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RESEARCH MEMORANDUM -

FLIGHT MEASUREMENTS AND CATCULATIONS OF WING LOADS AND
IOAD DISTRIBUTIONS AT SUBSGNIC, TRANSONIC, AND

SUPERSONIC SPEEDS

By Frank S. Malvestuto, Thomas V. Cooney,
and Earl R. Keener

SUMMARY

Presented in this report is a summary of local and net angle-of-
attack wing-panel loads measured in flight on six airplenes. In addltion,
a comparison of these loads measured in flight with celculations based on

simple theory is presented.
INTRODUCTION

At the High-Speed Flight Station of the National Advisory Committee
for Aeronautics, full-scale research 1n the fields of stability, perform-
ance, and loads is conducted wilith a variety of completely instrumented

research and military-type airplanes.

In the present peper, the serodynamic loads aspect of this flight
research 1ls considered. The presentation will involve a summary of local
and net angle-of-attack wing-panel loads measured in flight on a variety
of airplenes flown during the past 5 or 6 years. In addition, a prelim-
inary comparison of these loads measured in flight and the corresponding
loads calculated by simple theory is presented. The object of this com- ..
parison is %o assess the ability of simple theoretical techniques to pre- “
dict the flight-measured loads Tor @ variety uf configurations. _Ohly & i
cursof?’ﬁﬁﬁiﬁiison of the flight measurements with compsrable wind-tunnel -
results has been made. In a general sense, the flight results wverify the
tunnel findings. For the convenience of the reader, a bibliogrephy hes
been added. " i

Figure 1 depicts with plan-view outlines the airplanes to be dis-
cussed in this report. The wing panels are darkened to emphasize the
fact that only the wing loads will be consldered. An inspection of
the individual sketches and geometric data shows that there 1s a good
coverage of wing sweep, plan form, aspect ratio, and thickness. In
addition, the X-1E wing has 2° positive incidence and the D-558-II wing
has 3° of positive incidence. The free-stream Reynolds number for the
flights of these airplanes varied from 1 X 106 to 6 x 106 per foot. The
altitude varied from 25,000 feet to 65,000 feet.

UNCLAZ FIED
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SYMBOLS
A aspect ratio
b! wing-panel span
be flep span
c chord
Cav avereage chord
cy flap chord
Cn section normal-force coefflcient
Cn net normal-force coefficlent
CNa variation of wing-panel normal-force coefficient with angle
of attack
Cp pressure coefficient
ACP pressure coefficient differential between upper and lower surfaces
H altitude
1 wing incidence
M free-gtream Mach number
Reo free-stream Reynolds number
T thickness
x distance glong x-axis
¥ distance along y-axis
a angle of attack
de elevon deflection
MF leading~edge sweep
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THEORIES CONSIDERED

A Pew preliminsry remarks regarding the theories used for the wing-
panel load celeculstions will be made. The wlngs are assumed to be rigid
flat plates and of negligible thickness. In addition, the effect of the
fuselage interference on the wing loads was approximated by assuming the
fuselage to act as a perfect reflection plane located at the wing-
fuselage Jjuncture. On this basis, the wing load is predicted as the
load on one panel of a symmetrical wing with its root chord coincident
with the wing-fuselage Juncture. It is reelized thet this aspproximetion
to the fuselage interference is subject to improvement; however, 1t is
felt to be sufficient for the present study. With these assumptions in
mind, the wing theorles used for loed predictions are given in the fol-
lowlng table:

Theories used for calculation of wing loads -

lifting surface
(refs. 1 to L)

lifting surface
(refs. 5 and 6)

Subsonic Transonic Supersonic
(0.5 <M< 0.85) (M = 1.0) (M2 1.2)
A1l wings: linear Swept wing: linear A1} wings: linear

1lifting surface
(refs. 9 to 16)

Unswept wing: two-
dimensional flsat
plate; two-
dimensional double
wedge (refs. 7
and 8)

In the subsonic range, for ail wings, linear theory was applied.
(See refs. 1 to 4.) These subsonic calculations were made up to a Mach
mumber of 0.85, although in the neighborhood of this Mach number, tran-
sonic mixed-fiow conditions no doubt exist. In the traensonic range, cal-
culations were made only for & free-stream Msch number of 1.0. In this
range, for the swept wings, the linear theory presented by Mangler (ref. 5)
which is in essence Jones' slender-wing theory (ref. 17) modified for
linearized sonic-flow conditions was applied. For the unswept wing, at a
Mach number of 1.0, use was made of the results of Guderley and Yoshihersas
(ref. 8) for a double-wedge section and the results of Guderley (ref. T)
for a flat plate of negligible thickness. For the supersonic Mach nmumber
range, the well-known lifting-surfaece theories were gpplied.
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LOADING DISTRIBUTION

In the discussion of flight results, the chordwise and spanwise
loadings for the unswept-wing X-1E airplene, the swept-wing D-558-II1 air-
plene, and the delta-wing JF-102A glrplane are considered and then a
force summary for all six airplanes is given.

