modes. The first 
mode obviously dominates the response of the wing in buffet. This result 
is in agreement with full-scale flight data (refs. 5 and 7) that show the 
predominant influence of the first mode for wings of various plan forms, 

including a 6~ - percent-thick 600 triangular wing (ref. 7). 

Because the power in the second and third wing modes is small com
pared with that in the first mode, a study of the large peak by itself 
should provide a good indication of the buffet characteristics of the 
wing . In the remainder of this paper, therefore, only the first-mode 
response of the wing is considered. The root-mean-square bending moments 
that are presented were determined by integration of the spectrum between 
limits of 150 and 210 cps. 

Effect of Density on Root-Mean-Square Bending Moment 

A change in the air density affects the magnitudes of both the force 
that excites the buffet vibration and the aerodynamic damping due to the 
motion of the wing. Flight tests at a constant Mach number and varying 
altitude have shown (refs. 6 and 7) that the net result is that the root
mean- square buffet stress is approximately proportional to the square 
root of the dynamic pressure . In these flights at constant Mach number, 
the velocity variation was much smaller than the density variation. 
Therefore, the results indicate that the bending stress is proportional 
to the s quare r oot of the density . Analytically , thi s r e sult would be 
expected if the damping were predominantly aerodynamic , as was assumed 
in reference 7. In or der t o determine the effe ct of dens i ty on t he buf 
fet str esses of the wind-tunnel model , the ba sic conf i gurati on was tes t ed 
at two differ ent va l ue s of tunnel stagnation pressure . The re s ults , f or 
a Mach number of 0 .80 , are shown in figure 13 where the rati os GM/q and 

GM/fl a re plotted as functions of CL' The velocities a t t he two stagna 
tion pr essure s ar e i dentical; hence , q var i es only because p varies . 
The results shown in figure 13 indicate, therefore , that the root -mean-
square bending moment i s mor e nearly pr opor t i onal t o p than to !p. 
Thus, t he effect of air denSity on the buffet intens ity is di f f erent for 
t his model t han f or a irplanes for which fli ght dat a are avai lable. As a 
result, t he equation pr esented in reference 7 (es sentially, eq . (B14 ) 
\:i t h g = 0) ca nnot logicall y be used a s a basis for the reduction and 
anal ys i s of these data , nor can it be used to predict flight buffet loads 
f r om t he data f or this model. One of t he bas i c assumptions undLrlying 
thi c; b·..lf fet equation appar ent l y ha s been violated i n thi s test . 
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After observati on of the preceding results, it was obvious that a 
new technique f or data r eduction wa s required. Before such a technique 
coul d be developed, however, it was necessary to deter mine the reason 
f or the observed difference between flight and model results in the 
effect of density on the bending moment due to buffet . A study of the 
system damping coefficients proved most informative, and the results of 
this study are presented in some detail in the following section. The 
rea der who is interested only in the buffet results of the present 
investiga tion may find them by turning to the section entitled "Buffet 
Input Force. 11 

System Damping Coefficients 

Determination of damping coefficients.- In the case of forced vibra
tion of a single-degree-of-freedom linear system, it is possible to infer 
the value of the system damping from the shape of the response curve of 
the system . Two independent methods are available for this purpose and 
they are derived in appendix A. One method makes use of the relation
ship between the mean-square response and the peak response: 

where z 2 o 

l + g 
2 

is the mean-square response and ~z (nr ) 
o 

(1) 

is the peak response 

of the system. The other method uses the relationship between the band 
width at the half-power points and the frequency of resonance: 

(2) 

where ~ is the difference between the frequency ratios at the two half
power points. The half-power points are those points on the spectrum at 
which the spectral density is exactly one-half as high as the spectral 
density at resonance (peak response). These two equations are given as 
e quation (Al2) and equation (Al5) in appendix A. If, in an experimental 
investigation, the measured quantity were the wing bending moment, 0M2 

would be inserted in equation (1) for the mean-square response and ~(nr) 

would be inserted for the peak response. 

Two assumptions are required to justify the use of these relation
ships in the analysis of buffet data. The first is the assumption that 
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the wing behaves like a single - degree-of-freedom system i n the vicinity 
of the natural frequency of the first symmetrical mode. The second 
assumption is that the system input is independent of the frequency in 
the range where the output is significant . For the buffeting model, 
t his frequency range is so narrow that the assumption wil l be SUbstan
tially satisfied by any reasonably smooth input spectrum, and therefore, 
t he asumption seems reas onable. 

