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INTERFERENCE FROM MEASUREMENT OF INDIVIDUAL FORCES ON


SEVERAL WING-FUSELAGE-STORE CONFIGURATIONS 

II.- SWEPT-WING HEAVY-BOMBER CONFIGURATION WITH 

LARGE STORE (NACELLE). LATERAL FORCES AND 

PITCHING MOMENTS; MACH NUMBER, 1.61 

By Norman F. Smith and Harry W. Carlson 

SUMMARY 

A supersonic wind-tunnel investigation of the origin and distribu-
tion of store interference has been performed in the Langley 1 by 

4-foot 

supersonic pressure tunnel at a Mach number of 1.6. Separate forces on a 
store, a fuselage, a swept wing, and a swept_

Wifl _fUSe1age combination 

were measured. The store was separately sting-mounte d on its own six-

component internal balance and was traversed through a wide systematic 
range of spanwise, chordwise, and vertical positions. The configuration 
investigated simulated a heavy bomber airplane with a large store or 
nacelle having frontal area equivalent to a twin-engine nacelle. 

Large changes in store and wing-fusela ge forces and moments may 

occur with small spanwise or chordwise changes in store position. The 
effects of vertical position of the store are relatively small. The 
increases which occur with configuration angle of attack are somewhat 
larger for store side force than for store lift. Store side force is. 

ad from the standpoint of store-support design. probably the important lo  
The measured store moments are large at zero angle of attack but do not 
display the large increases with angle of attack which were measured for 

the other store forces. 

The wing is shown to be the predominant factor in the production of 
all interference forces and moments on the store. The effect of. the fuse-
lage is very small in the case of store lift and pitching moment, but it 
is of significant magnitude in the case of store side force and yawing
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moment, particularly for the inboard store locations. The total inter-
ference lift on the complete configuration Is due principally to the 
interference lift felt by the wing. The values measured fpr some store 
positions are large and important from the standpoint of . rolling moments 
produced in asymmetrical store carriage or asymmetrical store drops. 

INTRODUCTION 

Reference 1 describes in detail an experimental investigation in 
the Langley 4 by 4400t supersonic pressure tunnel aimed at supplying 
data on stores interference which is general in nature and which pro-
vides an improved understanding of the sources of interference. The 
investigation consists of measurement of individual forces and moments 
(six components) on various sting-mounted stores in the vicinity of sev-
eral fuselage, wing, and wing-fuselage combinations for which individual 
forces and moments (four components) were also simultaneously measured. 
Reference 1 presents the first part ofthe results of this program, the 
lift and drag at a Mach number of 1.6 on a store, a fuselage, a swept 
wing and a swept-wing—fuselage combination. 

The present report supplements reference 1 and presents the side 
force, yawing moment, and pitching moment on the same store and the 
pitching moment and rolling moment on the same fuselage, wing 	 d., an wing-

fuselage combination at a Mach number of 1.6. The wing-fuselage config- 
ration simulates a swept-wing heavy bomber, whereas the store represents 
a large external store or a twin-engine nacelle (with no provision for 
internal flow). Some additional analysis of the lift data presented in 
reference 1 is included. As in the case of reference 1, the data herein 
are presented with a somewhat limited "illustrative" analysis in order 
to expedite publication.

SYMBOLS 

CL	 lift coefficient of fuselage, wing, or wing-fuselage combina- 

tion as noted by subscripts, Lift 
qS 

Cm	 pitching-moment coefficient of fuselage, wing, or wing-fuselage 
combination as noted by subscripts (measured about /14), 
Pitching moment 

qS 

C1wf	 wing-root bending moment for wing-fuselage combination 

(positive up), Bending moment 
qS
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Lift 
CL	 lift coefficient of store, 	

