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NACA RM E57 A21 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

INVESTIGATION OF A HIGH-PERFORMANCE TOP INLET TO MACH 

NUMBER OF 2. 0 AND AT ANGLES OF ATrACK TO 200 

By Donald J . Vargo, Philip N. Parks, and Owen H. Davis 

SUMMARY 

Several top-inlet configurations were tested on a body of revolu­
tion in the 8- by 6- foot supersonic wind tunnel at angles of attack from 
00 to 200 and at free - stream Mach numbers of 1 . 5 to 2.0. The effect on 
performance of the following variables was studied: throat bleed, ramp 
perforations, inlet approach surface , side fair ings , fuselage fences, 
canopies, and a simulated 600 delta wing . For comparison, performance 
was also obtained with the inlet in the bottom location . 

For the inlet with side fai r ings , throat bleed greatly increased 
pressure recovery and stability while decreasing distortion throughout 
the angle- of- attack range. Ramp per forations provided slight increases 
both in inlet pressure recovery and stabili ty and had essentially no 
effect on distortion . 

Two inlet approach surfaces ( round and flat ) were tested . No dif­
ference in inlet per for mance was detected up to an angle of attack of 
9 . 50

; however, at larger angles of attack up to 200 the round approach 
gave higher pressure recovery than did the flat appr oach . 

Three fence lengths wer e tested . With the exception of the short 
fence they wer e generally ineffective in improving angle - of-attack 
performance. 

The canopy configurations caused slight reductions of 3 to 5 percent 
in pressure recovery at low angles of attack f r om 00 to SO and a free ­
stream Mach number of 2 .0 . At greater angles of attack the configura­
tions with canopies were better than all other inlets tested, obtaining 
pressure recoveries at Mach 2 .0 of 92 , 84 , and 70 percent at angles of 
attack of 9 . 50 , 150

, and 200
, respectivel y . Pressure distortions for 

the canopies were generally slightly higher than those for other config­
urations, with critical values of about 10 percent at a free - stream Mach 
number of 2 .0 and angles of attack from 0° to 20° . 

~-~---
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The wings decreased both inlet pressure recovery and stability at 
angle of attack for both longitudinal positions examined . 

INTRODUCTION 

Previous work has shown that the angle- of- attack performance of a 
top inlet is poor (refs. 1 to 4). However} r eference 5 points out that 
top- inlet performance can be made competitive .with that in other loca­
tions by the use of fuselage fences . Since the top inlet shows promise 
of improvement } the wor k of references 4 and 5 has been extended by the 
investigation reported here . The variables of this test include throat 
bleed and ramp perforations} side fairings , fuselage fences } faired and 
unfaired canopies mounted ahead of the inlet, and wings . The investiga­
tion was performed with a double-ramp inlet designed to have two oblique 
shocks meet ahead of the cowl lip at a free - stream Mach number of 2 .0 . 
This inlet study was conducted in the 8 - by 6- foot supersonic wind tun­
nel at the NACA Lewis laboratory . Data were obtained at Mach numbers of 
1 . 5} 1 . 8, and 2 .0 and angles of attack f r om 00 to 200 • The test Reynolds 
number per foot of test sectio.n length was about 5 . 4Xl06 • 

F 

SYMBOLS 

inlet capture ar ea 

compressor- face flow a r ea of engine used in analysis , 4 . 54 sq ft 

model drag coefficient based on maximum cross -sectional area 

model lift coefficient based on maximum cross - sectional area 

full - scale configuration drag 

full - scale engine thrust 

ideal engine thrust (based on 100-percent pressure recovery at 
altitude of 35,000 ft on standard day) 

h height of boundary- layer splitter plate from fuselage , 0.50 in . 