In either of the t wo methods for obtaining the damping coeffiCient, 
i t is essential that the band width of the fi l t er that is used to obtain 
t he spectrum be considerably less than the band wi dth of t he system being 
s tudied. The 30-cps band width used to obtain the spect r um shown in 
f i gure 11 is much t oo large and, in fact , it pr oved neces sary to use the 

smallest avail able filter band width, about l~ cps , t o obtai n the damping 

coefficients for this wing. A typical spectrum obtai ned by narrow-band
width analys i s is presented in figure 14. This spectrum was obtained 
from the same data a s the spectrum shown in f igure 11 . Compari son of 
figures 11 and 14 shows that the wider band f i l ter gi ves a peak value 
that is far too low and a spectrum band width t hat is far too wide. 

There are certain statistical problems encountered in making a 
narrow-band analysis of the type shown in figure 14. For a fixed length 
of r ecord (in this case a 30 -second loop of t ape was analyzed), the con
fidence that can be placed in the value obtained for any given point on 
the spectrum will decrease as the filter band width decreases . Roughly 
speaking, the problem is that as the filter band width is dec reased, a 
point is reached eventually where the mean value in the 30-second time 
interval for this tiny segment of the frequency range may di ffer consid
erably from the long-time mean value for this segment. The presence of 
such errors is indica ted by sharp erratic dips and peaks in the frequency 
spectrum, some of which are evident in figure 14. 

The effect of these errors on the a ccuracy of a damping-coefficient 
determination must be considered. One me t hod for determining the damping 
coefficient is based on measurements of t he peak response and the mean
square response (eq . (1 )). Only the peak response is affected by the 
err or under consideration. The other method require s the determination 
of the band width a t t he half -power point s (eq. (2)) . The damping coeffi
cient, as determined by this method, is affec ted by errors at the half
power points and the peak. Both methods were used in the present analysis . 
In t he first method, it was necessary t o modify the constant lin in 
equati on (1 ) t o account for the fact that t he mean-s quare values were 
obtained by integrating only from 150 t o 210 cps rather than from 0 t o 
00 cps . Thi s modifica t i on was acc omplished by multiplyi ng l in by the 
ratio of the part of equation (AlOb ) in br ackets to equation (AIOa) . 
These equations ar e for r = O. The as sumpti on of r = 0 f or the deter
minat i on of thi s r a tio caus e s negligi bl e e rror, because the damping f or 
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these tests was mostly structural ) and it greatly facilitates the cal
culation . The modified eQuation that was obtained by this manipulation 
was solved graphically . In the second method (eq. 2), the response 
curves had to be smoothed in some instances in order to obtain a single
valued answer for the band width . The damping constants obtained by the 
first method have been plotted against those obtained by the second method 
in figure 15. The scatter is small except at the high damping values that 
were measured under nonbuffet (low -lift) test conditions. Thus, the sta
tistical errors that are inherent in figure 14 do not interfere seriously 
with the determination of the system damping. 

Figure 15 also permits a test of the assumption regarding the single
degree-of -freedom behavior of the buffeting wing. If eQuations (1) and 
(2) are eQuated, the result is a relationship that connects the band 
width) the peak response, and the mean-sQuare response. If the output of 
the buffeting wing doe s not satisfy this relationship, then the assumption 
that the buffeting wing behaves like a linear, single-degree-of-freedom 
system with constant-spectral-density input is incorrect. The fact that 
the average of the data in figure 15 falls almos t on the line of perfect 
agreement proves, however, that the experimental output does satisfy this 
relationship. The agreement is necessary, but not sufficient, to prove 
that the assumption is correct. 

Effect of density . - In figure 16, damping coefficients are plotted as 
a function of CL for tests of the same configuration at two different 

values of tunnel density. The corresponding values of dynamic pressure 

are given in the figure. The effect of a 2~ - fold increase in density is 

to decrease slightly the total system damping. The total damping is com
posed of two parts - aerodynamic damping and structural damping. Aero
dynamic damping increases with increasing density; yet, in this experi
ment the total damping was found to decrease. Hence, the aerodynamic 
damping in this experiment is apparently much smaller than the structural 
damping . 

Effect of lift . - Both sets of data in fi gure 16 show a large decrease 
in damping with increasing CL. Because the aerodynamic damping is appar-

ently small, the origin of the damping variation with CL must be s ought 

in the mechanical system of the model and supporting structure. 