F 

Cms	 pitching-moment coefficient of store (positive when nose 
is up) Pitching moment 

qFl 

Cy5	 side-force coefficient of store (positive to the 
right) Side force 

qF 

C	 yawing-moment coefficient of store (positive to 
the right), Yawing moment 

q.Fl 

CLt	 total lift coefficient of complete configuration (wing-fuselage 
plus store) based on wing area, CL ^ CL 

CL5	 slope of variation of store lift coefficient with 
wing-fuselage angle of attack 

Cy	 slope of variation of store side-force coefficient with
SM 	 wing-fuselage angle of attack 

slope of variation of store yawing-moment coefficient with 
wing-fuselage angle of attack 

S	 total area of wing semispan, .0.5 sq ft 

F	 maximum frontal area of store, 0.0123 sq ft 

S/F	 ratio of wing area to maximum frontal area of store, 40.6 

ZF	 mean aerodynamic chord of wing, 6.58 in. 

q	 dynamic pressure, lb/sq ft 

b/2	 wing seniispan, 12 in. 

1	 store length, 12 in. 

x	 chordwise position of store midpoint, measured from nose of 
fuselage, in. (see fig. 1) 

y	 spanwise position of store center line, measured from 
fuselage center line, in. 

z	 vertical position of store center line, measured from

wing chord plane, positive downward, in.
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M	 angle of attack 

13	 cotangent of Mach angle, /M2 - i 

Subscripts: 

f	 fuselage 

w	 wing 

wf	 wing-fuselage combination 

S	 store 

t	 total, for complete configuration (wing-fuselage plus store) 

APPARATUS AND TESTS 

The models and the general arrangement of the test setup are shown 
in figures 1 and 2. Reference 1 describes in d.etail the models, equip-
ment, tests, and methods, and contains remarks on support interference. 
No airplane tail surfaces or store-support pylons were used in this 
investigation. All tests were run with boundary-layer transition fixed 
as described in reference 1. The angle of attack of the wing-fuselage 
combination was varied from 0 0 to 40 , with the store remaining at a = 0 
throughout. 

The tests were performed in the Langley 11._ by 4-foot supersonic 
pressure tunnel at Mach numbers of 1.6 and 2.0, corresponding to Reynolds 

numbers per foot of 11.20 x 106 and 3.62 x 106, respectively. This report 
presents the lateral forces and pitching moments at M = 1.6 and addi-
tional analysis of the lift data presented in reference 1. 

The repeatability or relative accuracies of the data in this report 
are estimated froman inspection of repeat test points and static deflec-
tion calibrations to be as follows: 

Store position: 
x,in............................±0.025 
Y. in.............................±0.05 

Z. in ............................	 ±0.05


Store:
±0.010 J.s 

Cns .............................±0.005
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...............................±0.005 Cm.  

C................................±0.010 L5 

Wing-fuselage: 
Cm	 .........................,	 ±0.002 

CL..................................±0.005 
Cl................................•±0.002 

RESULTS AND DISCUSSION 

Basic Data 

Isolated store and wing-fuselage data. - The lift and pitching-moment 
coefficients for the isolated store at angles of attack up to 10 0 are 
shown in figure 3. Data are shown for pitch tests in both thp1ane of 
the balance normal-force beam and in the plane of the balance, side-force 
beam. The data thus obtained are shown to agree within the stated.'accu-
racy of the tests, except possibly at the highest angle of attack. The 
pitching-moment data are computed both about the nose of the store and 
about the midpoint of the store because interference data presented in 
subsequent figures are referenced to both points. 

Figure 11 shows the lift and pitching-moment coefficients for the 
isolated fuselage, wing, and wing-fuselage cornbinatiçn for angles of 
attack up to 40. 