M Mach number 

m mass-flow rate, slugs/ sec 

P total pressure 

p - p . 
max mID 
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p static pressure 

6p internal static-pressure variation 

~ angle of attack 

~ flow angle at survey rake 

6 boundary-layer thickness 

Subs cripts: 

av average 

max maximum 

min minimum 

0 free stream 

1 inlet 

2 diffuser-exit station 

3 mass-flow measuring station 

APPARATUS A.LIJ"D PROCEDURE 

Model 

The model of the present investigation is illustrated photographi­
cally in figure lea) and schematically in figure l eb) . The model was 
sting-mounted from a tunnel strut with an internal strain- gage balance 
connecting the model to the sting . The var iation of the internal model 
duct area is shown in figure 2 . The mass flow thr ough the duct was var­
i ed by a remotely controlled plug which can be seen in figure 1. 

Inlet details are shown schematically and photographically in fig­
ure 3. Two approach surfaces were tested, the fully rounded body contour 
and the flat surface, as can be seen in figures 3 and 4 . Boundary layer 
was removed with a wedge- type diverter (mounted under the compression 
surface) which positioned the rompr ession r amp at a height of 1.35 times 
the boundary-layer thickness at zer o angle of attack . Ramp angles of 
10.40 and 11.10 for the fir st and second r amps wer e chosen to provide 
near-optimum two-shock pressur e recovery at a free - stream Mach number of 
2.0. The design was such that the two oblique shocks fell just outside 
the lip at this design Mach number . The inlet was tested with and without 
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side fairings which were designed to mlnlffilze side flow spillage ahead 
of the terminal shock and, hence, provide increased pressure recovery . 

The throat bleed system (fig . 3(b)) was adapted to this inlet from 
previous bleed studies (refs . 6 to 10) . Air was bled through a flush 
slot just downstream of the throat . The slot opening was approximately 
42 percent of the inlet throat area. The bleed air was discharged at 
side ports through interchangeable restrictor plates which controlled 
the bleed flow rate (see exit hole, fi g . 3(b)) . 

Ramp perforations examined in the test are shown in figures 3(a) 
and (c). Four perforated ramps were used, three with only the second 
ramp perforated and the fourth having both ramps perforated. The amount 
of perforated hole area (fig . 3(a)), designated as a percent of inlet 
capture area, varied from 3 . 4 to 9 .53 percent . 

Three fences, designated as short, medium, and long, were alter­
nately tested on top of the fuselage ahead of the inlet (fig. 3(d)). A 
photograph of the short fences is shown in figure 3 (e) . The fences were 
used as a means of preventing the boundary- layer crossflow on the fuse ­
lage from entering the inlet at angle of attack as was done in 
reference 5. 

Figure 4(a) shows a schematic diagram of the wing and the two can­
opies which were investigated to determine their effects on inlet per­
formance . Photographs of the canopies mounted ahead of the inlet on the 
round approach surface are presented in figures 4(b) and (c) . The can­
opy shown in figure 4(c) was faired into the fuselage in an attempt to 
provide a more uniform flow into the inlet . 

The stub wing simulated a 600 delta configuration which was cut off 
at the point beyond which it could no longer influence the inlet . Inlet 
performance was determined for two longitudinal wing positions as shown 
in figure 4(a). Figure 4(e) shows the forward installation . Both posi­
tions may, however, be too far forward to represent a practical 
configuration . 

Instrumentation 

To survey the flow conditions ahead of the inlet a combined rake 
and instrumented wedge configuration was used (fig . 5 (a)) . The fuselage 
flow survey is presented for the flat approach (fig . 5(b) )) the flat 
approach with medium fences (fig . 5 (c) ), and the unfaired canopy on the 
round approach surface (fig . 5(d)) . Figure 5 (e) ) presents a summary of 
the boundary- layer thickness for the flat approach surface and the 
medium- fence configuration . 

--- ._---

I 

~ I 
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The diffuser-exit total pressure was obtained by averaging the 41 
area-weighted total-pressure tubes located at station 2 (see fig. l(b». 

The inlet mass-flow ratio was determined from six wall static taps 
at station 3 (fig. l(b» and by assuming that the exit plug was choked. 
The drag was computed by excluding from the balance forces the base force 
and the change in total mOmentum of the internal flow from the free stream 
to the mass-flow measuring station. Thrust-minus-drag used in the per­
formance analysis was obtained by using a present-day turbojet engine 
and a full-scale configuration drag which was modified by the inlet area 
changes necessary for matching considerations. 

