
NACA RM A57K2

RM A57K27

C.2

RESEARCH MEMORANDUM

STATIC STABILITY AND CONTROL OF CANARD CONFIGURATIONS

AT MACH NUMBERS FROM 0.70 TO 2.22 - LONGITUDINAL

CHARACTERISTICS OF AN UNSWEPT WING AND CANARD

By Victor L. Peterson and John W. Boyd

Ames Aeronautical Laboratory Moffett Field, Calif.

LIBRARY COPY

FEB 18 1958

LANGLEY AERONAUTICAL LABORATOR LIBRARY, NACA NGLEY FIELD VIRGINIA

ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON '

February 17, 1958

CONTRIDENT

UNCLASSIFIED

NACA RM A57K27

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

STATIC STABILITY AND CONTROL OF CANARD CONFIGURATIONS

AT MACH NUMBERS FROM 0.70 TO 2.22 - LONGITUDINAL

CHARACTERISTICS OF AN UNSWEPT WING AND CANARD

By Victor L. Peterson and John W. Boyd

SUMMARY

The results of an investigation of the static longitudinal stability and control characteristics of a canard airplane configuration are presented without analysis for the Mach number range from 0.70 to 2.22. The configuration consisted of an aspect ratio 3.1 unswept wing, an aspect ratio 3.0 unswept canard, a low aspect ratio vertical tail, and a Sears-Haack body. The hinge line of the canard was in the extended chord plane of the wing, 1.33 wing mean aerodynamic chords ahead of the reference center of moments. The ratio of the area of the exposed canard panels to the total area of the wing was 8.1 percent. Data are presented for various combinations of the canard, wing, and vertical tail for an angle-of-attack range from -6° to +18°. The canard deflection angles ranged from 0° to +20°.

INTRODUCTION

The possible gains to be realized at supersonic speeds in the form of reduced trim drag and increased maneuverability by the use of canards rather than conventional tail-aft controls have resulted in increased interest in these arrangements. Therefore, an extensive research program aimed at determining the static longitudinal and directional characteristics of a number of canard configurations has been undertaken by the NACA.

This report is one of a series pertaining to the Ames Aeronautical Laboratory program and presents without analysis the longitudinal characteristics of one complete configuration and its component parts. The configuration consisted of an unswept wing of aspect ratio 3.1, an unswept canard of aspect ratio 3.0, a low aspect ratio vertical tail, and a Sears-Haack body.

Results of other phases of the investigation directed at determining the effects of canard plan form and location are reported in references 1 through 3.

NOTATION

a.c.	aerodynamic center determined at $C_L = 0$, percent \overline{c}
ਵ	mean aerodynamic chord of wing, ft
cc	canard root chord, ft
c_D	drag coefficient, drag qS
c_{D_O}	drag coefficient at zero lift
$c_{ m L}$	lift coefficient, lift qS
$c_{L_{\alpha}}$	lift-curve slope taken through zero angle of attack, per deg
$c_{ m m}$	pitching-moment coefficient, $\frac{\text{pitching moment}}{\text{qSC}}$, referred to the projection of the 0.035 $\overline{\text{c}}$ point on the fuselage reference line
$\mathtt{Ch}_{\mathbf{c}}$	canard hinge-moment coefficient, $\frac{\text{canard hinge moment}}{\text{qS}_{\text{c}}\!\!\left(\text{c}_{\text{c}}/2\right)}$, referred
	to the projection of $0.50c_{\mathrm{c}}$ point on the fuselage reference line
$c_{\mathbf{Z_c}}$	force coefficient normal to canard, canard normal force
$\left(\frac{L}{\overline{D}}\right)_{me.x}$	maximum lift-drag ratio
M	free-stream Mach number
đ	free-stream dynamic pressure, lb/sq ft
S	wing area formed by extending the leading and trailing edges to the plane of symmetry, sq ft

- Sc canard exposed area, sq ft
- a angle of attack of wing root chord, deg
- δ angle of deflection of the canard with respect to the extended wing chord plane, positive when trailing edge is down, deg

Configurations are denoted by the following letters used in combination:

- B body
- C canard
- V vertical tail
- W wing

APPARATUS AND MODEL

Test Facility

The experimental data were obtained in the Ames 6- by 6-foot supersonic wind tunnel which is a closed-circuit variable-pressure type with a Mach number range continuous from 0.70 to 2.22. A recent modification involved perforating the test-section floor and ceiling and adding a boundary-layer removal system to enable uniform flow to be maintained at transonic and low supersonic speeds. At the same time injector flaps were installed downstream of the test section to extend the upper Mach number limit by reducing the required compression ratio across the nozzle and by better matching the weight flow characteristics of the nozzle with those of the compressor.

Analysis of the results of an extensive survey of the modified windtunnel characteristics, although incomplete, is sufficiently complete to establish the validity of the results of the present investigation.

Description of Model and Balances

The sting-mounted model consisted of an unswept wing of aspect ratio 3.1, an unswept canard of aspect ratio 3.0, and a low aspect ratio vertical tail, all mounted on a fineness ratio 12.5 Sears-Haack body. A dimensional sketch of the model is shown in figure 1(a). The wing had 3-percent-thick biconvex sections and the vertical tail had NACA 0003-63

-0017 TOTAL

y

sections streamwise. The constant thickness canard, detailed in figure 1(b), had beveled leading and trailing edges. The canard which was pivoted about the 0.50 canard root chord was mounted in the extended wing chord plane 1.33 wing mean aerodynamic chords ahead of the reference center of moments (0.035c). The ratio of the area of the exposed canard panels to the total area of the wing was 8.1 percent and the ratio of the total areas was 11.5 percent. The wing, canard, and vertical tail were of solid steel construction to minimize aeroelastic effects. The surfaces were polished to give a smooth surface and further treated to prevent corrosion.

The fuselage was cut off as shown in figure 1(a) to accommodate the sting and the six-component strain-gage balance which measured forces and moments on the entire configuration. Canard normal forces and hinge moments were obtained from a two-component strain-gage balance mounted in the nose of the fuselage. The canard, wing, and vertical tail were removable, enabling data to be taken which would permit an evaluation of the contribution of each of the component parts of the model and the interference between parts.