Chordwise plots of force coefficients. - The basic data for the store 
in the presence of the fuselage, wing, and wing-fuselage are presented in 
figures 5 to 13. The basic data for the fuselage, wing, and wing-fuselage 
in the presence of the store are presented in figures 14 to 17. The data 
are presented in the form of plots of coefficients against a chordwise-
position parameter which is a function of the position of the midpoint of 
the store. To allow relatively large coefficient scales to be used, a 
horizontal offset is employed. The Mach line offset used, discussed in 
detail in reference 1, permits the curves of chordwise variation of coef-
ficients to be faired as a "family," thereby obtaining a more accurate 
fairing between test points than would otherwise be possible. Offset 
vertical scales are also used so that data for the 11 spanwise positions 
can be shown on a single page. On the right and left margins the zero 
line for each curve is identified by the symbol corresponding to that 
spanwise position. On each figure is shown a sketch of the configuration 
involved. The spanwise and chordwise store positions at which measure-
ments were obtained are indicated by the appropriate symbol on the grid 
drawn to scale below the sketch.



6	 NACA RM L55E26a 

The store pitching-moment data and the store yawing-moment data are 
presented with reference to the store nose In the basic-data figures. 
Using the plotted moment data and the lift or side force, as appropriate, 
the moment about any desired point with reference to either the store or 
the airplane can be calculated. Some analysis figures presented later 
in the report show moments which have been computed with reference to 
the store midpoint. 

The basic data for the fuselage, wing, and wing-fuselage combination 
are shown with dashed lines forward of longitudinal store position 
x = 18 inches because of the presence of Interference between the store-
support sting and the fuselage or wing. This Interference Is discussed 
in detail in reference 1.

Contour Plots 

To aid in examination and analysis of the data,. contour plots 
(figs 18 to 32) have been made for each coefficient, covering two verti- 
cal heights and two angles of attack (three plots 

in 
all) The store 

midpoint Is the reference point (the point at which the forcecQe'f.cieit 
is plotted) for all contour plots. Similar plots o' maps for. other con-
ditions can be prepared from the remainder of the basic-data plots:; 
(figs. 5 to 17). 

Store lift. - Contour plots of store lift in the presence of the wing 
and wing-fuselage are presented in figures 20 and 24. The basic lift data 
for both store and wing-fuselage are given in reference 1. Contour plots 
or lift, which were not included In referencç 1, are presented. in this 
paper as a part of a further analysis of lift. 

As was pointed out briefly in reference 1, a negative pressure 
region has been shown to exist beneath the wing at a. = O. The pressure 
gradient produced on the store results in a positive interference lift of 
relatively large magnitude when located in the vicinity of the wing. 
Ahead of and behind the wing, where the effective pressure is positive, 
the store lift is reduced and in some positiois it becomes. negative. 
Increasing the displacement between store and wing does not appreciably 
change the magnitudes of the interference lifts, but shifts the contour 
lines rearward somewhat. It will be noted from a comparison of fig-
ures 20 and 21 that the fuselage does not enter into the production of 
store lift to an important extent. 

At a. = 40 (fig. 20(c)) the store lift for most store positions in 
the vicinity of the wing has decreased as compared with the value at 
a. = 00 because of the increase (in the positive direction) of pressure 
which occurs beneath the wing. For the wing-tip position, however, the 
store lift has increased considerably. This positive interference lift
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on the store has been encountered previously for wing-tip stores at sub-
sonic speeds (ref. 2, for example) and is due to the presence of the 
store in the wing-tip vortex. 

Store pitching moment.- Contour plots of store pitching moment are 
presented in figures 21 and 25. Pitching-moment coefficients in these 
figures are calculated about the nose of the store. The values shown 
are therefore largely the consequence of lift on the store, and the 
pitching moments tend to follow the trends outlined previously for lift. 

Store side force.- Store side-force coefficients for the store in 
the presence of the fuselage, wing, and wing-fuselage are presented in 
contour form in figures 18, 22, and 26. The variation of store side 
force with store position in the presence of the wing or wing-fuselage 
is large, as is the increase of side force with wing angle of attack 
(fig. 26). Further discussion of this component will be found in a 
later section entitled "Effect of wing-fuselage angle of attack." Ref -
erence 3 also contains additional analysis of these data. 