Data were obtained at free-stream Mach numbers of 1.5, 1.8, and 2.0 
and at angles of attack from 00 to 200

• 

RESULTS AND DISCUSSION 

Inlet Performance with Bleed 

Reference performance (zero bleed). - The performance of the top­
mounted inlet with a flat approach surface is presented in figure 6(a). 
Pressure recovery P2/POJ mass flow m3/mo, engine - face total-pressure 
d i stortion 6P2/P2 ' and drag coefficient CD are presented at free­
stream Mach numbers of 1.5 to 2.0 and angles of attack from 00 to 9.50 

At a free-stream Mach number of 2.0 and zero angle of attack, a peak 
pressure recovery of 0.864 and maximum mass - flow ratio of 0.894 were ob­
t a ined. Critical distortion values varied between 10 to 20 percent for 
all Mach numbers and all angles tested. Also at Mach 2.0 and zero angle 
of attack, · the stability range was about 0 .15 of the critical mass-flow 
ratio . Instability is arbitrarily defined as a duct internai static­
pressure fluctuation greater than 5 percent of the free-stream total 
pressure PO' 

Figure 6(b) shows the effect of adding side fairings to the inlet 
of figure 6(a) (top inlet, flat approach). Side fairings werp. used to 
eliminate end effects at the edge of the inlet ramp . At a free-stream 
Mach number of 2.0 and zero angle of attack, a peak pressure recovery 
of 0.873 and a maximum mass - flow ratio of 0 . 930 were obtained. Critical 
distortions were increased to the 20 percent level and stability was de­
creased slightly. Unless specifically mentioned as being otherwise, all 
other configurations were tested with inlet side fairings. 

With throat bleed . - In an attempt to improve inlet performance in 
the manner used in references 6 to 10, increasing amounts of throat bleed 
were tested, and data are shown for various angles of attack in figure 7. 
The results presented are for pressure recovery, mass flow, compressor­
face total-pressure distortion, and drag coefficient (the latter at angles 
of attack from 00 to 9.50 only). 

- ~- .• ------
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The arbitrary designations of 2-, 4- , 6- , and 8-percent bleed used 
in figures 7(a) to (d), respectively) refer to the approximate percent 
of critical mass flow bled off at a free-stream Mach number of 2 . 0 and 
zero angle of attack. The 2- , 4- , and 6-percent bleeds were tested at 
angles of attack from 00 to 9 . 50 while the 8- percent bleed was tested at 
angles of attack from 0° to 200 • With the exception of the 6-percent 
bleed (fig . 7(c))) the amount of bleed was controlled by changing the 
bleed exit area. (For the 6-percent bleed condition the center portion 
of the throat bleed slot was fa ired over, for which case the mass flow 
choked at the throat slot rather than the bleed exit.) 

Bleed was most effective in increasing pressure recovery for all an­
gles of attack at a Mach number of 2 .0 and at angles of attack other than 
zero at Mach numbers of 1.8 and 1 .5. For example) at Mach number 2 .0 and 
zero angle of attack peak pressure recovery was increased from 0.873 for 
no bleed to 0.952 for 8-percent bleed (comparing figs . 6 (b) and 7(d)). 
Minimum drag was increased by a drag coefficient value of 0 .01 for the 
drag values obtained (0° to 9 . 50 ) . Small amounts of bleed to 4 percent 
caused slight decreases in inlet stability . However) further bleed in­
creases caused large stability gains at angles of attack to 9 . 50

• At 
Mach 2.0 and zero angle of attack the inlet with 8-percent bleed was 
stable down to a mass-flow ratio of 0 .158. Increasing throat bleed de ­
creased critical distortion levels from 5 to 10 percent . In the subse ­
quent discussion mention of the basic inlet configuration refers to the 
8-percent bleed configuration with side fairings . Also) all other con­
figurations from this point on were tested utilizing the 8-percent throat 
bleed configuration. 