TEST AND PROCEDURES

Range of Test Variables

Mach numbers of 0.70, 0.90, 1.00, 1.10, 1.30, 1.70, and 2.22 were covered in the investigation. The test Reynolds number based on the wing mean aerodynamic chord was 1.84 million at Mach numbers of 1.00 and 1.10, and 3.68 million at all other Mach numbers. The smaller Reynolds number at transonic speeds was necessary because of model structural limitations.

At the relatively low Reynolds numbers at which most wind tunnels operate, extensive regions of laminar flow can exist on models at zero lift. At lifting conditions the transition points on the model surfaces usually move forward, thus causing a change in friction drag with changing lift coefficient which is difficult to evaluate and, moreover, not necessarily representative of full scale. In order to induce transition at fixed locations on the component parts, a 0.010-inch-diameter wire was placed on the wing and 0.005-inch-diameter wires were affixed to the canard and vertical tail in the locations shown in figure 1(a). When the model was tested with the canard off, a 0.010-inch-diameter wire was located on the body 4 inches from the nose. The wire sizes were selected on the basis of reference 4. Although there is no conclusive evidence as to the magnitude of the form drag increment contributed by the transition wires, previous studies have indicated this increment to be not more than 0.0010. All of the data presented herein are for transition-fixed conditions.

AATOMAAA

Reduction of Data

The data presented herein have been reduced to standard NACA coefficient form. The moment center for the data presented herein was chosen so that the minimum static margin in the range of trim lift coefficients between 0 and 0.5 throughout the Mach number range investigated was 0.03c; the resulting moment center was at the 0.035 point of the wing mean aerodynamic chord. The canard hinge moments were computed about a hinge line located at the 0.50 point of the canard root chord. Factors which affect the accuracy of the results are discussed in the following paragraphs.

Stream variations.— Surveys of the stream characteristics of the Ames 6- by 6-foot supersonic wind tunnel showed that in the region of the test section, essentially no stream curvature existed in the pitch plane of the model and that axial static-pressure variations were usually less than ±1 percent of the dynamic pressure. This static-pressure variation resulted in negligible longitudinal-buoyancy corrections to the drag of this model; therefore, no corrections for stream curvature or static-pressure variation were made in the present investigation.

From tests of the model in the normal and inverted attitudes, a stream angle, which was less than $\pm 0.30^{\circ}$ throughout the Mach number range, was found to exist in the pitch plane. The data presented herein have been corrected for these stream angles which correlated closely with those obtained from a cone survey.

Support interference.— The effects of model support interference on the aerodynamic characteristics were considered to consist primarily of a change in the pressure at the base of the model. However, the drag data presented herein contain no base drag component since the base pressure was measured and the drag was adjusted to correspond to that in which the base pressure is equal to the free-stream static pressure; therefore, no corrections were made to take into account support interference.

Tunnel-wall interference.— The effectiveness of the perforations in the wind-tunnel test section in preventing choking and absorbing reflected disturbances at transonic and low supersonic speeds has been established experimentally. Unpublished data from the wind-tunnel calibration indicate that reliable data can be obtained throughout the Mach number range if certain restrictions are imposed on the model size

¹A similar stability criterion was used to select the center of moments for the data presented in reference 1; the resulting center of moments was, however, at the 0.21 point of the wing mean aerodynamic chord.

and attitude. The configurations and methods of testing used in the present investigation conform to these restrictions so that data at transonic and low supersonic speeds are reasonably free of interference effects. Thus, no corrections for wall interference have been made.

RESULTS

The data are presented in this report without analysis in order to expedite publication. All of the experimental data are tabulated in tables I and II. Selected portions of the data are presented in figures 2 through 4. Lift, drag, and pitching-moment characteristics are presented in figure 2 for several test Mach numbers for the canard on and off. Figure 3 shows the variations of canard normal forces and hinge moments as a function of angle of attack at constant canard deflection angles. Summarized in figure 4 are the lift-curve slopes, maximum lift-drag ratios, minimum drag coefficients, and aerodynamic centers as a function of Mach number for the canard on at zero deflection and for the canard off. It should be pointed out that data were not available to cross-plot the parameters shown in figure 4 between the Mach numbers of 0.90 and 1.00 and the Mach numbers 1.00 and 1.10. Previous data on this type of wing have shown that results at intermediate Mach numbers are necessary in order to make accurate cross plots.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Nov. 27, 1957

REFERENCES

- 1. Boyd, John W., and Peterson, Victor L.: Static Stability and Control of Canard Configurations at Mach Numbers From 0.70 to 2.22 Longitudinal Characteristics of a Triangular Wing and Canard. NACA RM A57J15, 1957.
- 2. Boyd, John W., and Peterson, Victor L.: Static Stability and Control of Canard Configurations at Mach Numbers From 0.70 to 2.22 Triangular Wing and Canard on an Extended Body. NACA RM A57KL4, 1958.
- 3. Peterson, Victor L., and Menees, Gene P.: Static Stability and Control of Canard Configurations at Mach Numbers From 0.70 to 2.22 Longitudinal Characteristics of a Triangular Wing and Unswept Canard. NACA RM A57K26, 1958.
- 4. Winter, K. G., Scott-Wilson, J. B., and Davies, F. V.: Methods of Determination and of Fixing Boundary-Layer Transition on Wind Tunnel Models at Supersonic Speeds. R.A.E. TN Aero. 2341, British, Sept. 1954.