Store yawing moment. - Contour plots of store yawing-moment coeffi-

cient are shown in figures 19, 23, and 27. Inasmuch as the store yawing 
moments have been computed about the store nose, the yawing moments 
shown are principally the result of side force. The preceding discussion 
on side force therefore tends to apply also to yawing moment. 

Wing and wing-fuselage lift. - Contour plots of wing and wing-

fuselage lift are presented in figures 28 and 30. These figures show that 
in certain positions the store produces lifts that are equivalent to the 
lift produced by a wing angle of attack of about 1. (See fig. )#.) The 
region of store midpoint locations for maximum positive lift interference 
is the inboard region of the wing trailing edge. For store positions 
toward the leading edge of the wing or toward the tip, the lift inter-
ference becomes small. For some store positions ahead of the wing, neg-
ative lift interference is obtained. 

Wing and wing-fuselage pitching moment. - Figures 29 and 31 show that 
the lift interferences described in the previous section are reflected in 
the wing and wing-fuselage pitching moments. The inboard store positions 
near the wing trailing edge produced negative pitching moments as a result 
of positive lift interference behind the moment center of the wing (/!f). 
The positive pitching moments measured for forward store positions are 
similarly explained. 

It should be noted that the measured effects of the store on the 
airplane configuration include only those on the wing and fuselage, since 
no tail was present. The effects of a tail, particularly for inboard 
store positions, would likely be important.
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Wing-root bending moment. - Contour plots of the. wing-root bending 
moment of the wing-fuselage combination are shown in figure 32. 

Although the contour plots of the wing-root bending-moment coef-
ficient are quite different in appearance from those of the lift coeffi-
cient, an analysis of two corresponding plots (figs. 50(a) and 52(a), 
for example) shows that the two are compatible. 

It will be noted that a change in vertical displacement of the store 
from 1.15 inches to 2.09 inches (figs. 52(a) and (b)) produces a major 
change in the bending-moment contours. Reference to the lift contours 
for corresponding store positions in figures 30(a) and (b) shows that 
the increased vertical displacement of the store has moved the positive 
lift-interference contours forward and toward the tip, and that these 
changes explain the wing-root bending moments which suddenly appear at 
the wing-tip location in figure 52(b). The peak value of wing-root 
bending-moment coefficient shown on this figure corresponds to that 
produced by a wing angle of attack of about 10. 

ANALYSIS 

The data which have been presented are directly useful in connection 
with configurations which very closely match the configuration tested. 
Application of these results to configurations appreciably different, how-
ever, rapidly becomes difficult and dubious as configuration differences 
increase, unless a basic understanding of the contribution of each compo-
nent to the measured interference is available along with an understanding 
of the effects of the many variables such as angle of attackand Mach num-
ber. An analysis of these data, based upon these needs, has consequently 
been made. The analysis is not exhaustive, but rather is intended to be 
illustrative and suggestive of the ways in which the data can be used. 

Contribution of Components to Interference 

Store lift and pitching moment.- The contribution of each component 
to the measured interference can be readily seen in the results of the 
configuration-breakdown tests. Figure 55 shows the lift of the store in 
the presence of the fuselage, wing, and wing-fuselage plotted against 
store chordwise position x for four spanwise stations. (The basic 
lift data are presented in reference 1.) The close agreement between 
the curves for store lift in the presence of the wing and wing-fuselage 
shows that the lift interference produced on the store is dependent, for 
all practical purposes, only upon the wing. The reason for the inter-
ference lift on the store in the presence of the fuselage for 
x = 27 inches is unknown. It is considered possible that the data for 
this store position are in error.
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The pitching-moment data (fig. 31) similarly show that store 
pitching moment is primarily dependent upon the wing. 