The effect of adding maximum throat bleed ( 8 percent) to the inlet 
configuration without side fairings is shown in figure 8 for a free ­
stream Mach number of 2 . 0 and angles of attack from 00 to 9 . 50

• At this 
Mach number and zero angle of attack peak recovery was increased from 
0.864 to 0.915 by the use of this bleed (comparing figs . 6(a) and 8) . 
Thus) it appears that the 8-percent bleed configuration gave about the 
same improvement in percentage points of pressure recovery whether side 
fairings were used or not. 

Figure 9 shows the effect of angle of attack and Mach number on the 
diffuser-exit total-pressure contours at critical flow with and without 
throat bleed. Throat bleed improved the symmetry of the flow except at 
the highest angle of attack shown (9 . 50

) and free - stream Mach numbers 
less than 2.0 . 

With ramp bleed. - Previous tests have shown that bleeding small 
amounts of air through ramp perforations can improve pressure recovery 
and stability (e. g . ) see refs . 11 to 13). Several ramps with varying 
amounts of perforated area were included in this study (figs . 3(a) and 
(c)), and the results are presented in figure 10 . With the exception 

--- -- - -- J 
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of the configuration of figure 10(d) which had perforations on both ramps, 
all perforated area was on the second ramp . It was noticed that with 
both ramps perforated, high-pr essure air from the second ramp bled out 
through the first - ramp perforations . However, no apparent detrimental 
effects were noticed which could be attributed to this Circulating flow. 

In general, both pressure recovery and stability were increased by 
perforating the ramp surface . Because of an inability to determine the 
exact amount of flow through perforations , no comparison is made with 
throat bleed . However, for the inlet tested it is believed that for a 
given amount of bypassed air, throat bleed produces a greater increase 
in pressure recovery than do perforations . 

Summary of inlet per formance with thr oat bleed. - Figure 11 presents 
summary plots comparing thrust -minus - drag and critical distortions of the 
no-bleed and the var ious bleed configur ations at a free - stream Mach num­
ber of 2 .0 and angles of attack from 00 to 9 . 50

. Thrust -minus - drag is 
presented for a given engine at 35 , 000 feet and standard conditions as a 
function of inlet size (shown as a r atio of full - scale inlet area to com­
pressor flow area) . For all angles of attack 4-percent bleed gave the 
highest thrust -minus - drag . Figure l l (b ) presents the angle - of- attack 
performance for an inlet sized for maximum thrust -minus - drag at a free­
stream Mach number of 2 . 0 and zero angle of attack . The figure indicates 
that if the inlet wer e sized for optimum performance of a given bleed 
system at zero angle of attack, the 4-per cent bleed configuration would 
maintain its superiority over the angle - of-attack r ange . 

The distortion values at critical flow for the various bleed config­
urations are presented i n figure ll (c ). The use of 2-percent throat 
bleed lowered the no-bleed distortion from a value of approximately 20 
percent to slightly less than 10 percent . Further increases in bleed 
caused very little decrease in critical distor tion . Because , with throat 
bleed, the present inlet is too small to match pr esent - day turbojet en­
gines near critical flow, the diffuser-exit Mach numbers ar e too low. 
For this reason the presented distor tion values are slightly optimistic. 
Reference 14 indicates that the distortion values would be 3 to 4 percent 
greater if the inlet size (and, hence , cr itical compressor-face Mach num­
ber) were increased to match an engine near critical inlet flow . 

Inlet Per formance with Fences 

As previously mentioned, reference 5 showed that fences could be 
used to control body crossflow and impr ove inlet performance at ffilgle of 
attack. The inlet of refe r ence 5 was located 7 . 5 maximum body diameters 
from the nose, while in the pr esent program fence effects wer e studied 
with an inlet located 5 diameters f r om the nose of the model . Results 
in the form of pressure r ecovery, pr essure distortion , and thrust -minus-