In this connection, it was observed that the damping at l ow values 
of CL is considerably higher than would be expected for a solid aluminum 

wing . This observation led to a careful examination of the model in 
search of a possible source of sliding friction. The most likely source 
appears to be the dovetail joint by which the wing was attached to the 
fuselage . The supposition is that at low lift the joint is sufficiently 
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loose so that a bending vibration of the wing causes a slight relative 
movement between the wing and fuselage portions of the joint and that 
the damping is increased by the energy dissipation due to friction in 
this joint. At high lift, the steady forces are supposed to result in 
a tightening of this joint with a resultant decrease in the relative 
movement due to vibration and, therefore, in the damping. If this is the 
case, there should be a better correlation between the actual lift and 
the damping than between CL and the damping. 

In order to test this supposition, two additional plots were made. 
For the first plot, the damping coefficients for the basic configuration 
that were determined with 0 < CL < 0.15 were averaged with the use of 

data at all Mach numbers. Similar averages were formed for other inter
vals of 0.15 in CL. The data at the two different tunnel pressures were 
treated separately. The results are shown plotted against CL in fig

ure 17(a). As was the case at M = 0. 80, the increase in tunnel pressure 
resulted in a decrease in damping. 

For the second plot, a similar averaging procedure was used, with 
lift intervals of 100 pounds for the low-pressure data and 250 pounds 
for the high-pressure data. The results are shown plotted against lift 
in figure 17(b). There is a much better correlation between the damping 
and the lift than between the damping and CL. This experimental result 

is in accord with the supposed action of the wing-fuselage joint. 

As a result of this investigation, it has become apparent that care 
should be exercised in the design of buffet models to minimize the struc
tural damping and to eliminate any variation of the structural damping 
during wind-tunnel tests. 

Buffet Input Force 

Determination of input force.- The fact that the damping varied 
considerably during the test means that the wing bending moment is not a 
direct measure of the magnitude of the buffet forces that excite the wing 
vibration, because the bending moment is a function of the damping as 
well as of the exciting forces. Thus, in order to determine the effect 
of the modifications on the buffet forces, it is necessary first to elimi
nate the effect of variations in damping. The eQuations that govern the 
response of a wing in buffeting have been presented in reference 7 for 
the case where the wing is treated as a simple beam. 

In appendix B, corresponding equations are derived for the more gen
eral case of a platelike wing, the structural characteristics of which 
are described by flexibility-influence-coefficient and mass matrices. 
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Unfortunately, the present wing was no l onger available at the time it 
became clear that the influence of damping variations would have to be 
removed from the data, so the influence coefficients could not be deter
mined and it was necessary to rely on the simple-beam analysis. Although 
the accuracy of results derived by representing the wing of this test as 
a simple beam may be open to question, the comparisons between the vari
ous configurations are not affected by either the beam assumption or the 
choice of mode shape . 

For wings that can be treated as simple beams , a strain-gage instal
lation on the wing can be calibrated in terms of the bending moment 
carried by a cross section of the wing, and a relationship between input 
force, damping, and bending-moment output can be derived. The equat i on 
for the spectral dens i ty of the generalized normal-force coefficient is 

<p (Ll1.Cav )= CN,l V 

This equation is obtained by combining equations (B12) and (B13), which 
are derived in appendix B. This equation has been used in the reduction 
of the data from the present investigation. The factor rt was modified, 
as previously explained, to account f or the fact that 0M2 is obtained 

by integration from 150 t o 210 cps instead of 0 to 00 cps. The assumed 
mode shape was the same as in reference 6. 

The square r oot of the spectral density of the generalized normal
force coefficient is plotted as a function of CL in figure 18 at Mach 

numbers from 0.80 to 1.00. The spectral density of the generalized 
normal-force coefficient at the first-mode natural frequency ~, 

is the quantity that is fundamental to the generalized harmonic analysis. 
Under the assumptions made in the present analysis, however, the root
mean-square bending moment in the wing is directly proportional to the 
square root of this spectral density. The results are presented, there
fore, in terms of the square r oot, which is denoted by 

CONFIDENTIAL 



- - - -- --

NACA RM L57Hl3 CONFIDENTIAL 17 

Basic configuration .- The results for the basic configuration 
(fig. lS) are given by the circular symbols. Flagged circles indicate 
data obtained at a tunnel stagnation pressure of 0.33 atmosphere. The 
solid lines plotted in fi gure lS were obtained by fairing straight-line 
segments through the data for the basic configuration. The sharp break 
(discontinuity in slope) defines the buffet boundary, as determined from 
the wind- tunnel tests. The value of CL at the buffet boundary decreases 

from nearly 0.5 at M = O.SO_ to about 0.15 at M = 0.95. As the Mach num
ber increases above M = 0.95, the value of CL at the buffet boundary 

increases rapidly. 