Some 1dea of the flight Reynolds number, altitude, and angle-of-
attack excursions for these alrplanes can be determined from figure 2. The
Reynolds number is given on a per-foot basis and for free-stream con-
ditions. The open clrculer symbol represents the maximum Reynolds num-
ber obtained. It is noted that this flight Reynolds number varies from
approximately 1 X 106 to 4 x 106. The altitude covers a range from
approximately 25,000 to 65,000 feet. On the right-hand side of figure 2
the hatched boundary 1s indicative of the maximim angle-of-attack excur-
slons obtalned in flight. The discussion of the angle-of-attack wing
loads will be within the region shown by the dashed boundary.

In figures 3 to 6 are presented the chord loadings and spen loadings
for the X-1E wing panel. The solid line represents the theory; the open
sym.bolf the flight data. The dashed line through the open circles repre-
sents faired" flight data. The sketches on the left-hend side of fig-
ure 4 indicate the panel normel-force coefficient Cy for the angles of

attack at which the chord and span loadings are shown. Consider first
the chord loadings of figure 3, that 1s, the varlation of AC,, the

lifting pressure, with x/c, the normalized distence from the leading
edge. These results are for a span station E%%§-= 0.46. The symbol b'

denotes the externsl panel span. The chord loasdings are shown for Mech
numbers of 0.8, 1.0, and 1.9. For each Mach number the chord loasdings are
shown for two angles of attack, a low angle and a high angle. The magnitude
of the high angle of attack is limited by the availebility of the data.
The angle of attack is always the angle of attack of the wing panel. At

M = 0.8, the calculated level and veriation of the chord loading comperes
favorably with the flight data. For a Mach number of 1.0, there is no
availeble finite-span unswept-wing theocry. The theoretical veriation
shown here is the flat-plate two-dimensional theory of Guderley. Although
the level of the 1lifting pressure i1s not predicted herein, the variation
is similar to the flight-measured variastion for both angles of attack.

At supersonic speed and low engle of atteck, the comparison of flight
end theory is acceptable. At the higher angle of attack, the loading d4is-
tribution is not predicted by theory although the level of the local load
‘can be calculsted. The midspan chord loadings and the chord loaedings at
two additional spenwise stations, one near the root and one near the tip,
are shown in figures 5 and 6.
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If the span-load distributions (fig. 4) are comsidered, it is noted
that, at M= 0.8 and M = 1.9, the calculated span loading comperes
favorably with the flight-measured loading. For M = 1.0, the span loading
was not calculated, since, as mentioned previocusly, the two-dimensional
results of Guderley were used; however, the flight dete have been faired.
The shepes of the span-loading curves strongly resemble each other for the
three Mach numbers shown.

For the swept-wing D-558-IT airplene the chordwise and span-load
distributions for the wilng panel are shown in figures 7 to 10. The
s0lid line represents the calculations and the open circular symbol, the
flight measurements. The panel normal-force coefficients corresponding
to the angles of attack considered are indiceted in the sketches on the
left-hand side of figure 8. The chord loadings presented in figure 7
are for a spanwlse station close to the midsemispen location. For the
subsonic end supersonic speeds, the theory allows the calculation of the
level and variation of the chord loading except at the high angle of
attack for the supersonic Mach number. A% M = 1.0, the measured distri-
bution of the lifting pressure /ACp is not calculated by the linear

theory. Theory gives a zero loading behind the linearized sonlc shock
that starts from the leading edge of the streamwlse tip of the wing panel.
It is possible to obtain e nonzero loading by minor alterations of the
wing-tip geometry so that, for the portion of the wing behind the line-
arized shock, the locsal spen increases with incressing longitudinal posi-
tion; end hence 1lift is produced. (See ref. 17.) A discussion of this
artifice 1s given in the report by Mangler (ref. 5) mentioned earlier.
The midspan chord loadings and the chord loadings near the root and tip
are showvn in figures 9 and 10.

The span loading for the swept-wing D-558-I1 is presented in fig-
ure 8. At subsonic and supersonic speeds the calculated distribution
compares favorably with the flight measurements. For M = 1.0, the cal-
culated loading, especilally at the high angle of attack (11°), does not
represent the experiment becsuse of the Inebility of the theory to pre-
dict the level of the losds in the vicinity of the root and tilp reglons.
At an angle of attack of 11°, the Cy of the panel is approximately 0.8.
It is possible that separation effects at the root end tip are importent
for this configuration. In addition, the simple end-plate correction
used herein for fuselage interferences may be approximate. In this
regard the application of an analysis such as that reported by Crigler
(ref. 6) for wing-body interference at sonic speeds would improve the
prediction of the loading in the viecinity of the root.