'--'~-~------~--~-~ -----
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drag as functions of mass - flow ratio are presented in figure 12 for the 
three fence arrangements of figure 3(d). Data are presented at angles 
of attack from 00 to 9 . 50 with the exception of the short fences with 
side fairings which were tested from 00 to 200 . The medium and long 
fences (figs . 12 (c) and (d)) were essentially of no value in improving 
pressure recovery at angle of attack . At an angle of attack of 9.50 
they decreased the recovery below that of the no- fence configuration 
(fig. 7(d)). The short fence improved the pressure recovery by 2 to 3 
percent at all angles of attack of the inlet without side fairings (figs . 
12(a) and 8 ), but the use of side fairings alone (fig . 7(d)) gave com­
parable performance. The short fence used in conjunction with side 
fairings (fig . 12(b)) improved pressure recovery only slightly at angles 
of attack of 50 and 9 . 50 and had no effect on pressure recovery at the 
higher angles. Stability with fence configurations was decreased 
slightly. No large change in drag was apparent . It appears from these 
results as compared to data of reference 5 that fences lose their attrac ­
tiveness when used with a basically high-performance inlet (such as one 
in the present case which employs throat bleed) or when used with inlets 
located near the body nose. An interesting characteristic of the fence 
configurations is that when they became unstable, the shock in its for ­
ward travel moved out onto the fuselage almost the entire length of the 
fence . The effect of fences on diffuser- exit total-pressure contours at 
varying angle of attack is presented in figure 13. In general , the 
changes in pressure contours due to fence installation were slight . 

Comparisons with Bottom Inlet 

In order to obtain reference values whereby top- inlet performance 
could be evaluated in a manner similar to reference 5, the inlet was 
tested in the bottom location, and the results appear in figure 14. The 
top inlet) the inlet with short fences, and the bottom inlet are compared 
in figure 15 on the basis of thrust-minus-drag and lift coefficient . At 
most Mach numbers and most angles of attack up to 9 . 50 the basic inlet 
(inlet with 8-percent bleed and side fairings) was better at a constant 
lift coefficient than the bottom- inlet location or the top inlet with 
short fences . The slightly higher pressure recoveries of the short-fence 
and bottom- inlet configurations at angle of attack were generally offset 
by the slightly lower drag of the basic configuration. Caution should 
be exercised in interpreting these thrust-minus - drag results) since the 
comparison is based on forebody drag alone. Simple theoretical consid­
erations indicate that such a comparison tends to favor the top- inlet 
location. 

Inlet Performance with Round Approach and Canopies 

The performance of the top inlet with a round approach surface is 
presented in figure 16 at angles of attack from 00 to 200 . A comparison 
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of the round and flat approaches shows that the pressure recoveries are 
comparable to an angle of attack of 9 . 50

; however , at gr eater angles of 
attack to 200 the round approach becomes super ior to the flat approach. 
The same configuration tested at angles of 150 and 200 is presented in 
figure 17 with the splitter height r educed f r om 0 .50 to 0.25 inch . No 
boundary-layer survey was made for the r ound approach, but if the value 
of 0 . 34 inch for the zero - angle - of- attack flat approach is assumed for 
the boundary-layer thickness 5, the h/ 5 is r educed to 0.736 . This 
reduction caused no significant variation in pressure recovery, although 
the duct static pressure in the inlet fluctuated from 5 to l5 percent of 
free-stream total pressure for almost every point tested . 

A canopy was mounted and tested on the round appr oach surface, and 
the results are presented in figure IS . The or iginal canopy is desig­
nated as the unfaired canopy and was tested at angles of attack from 00 

to 200 (fig. l S(a)2 . At a free - str eam Mach number of 2 .0 and angles of 
attack of 9.50, 15 , and 200, pressure r ecover ies of 0 . 920, 0.843 , and 
0 . 698 were obtained; however, at an angle of attack of 00 the peak pres­
sure recovery was 90 percent . This lower recovery at zero angle of at­
tack was attributed to separation occurr ing off the rear of the canopy 
(see schlieren photographs , fig . 19 ). In an effort to reduce this sepa­
ration and improve recovery at zero angle of attack, the back of the can­
opy was refaired to form a gentler slope to the body, and the results 
are presented in figure 18(b) . This faired canopy appreciably raised 
the pressure recovery near critical flow at zer o angle of attack, but 
decreased the pressure recovery at higher angle of attack from that ob­
tained with the unfaired canopy . The unfaired canopy was also studied 
with side fairings removed from the inlet at angles of attack of 150 and 
200 . The data presented in figure l S( c) show appr eciable gains in re­
covery at an angle of attack of 150 over the configuration having side 
fairings . 