Effect of modifications.- The modifications were tested only at the 
higher stagnation pressure (O . SO atmosphere). For this tunnel pressure, 
the angle-of -attack range was limited by the internal strain-gage balance 
so that data were obtained beyond the buffet boundary of the basic config
uration only at Mach numbers from 0.90 to 0.95, where the buffet boundary 
is lowest. The results for Mach numbers of 0. 90, 0.925, and 0.95 show 
that the buffet forces at the higher values of CL were substantially 
reduced by the modifications. At M = 0.925, for instance, the buffet 
forces were reduced by the addition of the cambered leading edge. Adding 
the swept trailing-edge extension resulted in a further reduction in the 
buffet intensity . Adding the body bump had no appreciable effect at this 
speed, but the data for M = 0.95 show a reduction in buffet intensity due 
to the bump . Inasmuch as changes in body shape are known to affect both 
the strength and the progression of the main flow shock over the wing, 
this is a reasonable result. In general, it would seem that modifications 
that improve the flow over the wing would reduce the buffet intensity. 

The results are less conclusive with regard to the effects of the 
modifications on the buffet boundary. The data for the fully modified 
configuration at M = 0.95, for instance, seem open to either of two pos
sible interpretations: (1) the buffet boundary is essentially unchanged 
by the modificat i ons, but the buffet forces have became particularly mild, 
or (2) the buffet boundary has been moved out to a CL beyond the range 

of the test. In either event, the effect of the modification is favorable . 

Effect of turbulence .- It is typical of figure l S that at a given 
Mach number the exciting force at low values of CL is approximately con-
stant independent of both CL and the modifications. This excitation is 

believed to be due to wind-tunnel tur ~ulence . Experience has shown that 
if the turbulence level is too high, the location of the buffet boundary 
tends to become obscured . From the nature of the power spectrum (fig. 11) 
it is obvious that the important factor is not the overall turbulence 
level in the tunnel, but rather the turbulence level at frequencies in the 
vicinity of the \-Ting natural frequency fl. In the present tests the 
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r oot -mean- square value of the lateral component of turbulence in the 
frequency interval from 180 to 190 cps is estimated at less than 0.020 

on the bas i s of turbulence surveys of the tunnel . 

Comments Regarding Prediction of Flight 

Buffet Loads From Wind - Tunnel Tests 

If CN,l(~~av) and Clu,l are known , either from experimental 

results or theory, the root-mean-square ampli tude of vibration can be 
calculated from the f ollowing equation which was obtained by substituting 
the appropriate values for ~N(~) and y in equation (B9 ) : 

- 1 
~ ( CD].. Cav) '2 
CN,l V In.. ~ cav qSl 

Cr . qS2 4 V M1W12 
lJ.,l + ~ 

(4) 

2Ml CD].. V 2 

In deriving the equation f or the r oot -mean-square bending moment 
that is presented in reference 7, it was assumed that the structural 
damping is so small that it can be neglected in comparison with the 
aerodynamic damping . The corresponding equation for the vibrati on ampli
tude is obtained by setting g ~ 0 in equation (4) 

Available flight data support the assumption that the ratio of structural 
to aerodynamic damping is suffiCiently small so that the structural damping 
can be neglected in buffet calculations (refs. 6 and 7). The results of 
the present investigation, however, show that this is not necessarily true 
f or wind- tunnel models. (See the section of this paper entitled "System 
Damping Coefficients.") 

There is a general tendency for the aerodynamic damping ratio y of 
s olid-metal model wings to be considerably lower than for airplane wings 
because of the higher density of the model wings. If, as in the pr e sent 
test, the values of q and V approximate the flight values, the a er o 
dynamic damping will be proportional t o the value of the constant S2/M1CD].. 
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for the model and for the airplane . For the Douglas D-558-II) this con
stant has the value 0 . 00858 for the 1/16-scale model described in ref
erence 12 and 0.0646 for the full-scale airplane. Thus) the aerodynamic 
damping ratio for' the model is only about one-eighth of that for the 
airplane. Because of this tendency toward much lower aerodynamic damping 
ratios) the structural damping assumes a greater relative importance for 
models than for airplanes. Thus) it would seem advisable in the design 
of models to be used in buffet tests to try to minimize the structural 
damping . 

With regard to the results of the present investigation) any attempt 
to predict flight vibration amplitudes or stresses must be based on an 
estimate of C~ 1 for the airplane. Unfortunately) there seem to be 

) 

no experimental data for swept wi ngs on which to base this estimate. 
Experimental aerodynamic damping ratios for two unswept wings are pre
sented in reference 11. 