CONTRACTOR

TABLE I.- AERODYNAMIC CHARACTERISTICS WITH THE WING ON (a) BVW

М	a, deg	CĽ	c _D	C _m	м	a, deg	c _L	c_{D}	C ₃₀₈	м	æ, deg	c _L	c _D	C _m	M	α, deg	c _L	C _D	Cm
0.70	6.1.06.1.4.99.09.99	-0.464 -0.156 -0.156 -0.166 -0	.0278 .0518 .0857 .1313	.0504 .0282 .0242 .0025	1.00	5.772 38 33 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-0.528 352 157 120 .072 .120 .503 .742 .886 1.125 1.253 1.343	.0456 .0297 .0259 .0258 .0243 .0320 .0542 .0901 .1346 .1847 .2494 .3175 .3919	.1061 .0403 .0324 0041 0180 0180 1262 1269 2635 3241 3868 4868 4868 5298	1,30	-6.0 -4.0 -1.9 -1.5 2.0 4.1 6.0 10.9 14.0 18.0	-0.424 290 145 115 .002 .035 .142 .288 .417 .561 .686 .795 .917 1.022 1.153	.0206 .0253 .0407 .0631 .0988 .1400 .1871 .2447 .3085	.1094 .0529 .0412 0015 0120 0519 1066 1581 2141 2635 3064	2.22	-5.7 -3.6 -1.6 -1.2 -1.8 2.4 4.3 6.4 10.3 12.4 16.4 16.4	-0.215 -1.339 -0.64 -0.64 -0.65 -0.6	.0221 .0151 .0139 .0128 .0134 .0167 .0253 .0392 .0585 .0830 .1144 .1523 .1968	0.0941 .0604 .0277 .0197 -0036 -0086 0340 053 0982 1318 1045 1290 2344 2703 3040
0.90	5,99,99,5 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-	578 169 135 024 175 035 749 034	.0180 .0388 .0713 .1173 .1686	.1649 .0883 .0318 .0280 .0062 0024 0213 0866 1527 2138 2673 3383	1.10	5.3.7.3.2.6.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	501 165 168 168 166 166 364 364 364 368 368 368 368 368 368 368 368 368 368 368 368	0218 0319 0518 0822 1251 1742 2967 3635	.1676 .1051 .0430 .0349 0075 0188 0557 1153 1779 2388 2974 4507 4500	1.70	6.4.1.6.2.4.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	309 212 116 086 005 018 092 195 292 394 496 582 769 852	.0709 .1027 .1396 .1841 .2354	1194 1626 2060					

TABLE 1.- AERODYNAMIC CHARACTERISTICS WITH THE WING ON - Continued (b) BVWC; $\delta\,=\,O^{O}$

м	æ, deg	$c_{\mathbf{L}}$	c_D	C _m	c _{Ze}	c _{hc}	М	a, deg	$c_{\mathbf{L}}$	c_{D}	C _m	c _{Zc}	c _{hc}
0.70	-6-1-1-6-1-39999999999999999999999999999	-0.484 -3170 -1170 -048 -016 -018 -133 -290 -463 -616 -753 -839 -870	.0324 .0189 .0144 .0132 .0141 .0169 .0291 .0554 .0926 .1402	.0164 .0142 .0112 .0099	-0.0405 -0.0405 -0.0336 -0.0008 -0.00000 -0.0000 -0.00	-0.1725 -1345 -0633 -0107 -0019 -0025 -0488 -1215 -1708 -1645 -1228 -0886 -0769	1.30	-5.9 -4.0 -1.9 3 0 6.1 2.0 4.0 10.0 12.1 14.0	-0.426294141020 .004 .142 .291 .441 .716 .846	.0431 .0272 .0225 .0225 .0226 .0271 .0687 .1020 .1473 .2025	.0637 .0288	-0.0370 0257 0124 0024 0.0119 .0243 .0374 .0489 .0600 .0704 .0792	-0.5%1 -0.5%1 -0.0019
0.90	909216111920 -1-2468920 14-0	587 394 171 023 .009 .053 .183 .392 .593 .768 .925 1.112	.0387 .0737 .1228 .1765	.0924 .0509 .0139 .0033 .0010 0048 0372 0753 1168 1596 2610	0451 0287 0126 0008 00041 0137 0455 0612 0629 0629	1951 1542 0589 0048 0015 .0662 .1528 .1980 .2037 .2171 .0918	1.70	-6.2 -4.1 -2.4 -2.5 1.9 3.9 7.9 13.9 15.9 17.9	327 221 111 021 007 005 104 209 321 323	.0213 .0324 .0518 .0791 .1101 .1519 .1980 .2539	.0809 .0565 .0305 .0043 .0042 0213 0466 0744 1016 1244 1511 1781 2068 2217	0286 0188 0093 0017 0004 0094 0085 0185 088 0488 0488 0588 0588 0588 0588 0588	0258 0174 0078 0013 0006 .0023 .0069 .0163 .0207 .0316 .0383 .0457 .0505 .0513
1.00	-5.77 -1.70 -3.4 -4.4 -6.10 -8.31 -10.32	523 350 159 003 .038 .074 .212 .414 .576 .750 .917	.0274 .0342 .0571 .0881 .1369 .1943	.0961 .0580 .0247 .0028 0075 0341 0755 1124 1545 1976	- 0439 - 0296 - 0126 - 0010 - 0018 - 0047 - 0148 - 0318 - 0458 - 0602 - 0739 - 0844	1224 1014 0476 0006 .0023 .0107 .0545 .1037 .1171 .1278 .1236 .1337	2.22	-5.666.24.94.34.4.54.4.54.4.54.4.54.4.54.4.54.4.	233 153 068 008 011 .032 .170 .256 .338 .418 .505 .563 .664	.0148 .0180 .0271 .0432 .0548 .0916 .1663 .1663 .2130	.0403	- 01988 - 0198	0080 0082 0017 0021 .0013 0025 .0004 .0042 .0046 .0084 .0168 .0155 .0205 .0205
1.10	5.7.8.2.2.8.2.3.1.2.2.3 2.4.6.8.2.3.1.2.2.3		.0272 .0337 .0545 .0854 .1302 .1821		0445 0288 0142 0024 0 .0045 .0147 .0286 .0424 .0549 .0673	1099 0861 0513 0063 .0027 .0107 .0503 .0880 .0924 .11142 .1129 .1062							