The flight-measufed loads for the wing pesnel of the 60° delta-wing

JF-102A airplane are considered next. In figure 11 is shown an exploded
view of the wing. Note the two fences located in the forward portion of
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the wing and the elevon surface which is operative during flight. This
wing hes conicel camber and a reflexed tip. For the calculation of the
wing-panel loads, the effect of the fences snd the effects of the conical
camber and the reflexed tip are neglected; however, the effect of the
elevon has been considered.

In figures 12 and 1% ere shown the chord loading and the span loading
for this airplane. For the lower angle-of-attack range (angles of attack
from 3° to 5°) the calculations of the chord loadings compare favorably
with the measurements. Up-elevon deflection is negative. The fact that
the loading at the leading edge is not predlcted is partly due to the
omission of camber effect in the calculations. Although the effect of
elevon at M= 1.0 was not calculated, an inspection of the low-angle-of-
attack results indicates that the elevon load calculations at low super-
sonic speeds such as those obtained at M = 1.2 are reasonable approxi-
mations to the elevon losd at M = 1.0. ALt the high angles of attack the
remarks made for the low angles of attack for the sonic and supersonic Mach
numbers are still reascnably valid. For the subsonic Mach number, the angle
of attack 1s 20° and the celculations do not predict the f£light measurement
primarily because of leading-edge sepasration. For the case of leading-edge
separation, calculations of the loading should be made within the framework
of the approximate separation flow theories such as reported by Brown and
Michsel (ref. 18). The panel span loadings for the JF-1024 are shown in
figure 13. The inability of the caleculatlons to produce .the flight trends
at M= 0.8 and o = 20° 1is clear from the remarks relating to the chord
loading at this Mach number and angle of attack. At M= 1.0, since the
elevon load was neglected, the calculations overestimate slightly the level
of the distribution. The effect of the fences on the span loading distri-
bution cen clearly be seen at M = 1.0 and o = 10°.

In general, the overall Impression from this preliminary comparison
is what would be expected from similar comperisons with wind-tunnel results.
Briefly, a reasorable approximation of the span loadings can be determined
for the low and moderate sngle-of-attack range. The estimation of the chord
loadings 1s less satisfactory, particularly in the neighborhood of a Mach
number of 1.0.

NORMAIL FORCES

In figure 1k is shown the variation of the panel normsl-force coef-
ficient with panel angle of attack. Note ,in this illustration that the
open circuler symbol represents the flight measurements for Mach numbers
of 0.8 and 1.0. The solid symbol represeants the flight measurements for
supersonic Mach numbers. The calculations are sgaln represented by the
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golid lines. For the unswept wing at & Mach number of 1, the calculatbed
variation is simply the result of Guderley end Yoshihara (ref. 8) for a
two-dimensional wing with a L4-percent-thick double-wedge section. The
theory here does not predict the megnitudes or the veriation for the
range of angle of attack where flight measurements are aveilsble. Tunnel
results, however, for a similar wing indicate that the Cy variation
with o is not linear and in the lower angle-of-attack range (below 4°
angle of attack), theory more nearly agrees with the experimental
variation.

In figure 15 an attempt has been made to show the effect of Mach
number on the normal-force derivative CN for all six airplanes that

were sketched in figure 1. The theory is again represented by the solid
line and, in addition, the inverted "V" symbol has been used to indicate
the magnitude of Cy, &t M = 1.0. The flight data are represented by a

square symbol. The solld symbol represents a low Cy range; the open
symbol, & moderate Cy range; and the heif-solid, a high Cy range. In
most cases, flight data were available for only one of these ranges.

For the X-1E at sonic speed, the difference in the calculated and flight
values results from lack of flight data in the low Cy range as pointed

out in the discussion of figure 1k.

In general, the calculated normal-force-curve slopes compare favor-
ebly with those obtalined from the flight data.

CONCLUDING REMARKS

In general, the overall impression from this preliminary comparison
is what would be expected frdm. BimiTar comparisons wlth wind-tunnel results.
Briefly, a reasonable approximation of the span losdings can be determined
for the low and moderate angle-of-attack range. The estimation of the
chord loedings is less satisfactory, particularly in the neighborhood of
a Mach number of 1.0. In generel, the calculated normal-force curve slopes

compare Ffavorsebly with those obtained from the flight data.

High-Speed Flight Station,
National Advisory Committee for Aeronautics,
Edwards, Calif., March 5, 195T7.
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