Store side force and yawing moment. - The side-force and yawing-

moment data (figs. 37 and 36), on the other hand, show that the fuselage 
makes a significant contribution to these forces, especially at the more 
inboard store locations. The relative importance of the contribution of 
the fuselage diminishes as the angle of attack of the wing increases 
because of the development of the spanwise flow which produces store 
side force. 

Lift and pitching moment for wing, fuselage, and complete model.-
The variations in lift of the fuselage, wing, and wing-fuselage with 
chordwise position of the store are shown in figure 37. The fuselage 
gains very little lift as a result of store interference. The wing, 
however, develops an appreciable interference lift, either positive or 
negative, depending upon the store position. The curve for the wing-
fuselage combination is of the same shape but does not closely match 
the wing-alone curve, especially at the inboard stations, even though 
the fuselage alone showed very little lift interference. The differ-
ence between the curves is probably the result of wing-fuselage 
interference. 

Figure 38 shows the lift for the store and the wing-fuselage combi-
nation and the sum of these two, which is the total lift of the complete 
model. The lift coefficient of the store (reduced to wing area) is very 
small in comparison with the lift produced on the wing-fuselage combina-
tion by the store. The total interference lift coefficient is large for 
some store positions, reaching a maximum of more than 0.04. This value 
corresponds to the lift coefficient produced by a wing angle of attack 
of about 10. For airplanes using removable stores in regions of large 
lift interference, large rolling moments could be encountered if unsym-
metrical carriage or unsymmetrical drops were attempted. 	 - 

The variations of the pitching-moment coefficient for the fuselage, 
wing, and wing-fuselage are shown in figure 39. As in the case of the 
lift, the effect of the store on the fuselage alone is small, and the 
difference between the curves for the wing alone and the wing-fuselage 
is believed to be due to mutual interference of the wing and fuselage. 
It will be noted that to obtain the total interference pitching moment 
for the complete configuration it is necessary to add to the values 
shown in figure 39 the pitching moment of the store and the moment of 
the lift of the store at each particular position considered.
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Effect of Store Vertical Displacement and


Wing-Fuselage Angle of Attack 

Effect of store vertical displacement z at a. = 	 - The effects 

of vertical displacement between store and wing on store forces and 
moments in the presence of the wing-fuselage combination are shown in 
figures 40 to 43. The effect upon store lift (fig. 40, taken from 
ref. 1) is shown to be appreciable, particularly at the inboard store 
locations where the peak of the lift-variation curve is lowered and 
reduced in width by moving the store (vertically) away from the wing. 
It will be remembered from figure 38, however, that the values of lift 
interference shown for the store are very small compared with those 
measured for the airplane. 

The effects of store vertical displacement on store pitching moment 
shown in figure +l (calculated in this case about the store midpoint) 
are similar in degree and character to those described for lift. 

Store side force and yawing moment (also calculated about the store 
midpoint) are shown in figures 42 and 43 to be affected to only a small 
degree by store vertical displacement at a = 0 0 , particularly for the 
outboard store locations. 

The effects of vertical displacement of the store on wing-fuselage 
lift and pitching moment and on total lift are shown in figures 44, 45, 
and 46 to be similar to the effects on the store lift and pitching 
moment except that the lift peak is somewhat broadened rather than 
narrowed by increasing displacement. 

Thus,within the range of store positions investigated herein, the 
effects of vertical displacement of the store on all forces and moments 
with the exception of drag are measurable but relatively small. Refer-
ence 1 shows that the effects upon drag are large. 