TABLE I.- AERODYNAMIC CHARACTERISTICS WITH THE WING ON - Continued (c) BVWC; δ = 5.10

М	a, deg	$c_{\mathbf{L}}$	c^{D}	C'W	c _{Ze}	C _{hc}	м	æ, deg	C.T.	c_{D}	c ^m	$c_{\mathbf{Z_c}}$	c _{he}
0.70	-6.1 -2.1 1.9 5.8 9.9 13.9	-0.467 158 016 143 453 743 882	0.0551 .0193 .0159 .0209 .0607 .1443 .2386	.0414 .0438 .0397 .0179 0827	-0.0146 .0089 .0223 .0370 .0596 .0579 .0635	-0.0692 .0507 .1188 .1660 .1456 .0884 .0897	1.30	-5.9 -2.1 0 2.1 6.0 10.0 13.9	163 .004 .155 .438	.0297 .0244 .0313	.0804 .0456 .0130 0551 1287	-0.0113 .0105 .0246 .0373 .0564 .0685 .0792	-0.0117 .0291 .0503 .0648 .0746 .0689
0.90	-6.0 -2.0 0 2.1 6.1 10.0 14.1	586 173 .002 .189 .602 .947 1.256	.0198 .0167 .0234 .0833 .1450	.0468 .0465 0396 1780	0146 .0108 .0268 .0454 .0678 .0647	0564 .0708 .1595 .2014 .2140 .0851 .0756	1.70	-6.2 -2.1 1 1.9 5.9 9.9 13.9	097 .007 .118 .334 .537 .735	.2094	.1182 .0610 .0378 .0109 0443 0979 1558 2133	0080 .0100 .0197 .0292 .0454 .0563 .0662	0 .0174 .0241 .0337 .0436 .0430 .0272 .0163
1.00	-5.7 -1.6 .3 2.3 6.3 10.2 14.2	525 157 .030 .211 .592 .920 1.190	.0804 .0309 .0313 .0380 .0974 .2027 .3340	.1497 .0614 .0416 .0206 0686 1583 3045	0125 .0138 .0312 .0465 .0689 .0829	0415 .0648 .1127 .1299 .1207 .0893 .0495	2.22	-5.8 -1.6 .4 2.3 6.4 10.4 14.4	052 .029 .105 .266		.0216 .0034 0369	0039 .0084 .0153 .0223 .0359 .0486 .0584	.0017 .0090 .0128 .0138 .0207 .0189 .0243 .0220
1.10	-5.7 -1.7 .1 2.2 6.2 10.2 14.1	495 177 013 .192 .542 .846 1.108	.0337 .0280 .0367 .0926 .1888	.1394 .0732 .0605 .0185 0630 1437 2510	0138 .0136 .0280 .0434 .0635 .0778 .0811	0469 .0599 .0918 .1031 .1099 .0836 .0369							

TARTET AT

TABLE 1.- AERODYNAMIC CHARACTERISTICS WITH THE WING ON - Continued (d) BVWC; δ = 10.4 $^{\circ}$

м	a, deg	c^{Γ}	c_{D}	C _m	c _{Ze}	$c_{\mathbf{h_c}}$	м	α, deg		$c_{\mathbb{D}}$	C _m	$c_{\mathbf{Z_c}}$	c _{he}
0.70	-6.2 -2.1 1 1.9 5.9 9.9 13.8	-0.468 133 .008 .147 .458 .740 .895	.0228	.0798 .0792 .0717 .0148 0721	0.0086 .0363 .0488 .0569 .0587 .0626 .0693	0.0486 .1590 .1584 .1465 .0912 .0847 .0935	1.30	-6.1 -2.0 1 2.0 6.0 10.0	.001 .152 .448	.0343 .0313 .0385 .0830 .1664	.1235 .0951 .0578 0232	0.0137 .0387 .0496 .0612 .0790 .0963 .1064	0.0453 .0662 .0744 .0792 .0922 .0746
0.90	-6.0 -1.9 0 2.0 6.1 10.0 14.0	581 155 .011 .186 .602 .933 1.266		.0978 .0962 .0725	.0118 .0458 .0596 .0624 .0662 .0704 .0758	.0838 .2049 .2112 .1544 .0828 .0727 .0721	1.70	-6.3 -2.1 2 1.9 5.9 9.9 13.9 18.0	079 .025 .132 .349 .547 .737	.0279 .0266 .0323 .0673 .1297 .2187	.0708 .0431	.0120 .0322 .0405 .0489 .0652 .0797 .0932 .1055	.0279 .0360 .0465 .0541 .0650 .0606 .0507
1.00	-5.8 -1.7 -3 2.3 6.2 10.2 14.1	526 159 .032 .216 .596 .925 1.192	.2123	.2003 .1232 .0870 .0635 0261 1546 2908	.0155 .0489 .0632 .0746 .0981 .1004 .0821	.0748 .1236 .1230 .1243 .1140 .0608 .0574	2,22	-5.7 -1.6 2.5 6.5 10.3 14.4 18.4	040 043	.1095 .1852	0715	.0116 .0254 .0323 .0399 .0549 .0681 .0799	.0145 .0174 .0199 .0233 .0344 .0436 .0478
1.10	-5.9 -1.8 2.2 6.2 10.2 14.2	508 188 004 .206 .565 .854 1.116	.0841 .0402 .0354 .0449 .1031 .1988 .3264		.0124 .0446 .0577 .0687 .0897 .0960 .0913	.0648 .1054 .1085 .1134 .1079 .0648 .0434							

CONTROLLA

TABLE I.- AERODYNAMIC CHARACTERISTICS WITH THE WING ON - Concluded (e) BVWC; δ = 19.90

м	æ, deg	$c_{ m L}$	c_{D}	C _m	$c_{\mathrm{Z_c}}$	Chc	М	α, deg	$c_{ m L}$	$\mathbf{c}_{\mathtt{D}}$	C _{IM}	$c_{Z_{\mathbf{c}}}$	$c_{ m h_c}$
0.70	-6.2 -2.0 1 1.9 5.9 9.8 14.0	-0.445 135 .009 .147 .452 .731	0.0706 .0365 .0340 .0382 .0777 .1594 .2653	.11.95 .0938 .0739 .0275 0489	0.0478 .0553 .0556 .0577 .0653 .0711 .0790	0.1660 .1150 .1018 .1039 .0981 .1018 .0932	1.30	-6.0 -2.0 0 2.0 6.0 10.0	120 .016 .157 .441	0.0848 .0520 .0502 .0577 .1015 .1864 .3011	.1840 .1473 .1084 .0143	0.0542 .0730 .0809 .0888 .0986 .1068 .1135	0.0918 .0945 .0928 .0828 .0564 .0207 .0073
0.90	-6.0 -1.9 .1 2.0 6.1 10.1 14.1	565 148 .019 .186 .583 .906	.0445 .1004 .2011	.0875 0194	.0508 .0638 .0670 .0721 .0759 .0792 .0839	.1622 .0977 .0899 .0863 .0809 .0754 .0662	1.70	-6.2 -2.1 1 1.9 5.8 9.9 13.8 17.9	•357 •552	.2405	.0253	.0453 .0607 .0678 .0744 .0875 .0988 .1072 .1143	.0752 .0838 .0836 .0805 .0641 .0423 .0113 0075
1.00	-5.7 -1.8 .3 2.3 6.3 10.3 13.7	505 169 .003 .208 .593 .924 1.162	.1007 .0604 .0557 .0609 .1243 .2283 .3370		.0676 .0903 .0968 .0961 .1065 .1033 .0883	.1316 .1148 .1037 .0740 .0446 .0413 .0528	2.22	-5.7 -1.6 -4 2.4 6.4 10.3 14.4 18.4	170 009 .067 .146 .303 .447 .595 .734	.0463 .0335 .0366 .0448 .0772 .1288 .2044 .3000	.1124 .0924 .0703 .0233 0206	.0398 .0526 .0586 .0646 .0762 .0861 .0960 .1046	.0438 .0503 .0606 .0666 .0694 .0629 .0457 .0189
1.10	-5.8 -1.7 .2 2.2 6.2 10.2 13.8	176 .021 .210 .555 .867	.0605 .0570 .0645 .1198 .2175	.2763 .2100 .1496 .0808 0236 1162 2276	.0610 .0844 .0891 .0887 .0985 .1066 .0952	.1243 .1054 .0977 .0698 .0432 .0293 .0323							