CONCLUDING REMARKS 

The buffet characteristics of a 1/10-scale model of an attack air
plane have been investigated at Mach numbers from 0. 80 to 1.00. The wing 
had a modified delta plan form with an NACA 0008 (modified) airfoil sec
tion at the root and an NACA 0005 (modified) airfoil section at the tip) 
a leading-edge sweep of 41 .110 ) an aspect ratio of 2.91) and a taper 
ratio of 0 . 226 . Modifications to the basic configuration included a 
tapered wing-leading-edge extension with camber) an addition to the wing 
trailing edge sweeping it forward 100

) and an area addition to the rear
ward fuselage section. In the speed range where the buffet boundary of 
the basic configuration was lowest) the buffet intensity was reduced 
substantially when these modifications were added to the model. 

During buffet) the wing vibrated primarily in the first symmetrical 
mode. The damping of the vibration was not primarily aerodynamic) as is 
the case for airplanes in flight at these speeds) but instead was mostly 
structural) apparently because of friction in a dovetail joint. As a 
result) any attempt to predict flight buffet stresses from the results 
of this investigation must be based on an estimate of the aerodynamic 
damping for the airplane. 

For the mathematical model of the buffeting wing there is a relation
ship that connects the band width) the peak response) and the mean-square 
response. The experimental results show that this same relationship holds 
for the actual buffeting wing. 
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In designing buffet models, it is desirable to keep the structural 
damping very l ow because the aerodynamic damping ratio is much lower for 
solid-metal model wings than f or actual airplane wings. 

Langley Aer onautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., July 31, 1957. 
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APPENDI X A 

DERI VATI ON OF EQUATIONS RELATING DAMPING CONSTANT AND 

POWER SPECTRUM OF SYSTEM RESPONSE 

Consider a linear single - degree -of-freedom system with aerodynamic 
damping and structural damping both present. The equation of motion f or 
such a system, in a steady- state forced vibration, can be written (com
bine eqs. (3 .25) and (3 .68), ref. 13): 

z + 2murz + ~2(1 + ig)z (Al) 

where mu is the undamped natural frequency and r i s the aerodynamic 

damping rati o. If a solution of the form z = zoei(mt-~ ) is assume d, 

the vibration amplitude Zo is found to be given by the following equation: 

(A2) 

2 )2 ( 2 ~ + 2r ~ + g) 
ton 2 \ mu 

With the substitution 0 this becomes 

(A3) 

The frequency of maximum response is terme d the r esonant fre quency 
(Or or ~) . This frequency can be found by maximi zi ng equa t i on (A3) . 

The exact result is 

(A4) 

CONFIDENTIAL 

---, 
I 



22 CONFIDENTIAL NACA RM L57ID3 

which can be solved easily by iteration. An approximation that is 
entirely adeQuate for l i ghtly damped systems, for which Or is nearly 1, 
is 

This eQuation is exact for y 
30 percent of criti cal (with 
1/10 of 1 percent. 

o or for g 
y 0 .15, g/2 

O. When the damping is 
~ 0.15), the error is about 

According to the principles of generalized harmonic analysis, if 
the system is excited by a random force with spectral density ~F (0), 

o 
then the spectral density of the displacement is 

~ (0) IA(O) 12 
o 

where IA(0)\ 2 is the SQuare of the absolute value of the system admit
tance . (This input- output relationship is given in reference 4 in terms 
of the impedance, which is the reciprocal of the admittance.) From eQua
tion (A3) 

1 

m2CDn4 

and, ther ef ore, 

(A6) 

When eQuation (A4) is substituted into eQuation (A6), the spectral 
density of the displacement at the res onant freQuency is f ound to be 
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For lightly damped systems this is approximately 

The integrated mean-square response of the system is given by 

or, for the special case where the spectral density of the exciting force 
¢Fo(n) is a constant independent of frequency 

If either g or 
uated in closed 

fB dO 

n
A 

(1 02)2 + 

where 

z 2 o 
== ¢Fo(O) roo ____ dO ____ _ 

m21lL4 Jo (1 2)2 ( )2 
-[1 - ° + 270 + g 

7 is zero, the integral in equation (A8) can be 
fonn. For g = 0, 

l~ll 
lOB 

rl .l... tan-l 207 
== loge - + 

(270)2 2 r2 47 1 -niJ 7 
°A 

(A8) 

eval-

(A9a) 

When the integral of equati on (A9a) is evaluted for the limits 0A 0 

and 0B == 00 and the result is substituted into equation (A8), the 
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following equation is obtained : 

For 'J = 0 : 