Effect of wing-fuselage angle of attack.- The effects of angle of 
attack of the wing-fuselage combination on store lift are shown in fig-
ure 47 (taken from ref. 1) and figure 148. As pointed out in reference 1, 
the effect of angle of attack is to increase the intensity of the positive-
pressure region between the bow shock and the wing leading edge and to 
decrease the intensity of (make more positive) the negative-pressure 
region beneath the wing. The increased gradients in the forward positive-
pressure region increase the magnitude of the negative store lift produced 
in this region, while the decreased pressure gradients in the rearward 
negative-pressure region decrease the positive store lift produced as the 
wing angle of attack is increased. Figure 1+8, which is a contour map of 

CL	 for angles of attack up to 149, shows that wing lift changes the
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store interference lift in a negative direction over a range of store 
positions considerably larger than the wing plan form, with the excep-
tion of store positions in the region of the wing tip. Here the tip 
vortex increases the store lift as the wing lift increases. 

It should be noted that the store was at cx. = 00 for all tests. 
The values of store lift presented therefore represent only interference 
values, and the store lift due to store angle of attack must also be 
considered in applying these data to conditions wherein the store angle 
of attack is a finite value. 

The magnitude of the changes in store pitching moment produced by 
wing angle of attack is shown in figure 49 to be small. 

Figures 50 and 51 show that angle of attack is a powerful influence 
on store side force, and that the store position relative to the wing is 
also of very great importance. The influence of angle of attack is felt 
principally in the region of the wing and is primarily due to the pro-
gressive increase in the strength of spanwise flow. The largest values 
of Cy	 are consequently found at the tip, and. large changes also occur 

5a. 
in moving the store from the leading edge to the trailing edge of the wing 
near the midspan. 

These data were obtained by increasing the wing-fuselage angle of 
attack up to 40 as mentioned earlier. The fact that the store remained 

at a. = 00 affects the store lift, but not to any appreciable extent 
the store side force.. The effects of the change in vertical displacement 
between wing and store which occurs when the wing-fuselage angle of attack 
is changed are, as has been shown previously in the discussion of fig-
ure 42, small and unimportant compared with the effects now being 
considered. 

The Cy	 contour map (fig. 51) was prepared from data limited .to 
5a. 

11.0 angle of attack. For many conditions, considerably larger angles of 
attack are of interest and may, as suggested by the data shown here, be 
a design or limiting condition for store or pylon loads. 

Figure 7 of reference 3 compares data taken from figure 51 with data 
for a similar configuration tested in the Langley 9- by 12-inch blowdown 
tunnel up to a,= 120 . The comparison shows good agreement between the 
results of the two investigations and shows that data from the present 
tests can be judiciously extrapolated to higher angles of attack, using 
the data from the 9- by 12-inch blowdown tunnel data as a guide. 

Figures 52 and 53 show that the effect of angle of attack on store 
yawing moment is small. Further, Cns does not vary greatly with
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store position. The reasons for these phenomena are not understood. at 
this time. 

Figures 54 and 55 show the effect of angle of attack on the lift and 
pitching moment, respectively, of the wing-fuselage combination in the 
presence of the store, while figure 56 shows the effect of angle of attack 
on the total lift of the complete (wing-fuselage plus store) configuration. 
Although the lift or pitching moment produced by angle of attack displaces 
the curves on each figure, it will be noted that the curves remain quite 
similar in shape and in magnitude of changes. The effects of the store 
on the wing-fuselage lift and pitching moment are thus shown to be prin-
cipally dependent upon the store position and relatively unaffected by 
angle of attack.

Effect of Store Configuration 

The side force and normal force on the large store are compared with 
the forces on a small geometrically similar store and on the large store 
with fins in figures 5 and 11 of reference 3 . The forces on both the 
large finned store and the small store exhibit much higher peak values 
than do the fOrces on the large unfinned store. Consequently, it is 
apparent that use of force coefficients as measured for the large 
(unfinned) store might be very unconservative for s\tores of appreciably 
different configurations. 

Remarks on the Store-Pylon Problem 

The data presented in this report are concerned only with the loads 
on the store - neither the forces on nor the effectof a store pylon are 
included. Some remarks on the store-support problem from the standpoint 
of drag are included in reference 1. Further discussion on the effects 
of pylons, including some data, is presented in referene 3. The con-
clusions reached in this reference on the basis .of scattered data are 
that the store loads (particularly side force) maybe greatly affected 
by the presence of a pylon, with pylon plan form andpylonioaaing(side 
force) having considerable influence on the amount of interference. Fur-
ther work is needed on the effects of pylons. 