CATTE DE LA CONTRACTION DE LA

TABLE II.- AERODYNAMIC CHARACTERISTICS WITH THE WING OFF (a) BV

м	a, deg	$c_{ m L}$	c_D	C _m	М	æ,	c_L	$c^{\mathcal{D}}$	C _m	м	α, deg	c_{L}	СD	C _m	W	α, deg	$\mathbf{c}_{\mathbf{L}}$	C _D	C _M
0.70	-4.1 -2.0 6 1 1.9 3.9 5.9 8.0 9.9 11.9 16.0 17.9	0 .003 .003 .004 .005 .007 .008 .017 .020 .027 .033 .039004 .005 .006 .006 .006 .006 .006 .006 .006	.0062 .0071 .0079 .0122 .0137 .0161 .0063 .0060 .0058 .0064 .0064 .0064 .0069 .0066 .0068 .0069 .0066 .0069 .0069	0057 0045 0036 .0041 .0099 .0131 .0175 .0198 .0234 .0258	II .	-3.8 -1.8 -3.8 2.3 6.3 10.3 12.2 14.3 16.4 18.3	001 .003 .004 .005 .005 .005 .005 .019 .023 .039 .048 .007 .001 .002 .003 .005 .005 .005 .005 .005 .005 .005	.0107 .0110 .0104 .0097 .0094 .0093 .0111 .0107 .0126 .0149	.0226	1.70	-6.0 -4.0 -1.9 -0.0 -1.9 -0.0 -1.1 -0.0 -1.1 -1.1 -1.1 -1.1 -1.1	.022 .031 .041	.0087 .0085 .0084 .0084 .0086 .0092 .0104 .0117 .0138 .0167 .0253 .0253 .0084 .0085 .0084 .0086	0062 0021 0008 .0001 .0036 .0090 .0129 .0160 .0189 .0200 .0210 .0196	2.22	7.66 -1.66 -1.8 2.4 6.3 10.4 114.5 116.4 118.4	-0.011 006 001 .002 .003 .006 .010 .015 .022 .031 .045 .0693	0.0088 .0073 .0068 .0058 .0069 .0067 .0085 .0097 .0128 .0170 .0232 .0306 .0385	-0.0115007700470013002100340093011401400143016800790045

TABLE II.- AERODYNAMIC CHARACTERISTICS WITH THE WING OFF - Continued (b) BVC; δ = 0°

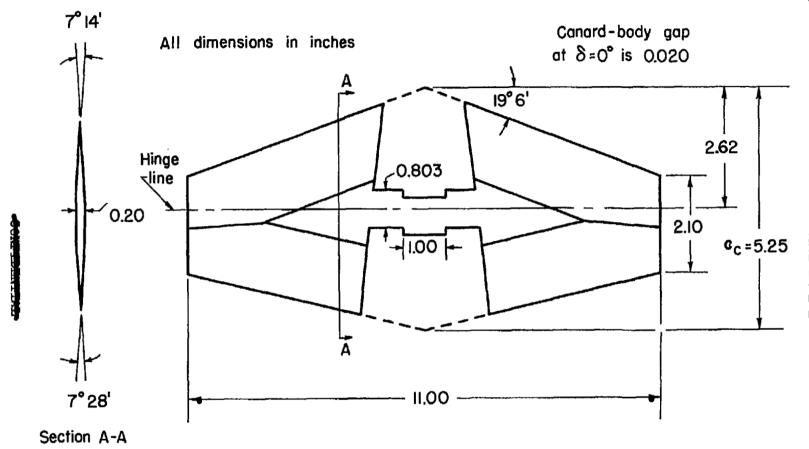
м	a, deg	c _L	c^D	C _m	н	a,	C _L	c_{D}	C _{IM}	м	α, deg	c^{Γ}	СD	G ^{III}	M	æ,	c _L	$c_{\mathbb{D}}$	C _m
0.70	4.01624.999999999999999999999999999999999999	-0.053 -0.05	0.0117 .007 .007 .007 .007 .007 .006 .006 .00	-0.0679 -0.0174 -0.017		-3.7 -1.7 -3.8 2.2 4.2 6.2 10.3 12.3 16.3 18.3	-0.057 -0.099 -0.099 -0.090 -0.0000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.0000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.0000 -0.000	.099 .095 .0086 .0099 .0095 .014 .0195 .0338 .0422 .0533	-0.076404910190000100090043 .0257 .0571 .0873 .1128 .1363 .1579 .1975 .21140770050002170023002700230047 .0255 .0506 .0783 .1021 .1250 .1450 .1646 .1842 .1973	1.70	644110 a 3686 644 644 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.66688859655844444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	66 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8,88 6,58 6,58 6,58 6,58 6,58 6,58 6,58	2.22	575149344444 1024444 11644 11844	-0.034 024 012 005 .006 .040 .053 .070 .090 .118 .136	0.0115 .0095 .0082 .0074 .0077 .0088 .0117 .0161 .0217 .0299 .0563	-0.0385 0242 0078 .0037 .011 .0057 .0168 .0468 .0609 .0723 .0801 .0931 .1006