[B 
nA (1 

where 

;:2 
o 

cill 

n2) 2 + g2 
1 fN1 + 

2f2gP 

g2 _ 1 loge 

Jfi + r g2 + 1 tan- l 
r3 

- nA 

[02 + 212 OJ}l + g2 + 1 + ~2r2 

[02 - 212 OJJ1 + g2 + 1 + J1 + g2j'/2 

12 njh + g2 - 1 

n2 _ }l + g2 

(A9b) 

r l 
r 2 

(A1Oa) 

When the integral of equation (A10a) is evaluated for the limits nA = 0 

and nB = 00 and the result is substituted into equation (A8)) the f ol 

lowing equation is obtained : 

(A10b) 

For the case where the system damping is low) a satisfactory approxi 
mation to equation (A8) i s 
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(All) 

This result has been obtained for the special case ~F (n) = Constant. 
o 

The error of the approximati on in equati on (All) has been determined for 
three combinat i ons of y and g/2 , each with a total damping ratio of 
0.04, wi th t he f ollowing r esult s: 

g/ 2 Error i n eq. (All), y 
percent 

0 .04 0 0 
.02 .02 .11 

0 .04 .024 

For the special case of a lightly damped system with constant den
sity excitation, equations (A7) and (All ) can be combined to yield a 
relationshi p between the damping , the mean-square response, and the peak 
response : 

y + §. = 
2 

(A12) 

In case the mean square value i s obtained from an integration over a 
limited range rather than from 0 to 00, this equation can be modified as 
explained in the discussion of figure 15 in the section of the paper 
entitled "System Damping Coeffici ents." 

A second equation for the damping can be derived independently from 
the frequencies at the half -power points on the response curve. These 
frequencies can be determi ned by f i nding the maximum value of the inte
grand in equati on (A8) and then solving for the frequencies at which the 
value of the integrand is exactly one -half of the maximum value. This 
has been done for the two special cases g = 0 and y = O. For g = 0: 

(Al3a) 

The two solutions given by this equation yield the difference ~ between 
the upper and lower half-power poi nts. The solution for y in terms of 
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this difference is 

(A13b) 

For y 0 : 

(A14a) 

and 

(A14b) 

For combined viscous and structural damping, a sui table appr oximation for 
lightly damped systems is 

(A15) 

The error in e~uation (A15) has been determined for three combinations of 
y and, g/ 2, each with a total damping ratio of 0.04, with the f ollowing 
results : 

y g/2 Error in e~ . (Al5) , 
percent 

0.04 0 1.965 
.02 .02 .165 

0 .04 .080 
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APPENDIX B 

DERIVATION OF EQUATIONS GOVERNING BUFFET 

RESPONSE OF A WING 

In deriving the buffet equations the procedure will be to determine 
the normal modes of the wing, to set up the equation for a steady-state 
forced vibration by Lagrange's method, to solve this equation in order 
to determine the admittance of the vibrating system, and then to apply the 
methods of generali'zed harmonic analysis to determine the response of the 
sys tem to a random (buffet) input. 

The normal modes of vibration can be determined from the structural 
characteristics of the wing as described by certain matrices (ref. 13, 
14, or 15). For analysis, the wing is divided into a suitable group of 
elements, each of which is associated with a particular point in the plane 
of the wing . The elastic properties of the wing are contained in a square 
matrix of flexi bility-influence coefficients, which can be determined by 

analysis of the structure or by direct measurement . If {p} is a set of 

static loads and {z} is a corresponding set of displacements, then 

where lAJ is the matrix of flexibility-influence coefficients. The 

inertial pr operties of the wing are described by a diagonal matrix, each 
element of which is the mass associated with an element of the wing. 

This matrix is denoted by [M] . The matrix [U] = (AJ[MJ is called the 

dynamic matrix. 

The matrix equation 

is s olved to obtain the frequencies and shapes of the normal modes of 
vibrati on (ref . 13 , p . 169) . The frequency of the nth mode will be 
written ~ and the column matrix containing the associated normalized 

set of deflections will be written {~(n)}. 
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The displacement of the mth element of the vibrating wing can be 
written in terms of a series utilizing the normal modes: 

where the terms rn are functions of time. The kinetic energy of the 

vibrating system is then (ref . 13, p . 45) 

T 

where 

1 ~ M • 2 
- L 'nrn 
2 n 

and the terms ffim are the elements of the inertia matrix 

elastic strain energy V is (refs . 13 and 14) 
The 

These expressions for the kinetic and potential energies, when inserted 
in Lagrange ' s e~uation, yielded the e~uation of motion for the nth mode : 

(Bl) 

where Pm represents the forces, other than inertial and elastic, that 

act on the element m. 