Wing Effects on Inlet Performance 

A simulated 600 delta wing was tested in two locations designated 
as the forward and aft positions (fig . 4(a) ) , and the results are pre­
sented in figure 20 . It may be noted, however, that the leading-edge 
location may be conceivably too far forwar d for a practical configura­
tion. Slight decreases in inlet pressure recovery occurred for the for­
ward wing positions at angles of attack of 50 and 9 . 50 . These decreases 
are believed due to expansions occurr ing ar ound the wing leading edge at 
angle of attack. Little effect on inlet performance was observed for 
the wing mounted in the aft position . However, both wing positions 
caused stability decr eases when compared t o the basic configuration. 
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Comparison of Alternate Configurations 

Figure 21(a) presents a summary of pressure recoveries at angles of 
attack from 00 to 200 of the following configurations : (1) the flat ap ­
proach basic inlet having 8-percent bleed and side fairings in the top 
and bottom locations) (2) the short-fence configuration) (3) the round 
approach inlet having 8-percent bleed and side fairings) and ( 4) the un ­
faired canopy with and without inlet side fairings (for angles of attack 
of ISO and 200 only). The data are shown for the diffuser- exit Mach 
number which represents best thrust -minus - drag at zero angle of attack . 

Up to an angle of attack of about 9 . So all the inlets yielded about 
the same pressure recovery except those in the presence of the canopy . 
Above an angle of attack of 90 the top inlets with the flat approach de­
creased abruptly in pressure recovery. The inlets with a round approach, 
however) were less sensitive in obtaining the highest pressure recoveries . 
The presence of a canopy above an angle of attack of 90 did not prove 
detrimental to the performance of the inlet with the round approach . The 
superiority of the round over the flat approach may result from the some ­
what better streamlining of the round approach in the crossflow direction, 
in addition to the greater boundary-layer scoop height for the round ap ­
proach in all vertical planes other than the center plane. Also shown 
on the figure for comparison are unpublished data for a bottom inlet at 
angles of attack to 200 • The inlet had a 140 ramp with throat bleed and 
was located 6 . 2 body diameters aft of the nose on a body of revolution 
having a flat approach surface . Based on this trend, the bottom inlet 
of the present study would appear to provide considerably higher r ecov­
eries than the other configurations at the high angles of attack. 

Perhaps the most important aspect to note is the stability at high 
angle of attack . It is significant that most configurations were rela­
tively stable over the entire angle - of- attack range tested . 

Figure 21(b) presents the pressure distor tion values for angles of 
attack from 00 to 200 corresponding to the data presented in figure 21(a). 
An examination of the figure indicates that most values are in the range 
of 3 to 10 percent with maximums occurring at about 9 . So angle of attack . 
These pressure distortion data may be somewhat optimistic since , as pre­
viously mentioned, the diffuser-exit Mach numbers (and, hence, pr essure 
distortion levels) are somewhat low for matching typical engines near the 
critical flow conditions . 

SUMMARY OF RESULTS 

A top- inlet model having a two-oblique-shock compression ramp de ­
signed for a Mach number of 2 .0 was tested in the 8- by 6-foot supersonic 
wind tunnel at angles of attack f rom 00 to 200 and free-stream Mach 
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numbers of 1.5 to 2.0. Variables tested were throat bleed) ramp perfor­
ations) inlet side fairings) fences) canopies) and simulated 600 delta 
Wings. For comp.arison purposes the basic inlet (with side fairings and 
8-percent throat bleed) was studied in a bottom location. Results ob­
tained are as follows: 

1. Throat bleed (with inlet side fairings) increased pressure re­
covery from 0.873 (no bleed) to 0.952 (8-percent bleed) at a free-stream 
Mach number of 2.0 and zero angle of attack. The marked improvements in 
pressure recovery and thrust-minus-drag at zero angle of attack were 
maintained over the entire angle-of-attack range tested. 