CONCLUSIONS 

The results of a supersonic wind-tunnel investigaion at a Mach num-
ber of 1.61 in which separate forces were measured on a store, a fuselage, 
a swept wing, and a swept-wing—fuselage combination for a very wide range 
of store positions provide the following conclusions with regard to lat-
eral forces and pitching moment:
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1. Large changes In store and wing-fuselage forces and moments may 
occur with small spanwise or chordwise changes in store position. The 
effects of vertical position of the store are relatively small. 

2. The increases which occur with configuration angle of attack . are 
somewhat larger for store side force than for store lift. Side force is 
probably the important load from the standpoint of store-support design. 

3. The measured store moments are large at zero angle of attack but 
do not display the large increases with angle of attack which were meas-
ured for the other store forces. 

4 • The wing is shown to be the predominant factor in the production 
of all interference forces and moments on the store. The effect of the 
fuselage is very small in the case of store lift and pitching moment, 
but it is of significant magnitude in the case of store side force and 
yawing moment, particularly for the inboard store locations. 

5. The total interference lift on the complete configuration is due 
principally to the interference lift felt by the wing. The values meas-
ured for some store positions are large and important from the standpoint 
of rolling moments produced in asymmetrical store carriage or asymmetri-
cal store drops. 

6. The interference effects of the store on the wing and wing-
fuselage combination are roughly the same at all angles of attack and 
appear to depend primarily upon store position. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., May 9, 1955-
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TABLE I. - PERTINENT MODEL DIMENSIONS 

Store: 
Maximum diameter, in .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 1.5 
Maximum frontal area, sq ft	 ................ 0.0123 
Base	 diameter,	 in	 .................... 0.96 
Base	 area,	 sq ft...	 ...................... 0.005 
Overall length,	 in .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 12 
Nosefineness	 ratio	 ..................... 3 
kfterbody fineness ratio	 .................. 1.82 
Overall fineness ratio 	 ................... 8

Fuselage: 
Maximum diameter, in .	 . . . . . . . . . . . . . . . . . . . 	 2.75

Maximum frontal area (semicircle), sq ft ......... . 0.0206 
Base diameter, in	 .................... 1.372 
Base area (semicircle), sq ft ............... 0.0051 
Overall length, in................. ... ..35.75 
Nose fineness ratio	 .................... .75 
Afterbody fineness ratio .................. 3 
Overall fineness ratio ................... 13 

Swept wing: 
Semispan, in .	 . . . . . ... . . . . . . . . . . . . . . . . 	 12 
Mean aerodynamic chord, in................. 6.580 
Area (semispan), sq ft ................... 0.500 
Sweep (c/ J.. ), deg ...................... 
Aspect ratio .......................... 
Taper ratio	 ........................ 0.3 
Center-line chord, in	 .................. 9.23 
Section ....................... NACA65AOO6 
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Figure 2.- Photograph of models and mounting plate. Boundary-layer

transition strips not shown.
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o Store pitched in the plane of the normal-force beam 
o Store pitched in the plane of the side-force beam 

Angle of attack, a , deg 

Figure 3 . - Lift and pitching-moment characteristics of the isolated. store.
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Angle of attack , a , deg 

Figure 4.- Lift and pitching-moment characteristics of the isolated wing, 
fuselage, and wing-fuselage combination. N = 1.61.
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Figure 54. - Effect of angle of attack of wing-fuselage combination on 


wing-fuselage lift. z = 2.09 inches. 
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Figure 56.- Effect of angle of attack of wing-fuselage combination on 

total (wing-fuselage plus store) lift. z = 2.09 inches. 
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