The results of this test and others (refs. 5 and 7) have shown that, 
in many instances of wing buffet, most of the energy in the power spectrum 
of buffet bending moment is concentrated at fre~uencies in the vicinity of 
the natural fre~uency of the first mode. Normally the first mode is well 
separated from the higher modes, and as a result the response of the 
higher modes at the first mode fre~uency is very small. Attention can 
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be confined, therefore, to a study of the first mode. The set of equa
tions (Bl) then reduces to the single equation 

One of the forces that contribute to Pm is the pressure fluctua

tion that causes the buffet ; this pressure fluctuation is called the 
exciting force . The force on element m is 6Pmsm and the corresponding 

generalized force on the wing is 

Nl = ~ 6p s cp (1) L mmm 
m 

It is conveni ent to define what might be termed a generalized normal-force 
coefficient for the first mode : 

(B3) 

where 

(B4) 

Another force that contri butes to Pm is the aerodynamic force due 

to the motion of the wing. For simple harmonic motion, this force for 
an element m of the wing is of the form 

with the corresponding generalized force being 

In this simplified treatment of the buffet phenomena, the first and last 
terms of this generalized for ce are assumed to be negligible in comparison 
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with Mlrl and ~2Mlrl) respectively . 

to the second term) Vhich arises f r om the 

the ver tical velocity of each el ement m. 

ference has the form 

Further consider ati on is given 

aerodynamic forces that oppose 
The resulting pressure dif-

where zm/ V is an effective angle of attack and km is a constant of 

the nature of a local lift -curve slope that depends on t he plan form 

and mode shape . The minus s i gn signifies that the pressure opposes the 

moti on . The corresponding generalized force is 

It is convenient to define what might be called a generali zed lift-curve 

slope for the first mode : 

C 
La, 1 

) 

where 

(B6) 

so that 

The equati on of moti on can now be written as 
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The term Llrl is the generalized aerodynamic damping force. Structural 
damping can be included in the equation by adding a term ig~2Mlrl 
(ref . 13) p . 197). For a sinusoidal exciting force Nl = N sin mt the 

equation of motion is then 

which is of the same form as equation (Al). The steady-state solution 
of this equation is 

N sin (mt - (3) 

where and (3 is the phase angle by which the displacement 

lags the force. For use in the generalized harmonic analysis of buf
feting) the square of the absolute value of the admittance is required: 

1 (138 ) _ ~)2 + 
~2 

According to the principles of generalized harmonic analysis the 
response of this system to a random input ~(m) is 

The mean-square value is given by 

In the case of a lightly damped system} the response is concentrated 
in a narrow frequency band near ~. In that band the response is very 
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nearly 

if the input spectrum is reasonably smooth. Flight-test results (ref. 7) 
show that all but a very small part of the response power for a buffeting 
wing is found in the frequency band near U1 and, therefore, the mean -

square response will be very nearly 

Approximating the integral as in equation (All) gives 

(B9) 

Assume now that a strain gage has been mounted on the wing at any 
point that experiences strain f luctuations during first-mode vibration 
of the wing. When the wing vibrates in the first mode, the elongation 
sensed by the gage and hence the gage output, will be directly propor 
tionai to the amplitude rl of the vibration . Hence, rl can be 

determined with a properly calibrated strain gage . (The case where the 
wi ng is vibrating in several modes is not considered herein. Such a 
case involves solution of the set of equations (Bl) rather than of a 
single equati on of the set.) Thus the power spectrum ¢rl(W) and the 

mean- square value r12 of the vibration amplitude can be obtained from 

analysis of the strain- gage output . 

The value of the damping I + g/2 can be determined from an analy
sis of the strain-gage output by either of the two methods described in 
appendix A. With the damping and the mean-square response known, equa 
tion (B9) can be solved for the spectral density of the exciting force: 

(B10) 
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This result can be converted to coefficient form by means of the power
spectrum equivalent of equation (B3), that is, 

with the following result: 

M12 4(r + ~) 
q2812 1W~ 

(Bll) 

In the case where a wing can be treated as a simple beam, the 
strain gages can be calibrated i n terms of the beam bending moment, and 
a relationship can be derived between the bending moment and the gener
alized input force for first-mode bending of the wing. This is the pro
cedure followed in reference 7. The equation for the spectral density of 
the generalized normal-force coefficient is (compare with eq. (Bll)) 

(B12) 

where crM2 is the mean-square bending moment. The constants Ml, Mm,l' 
and 81 are as defined in reference 7. Because the wing is considered as 

a continuous beam, the generalized masses and areas are obtained by inte 
grati on rather than by summations such as equation (B4). 