2. Small amounts of throat bleed to 4 percent caused slight de­
creases in inlet stability while further bleed increases to 8 percent 
resulted in large stability gains. For this larger bleed) the inlet 
mass-flow ratio was reduced almost to zero without experiencing insta­
bility. Large ranges of subcritical stability were maintained to an 

o angle of attack of 20 . 

3. Use of only 2-percent throat bleed yielded significant reduc­
tions in critical distortion (e.g.) from 20 percent to slightly less 
than 10 percent at Mach number 2.0 and zero angle of attack). Further 
bleed provided only slight additional distortion improvements. Rela­
tively low distortions were maintained to an angle of attack of 200

• 

4. Ramp perforations provided slight increases in inlet pressure 
recovery and stability. 

5. In general) the fuselage fences were not very effective with this 
top inlet which had throat bleed and which was closer to the nose than 
a previously investigated top inlet. 

6. Above an angle of attack of 9.50 and at a free-stream ~~ch number 
of 2.0) the top inlets with the round approach performed considerably 
better than those having a flat approach. 

7. At a free-stream Mach number of 2.0 both canopies (faired and 
unfaired) caused reductions in inlet pressure recovery at low angles of 
attack (00 and 50). However) at angles greater than 90 the configura­
tions with canopies gave pressure recoveries comparable to those without 
canopies but having the round approach. 

8. The inlet side fairings increased both pressure recovery and 
mass flow several percent at the expense of a slight reduction in sta­
bility limits. 
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9. The simulated 600 delta wings caused slight decreases in both 
pressure recovery and stability at angle of attack. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, January 23, 1957 
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C-41128 

(b) Side fairings and flush slot bleed system; maximum bleed position. 
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(c) Ramp perfora tions . 

Figure 3 . - Continued . Inlet deta ils. 
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Figure 3. - Continued. Inlet details. 
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(e) Inlet with shor t fence s . 

Figure 3 . - Concluded. Inlet deta ils. 
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C- 41133 

(b) Unfa ired canopy . (c) Fa ired canopy. 

(d) Wing in forward position. 

Fi gure 4 . - Concluded. Canopy and wings. 
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(a) Survey r ake and wedges. 

Figure 5 . - Fusel age flow survey. 
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Figure 18. - Continued. Inlet perfor mance with canopy and 8-percent bleed . 
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Figure 18. - Continued. Inlet performance with canopy and 8-percent bleed • 
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Figure 18 . - Concluded. I nlet performance with canopy and 8-percent bleed. 
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Unfa ired canopy 

Mass-flow ratio, 0.750; total-pressure 
ratio, 0 .866; diffuser-exit Mach number, 
0 .26; angle of attack. 0° 

Mass-flow ratio, 0 . 603; total-pressure 
ratio, 0.898; diffuser-exit Mach number, 
J .201; angle of a ttack, 5° 

~ss-flow r atio, 0 .752; total-pressure 
ra tio, 0 . 917; diffuser-exitoMach number, 
0 .245 ; angle of attack, 9. 5 

NACA RM E57 A 21 

Faired canopy 
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ratio, 0 .904; diffuser-exi t Ma ch number 
0 .26 ; angle of atta ck, 0° 

Ma ss-f low r atio, 0 . 603; tota l-pr e s sure 
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0 .245; angle of attack, 9 . 5° 

Figure l~. - Schlieren photographs comparing fa ired and unfaired canopies at varying angles 
of attack. Free-stream Mach number, 2. 0 . 
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(a) Wings in forward position. 

Figure 20 . - Effect of simulated 600 delta wing on inlet performsnce with a-percent bleed and side fairings. 
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Figure 20. - Concluded . Effect of simulated 600 delta wing on inlet performance ~ith 8-percent bleed and side fairings. 
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(b) Pressure distor tion. 

Figure 21. - Angle-of-attack summary of pressure recovery and distortion along constant 
Mach number line occurring at maximum thrust -minus -drag at zero angle of attack. 
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