TABLE II.- AERODYNAMIC CHARACTERISTICS WITH THE WING OFF - Continued (c) BVC; $\delta=5.2^{\circ}$

M	a, đeg	cr.	C _D	C _{III}	М	a, deg	c _L	c _P	C _{EL}	M	α, deg	c _L	c _D	C _m	м	α, deg	C _L	C ^D	C ₃₈
0.70	-2.1 1 1.9 5.9 9.9 13.9	.007 .026 .043 .077 .087 .103 .126 .031 .031 .032 .039	0.0075 .0075 .0084 .0109 .0190 .0271 .0365 .0513 .0079 .090 .0124 .0222 .0301 .0419		1.10	-5.8 -1.7 2.3 6.2 10.2 14.3 18.3 -5.9 -1.7 2.2 6.2 10.2 14.3	.171 021 .015 .033 .053 .090 .121 .147	.0103 .0114 .0164 .0361 .0553 .0719 .0141 .0151 .0184 .0267 .0419	.1204 .1649 .2058	1.70	-6.0 -2.0 0 2.0 6.0 10.0 18.1 -6.1 -2.1 1.9 5.8 13.8	.012 .028 .046 .079 .106 .136 .165 021 .023 .036 .064	.0111 .0128 .0172 .0233 .0532 .0743 .0116 .0110 .0121 .0140 .0212	-,0224	2.22	-1.7 .3 2.3 6.4 10.4 14.3 18.4	0.005 .017 .030 .055 .083 .121 .165	0.0084 .0093 .0111 .0179 .0294 .0473 .0739	0.0142 .0297 .0443 .0775 .1052 .1190 .1300

TABLE II.- AERODYNAMIC CHARACTERISTICS WITH THE WING OFF - Continued (d) BVC; δ = 10.2°

м	a, deg	c_{L}	СД	Cm	М	a, deg	c _L	c _D	C _{ma}	М	a, deg	$c_{\mathbf{L}}$	c _D	C _m	м	æ,	$c_{\mathbf{L}}$	c ^D	C _m
0.70	-2.1 0 1.9 5.9 9.9 14.0 18.0	.038 .057 .069 .079 .092 .110 .128	.0147 .0193 .0254 .0333 .0451		1.10	-1.7 .3 2.3 6.3 10.2 14.2 18.2	.053 .072 .090 .126 .138 .154 .169	0.0110 .0151 .0198 .0250 .0388 .0643 .0809 .0135 .0195 .0414 .0529 .0414 .0529 .0686 .0870	.0647 .0922 .1167 .1614	1.70	2.0 0.0 6.1 9.9 14.0 18.0	.041 .059 .073 .104 .127 .146 .160	0.0123 .0157 .0238 .0355 .0556 .0556 .0556 .0556 .0557 .0333 .0554	.0514)}	-5.7 -1.6 4 2.3 6.3 10.3 14.4	0.001 .026 .039 .052 .075 .099 .129	0.0100 .0118 .0139 .0167 .0394 .0582 .0839	


TABLE II.- AERODYNAMIC CHARACTERISTICS WITH THE WING OFF - Concluded (e) BVC; $\delta = 19.9^{\circ}$

M	a, deg	$c_{\mathtt{L}}$	СD	C _m	M	a, deg	c_{L}	c_{D}	C _m	М	a, deg	$c_{\mathbf{L}}$	C _D	C _m	м	a, deg	$c_{\mathbf{L}}$	c_{D}	c _m
0.70	-2.1 1 1.9 5.8 9.9 13.9 18.0	0.046 .057 .061 .066 .075 .097 .119 .053 .068 .074 .082 .093 .1156 .149	.0256 .0284 .0315 .0379 .0486	.0884 .0978 .1160 .1271 .1458 .1692 .0760 .0956 .1072 .1206 .1368 .1505 .1685	1.10	-1.7 2.2 6.2 10.2 14.3 18.2	0.069 .098 .105 .108 .138 .148 .158 .064 .091 .099 .137 .155	.0362 .0426	.1537 .1567 .1758 .1962 .2122 .2280 .0893 .1302 .1438 .1474 .1682 .1880 .2018	1.70	-1.9 2.1 6.1 10.0 14.0 18.1	.081 .091 .102 .120 .136 .145 .157 .042 .066 .078	.0344 .0396 .0461 .0583 .0727 .0873 .1056 .0336 .0355 .0413 .0541 .0692 .0855	.1462 .1657 .1888 .2069 .2217 .0662 .0963 .1109 .1254 .1752 .1908	2.22	-5.7 -1.6 .4 2.3 6.4 10.3 14.4 18.4	.059 .069 .079 .097	.0304 .0359 .0483 .0624 .0823	0.0558 .0811 .0950 .1077 .1324 .1550 .1659

(a) Dimensional sketch of complete model.

Figure 1.- Model details and dimensions'.

(b) Details of canard surface.

Figure 1 .- Concluded.

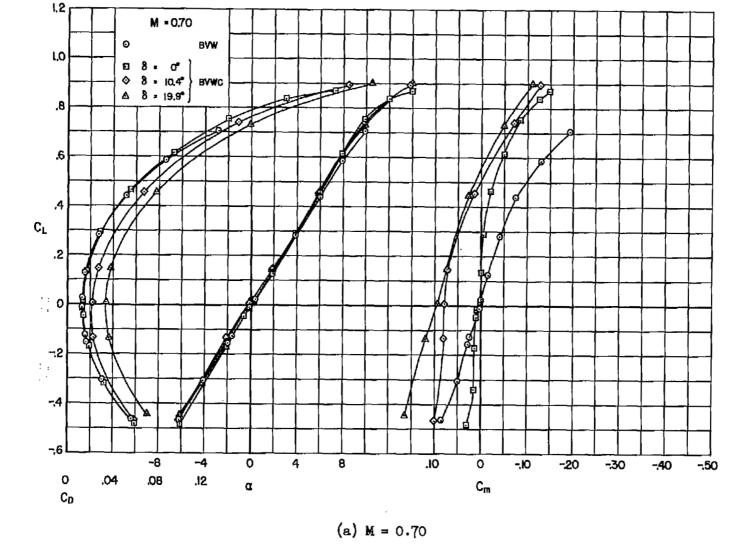


Figure 2.- Lift, drag, and pitching-moment characteristics for the canard on and deflected and the canard off.