The results of the present investigation are presented in terms of 

the nondimensional frequency parameter 
(l)lCav ----- by use of the transforma 

V 
tion 

<D (~Cav~ _ V <D ( CN 1 V - -c - CN 1 ~) , av, (B13) 

The use of this parameter was suggested in reference 16. 
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The equation f or the root -mean- square bending moment as a function 

of ¢C
N 
l(~~av) is 

) 

(B14) 

The derivation of this equation is essentially the same as that of 
equation (1) in reference 6) except that structural damping g . has been 
included in this case . Equation (B14) also differs from equation (8) in 
reference 7 (same as eq . (1)) ref . 6 ) by a factor of 2 that was inadvert 
ently omitted in the derivation of that equation . Thus the values of the 
quant ities symbol i zed by 

and 

as presented in references 6 and 7 are exactly twice as large as the 
values that would be obtained by the use of equation (B14). Because 
the references use the same equation cons i stently) the values of aM 

are not affected by the omission of this constant factor. 

For the limiting case r = 0) the root-mean-square bending moment 
is) from equations (B12) and (B13), 

(B15) 

Thus f or )' 0) ~ ~ q ~ p; while for g o ) ~ ~ .fl ~ .[P ( e q . (B14 ) ) . 
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TABLE I . - AIRFOIL ORDrnATES FOR BASIC WI NG 

M~D LEADrnG-EDGE MODIFICATIONa 

Root -chord ordinates Tip -chord ordinates Modified leading-edge 
of modified NACA 0008 , of modified NACA 0005, ordinates at 0.873b/2, 

percent c percent c percent c 

Stati on Upper Lower Station Upper Lower Station Upper Lower 

0 0 0 0 0 0 -9.48 -2.65 -2 . 65 
1.1 1. 50 - - --- 1. 2 .83 ----- -9.42 -2·39 -2.92 
1.4 - -- - -1.14 1. 3 --- - -. 47 -9·33 -2.25 -3 ·03 
2·3 2 .19 - - --- 2 .4 1.22 - - --- -9.18 -2.07 -3·13 
2 ·7 - --- -1. 53 2 .6 ---- -. 55 -8 ·75 -1·71 -3.32 
4.8 3 .15 - - --- 4 .9 1.77 - ---- -8 .02 -1. 31 -3.43 
5 · 2 - --- -2.00 5 ·1 --- - -. 61 -6.55 -·70 -3.41 
7·3 3 .80 -- - - - 7 . 4 2 .15 - ---- -5·57 -.18 -3.32 
7·7 --- - -2· 31 7 . 6 --- - -. 65 -3 . 61 .27 -3.18 
9 .9 4 . 25 ---- - 10 .0 2 .41 - ---- -. 66 1.01 -2.90 

10.1 - --- -2.54 10 .1 - --- -· 71 2.27 1.59 -2.67 
15.0 4.72 -2.88 15 . 0 2 . 73 -. 90 5.20 2.09 -2.49 
20.0 4.85 -3.08 20 . 0 2 .89 -1.12 8.14 2.49 -2·37 
25 · 0 4.83 -3·17 25 . 0 2 .98 -1. 33 11.07 2.80 -2.27 
30.0 4.75 -3·20 30 . 0 3 · 05 -1. 50 14.01 3.07 -2.24 
40.0 4 .46 -3 .13 40 .0 3 ·10 -1.78 16.96 3.22 -2.25 
50.0 4 . 01 -2 ·90 50 .0 3 · 05 -1. 95 19 .89 3.28 -2·35 
60.0 3 .41 -2 · 53 60 . 0 2 .86 -1. 98 
70.0 2 ·70 -2 .04 70 .0 2 .47 -1. 81 
80.0 1.89 -1.45 80 . 0 1.85 - ----
90.0 .99 - ·77 90.0 1.04 -. 82 
95 ·0 . 52 - .41 95 . 0 ·59 -. 48 

100 . 0 0 0 100 .0 0 0 

L.E. radi us : L.E. radius: 
0 .70 percent c 0 .21 percent c 

aStations and ordinates referenced to the leading edge and wing 
reference plane of the basic wing . 
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Figure 4 .- Dimensional details of wing leading- edge modification. All 
dimensions are in inches unless otherwise noted. 
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Figure 11.- Typical spectrum of the output of the bending-moment gage 
with a filter band width of 30 cycles per second. Basic model at 
0 .33 atmosphere for M = 0.95 and a = 6°. 
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