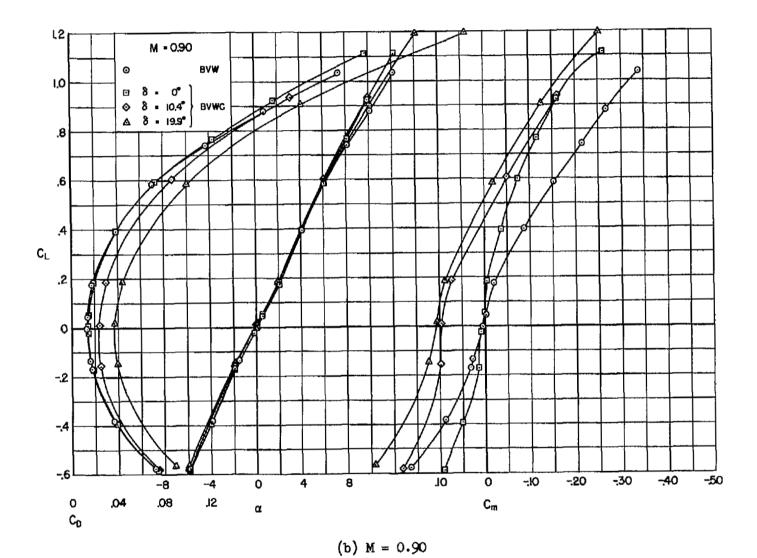
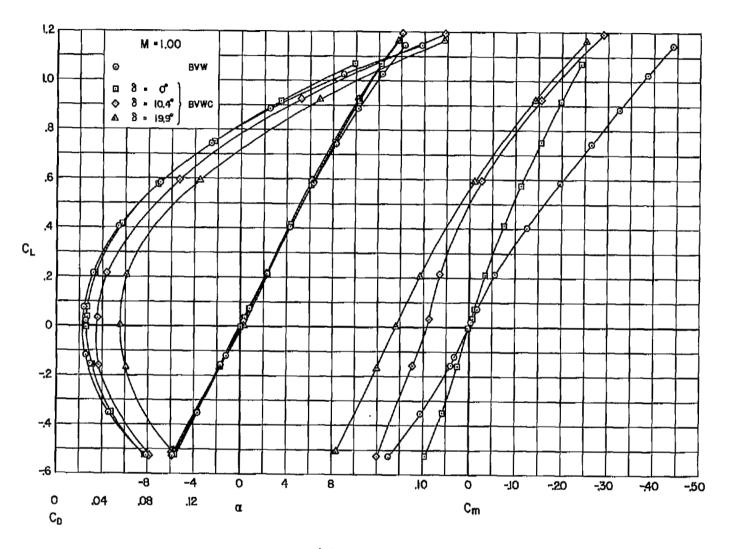



Figure 2.- Continued.

(c) M = 1.00

Figure 2.- Continued.

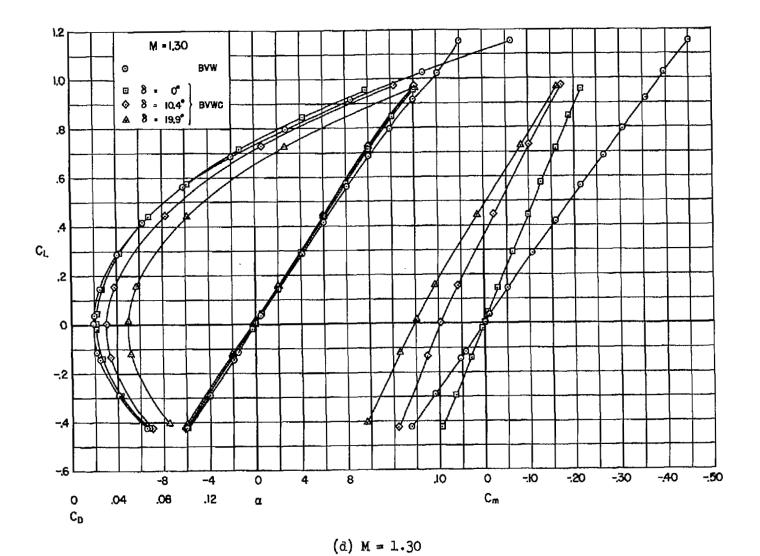
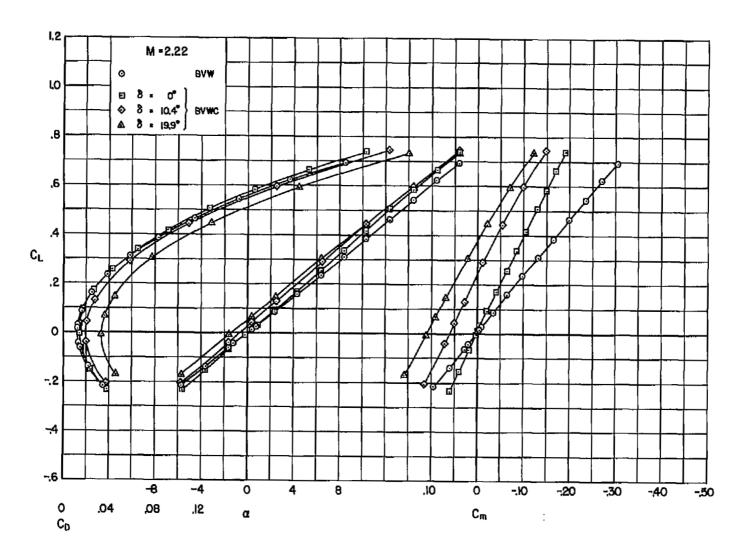



Figure 2.- Continued.

(e) M = 2.22

Figure 2.- Concluded.

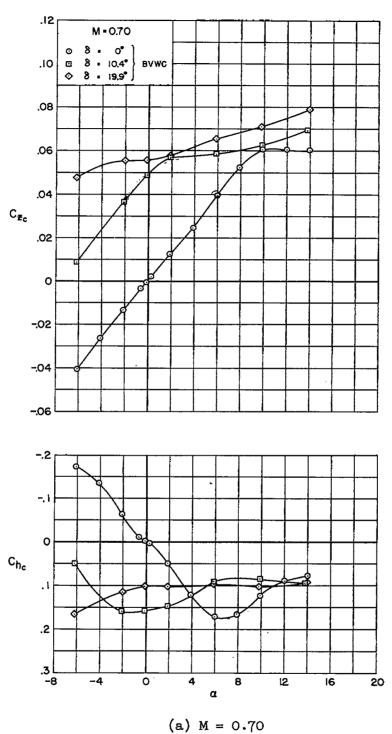


Figure 3.- Variation of canard normal-force and hinge-moment coefficients as a function of angle of attack at constant canard deflection angles.

-CONTINUE TRATE A T

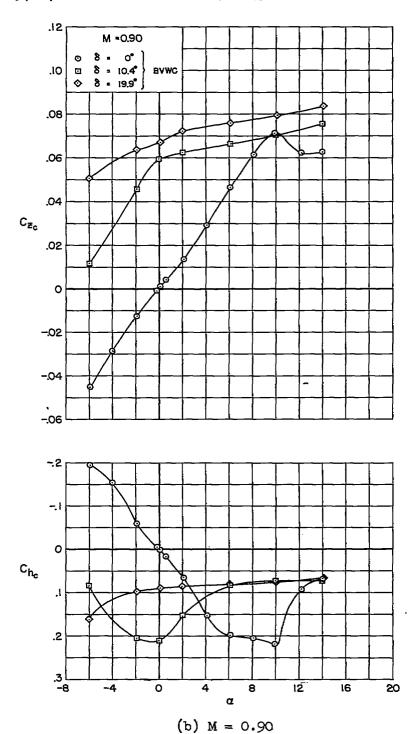


Figure 3.- Continued.

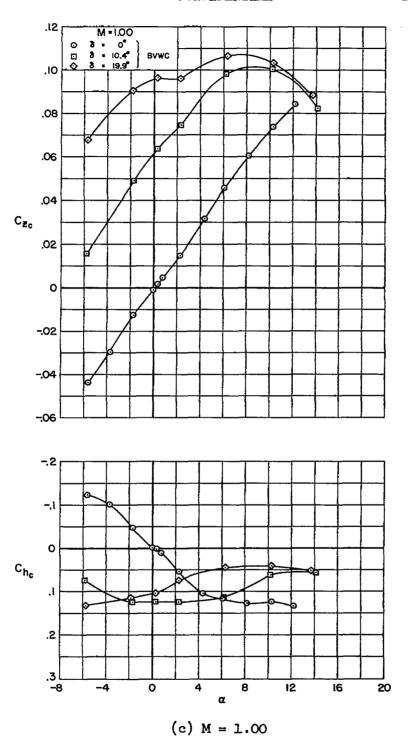


Figure 3.- Continued.

CONTRACTOR

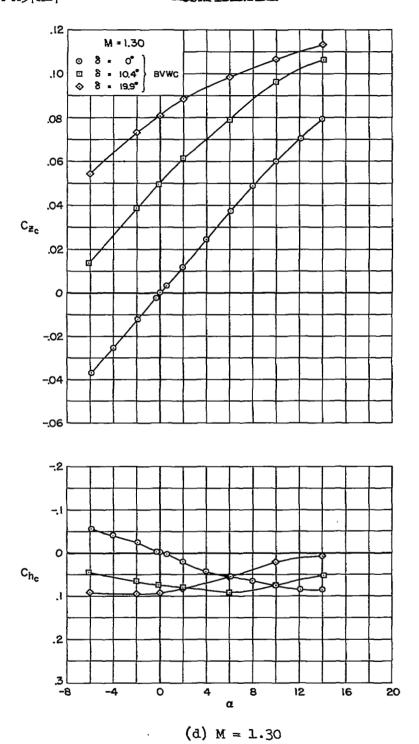


Figure 3.- Continued.

TO THE PROPERTY AND THE PARTY AND THE PARTY

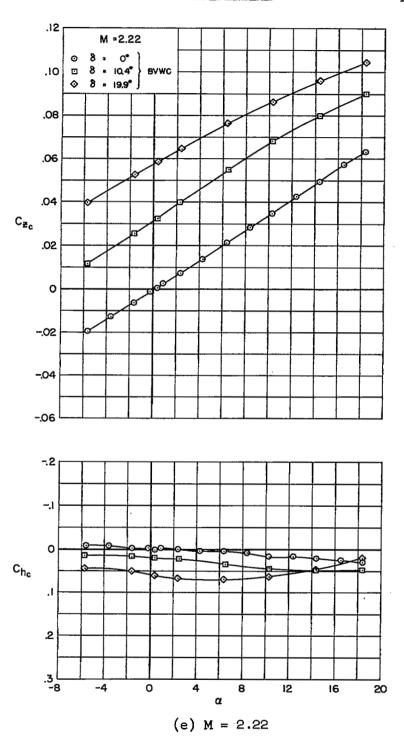


Figure 3.- Concluded.

TATEMENT AT

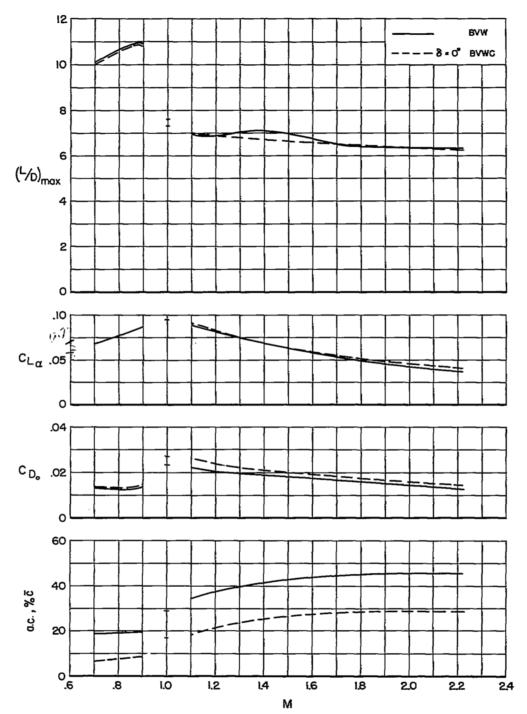


Figure 4.- Variation of maximum lift-drag ratios, lift-curve slopes, minimum drag coefficients, and aerodynamic centers as a function Inque our trap canard. of Mach number for the canard on and off.

3 1176 01434 9519

1 1-3

CONFIDENTIAL