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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS


RESEARCH MEMORANDUM 

TRANSONIC WIND-TUNNEL TESTS OF THE LAUNCH, JETTISON, 

AND LONGITUDINAL CHARACTERISTICS OF AN AIRPLANE-

AND MISSILE-MODEL COMBINATION 

By Joseph W. Cleary, Joseph L. Frank,

and C. Forbes Dewey, Jr. 

SUMMARY 

Tests of an airplane model equipped with missiles were made to inves-
tigate the capability of this combination to achieve satisfactory launch-
ing and jettisoning of the missiles. An evaluation of pylons suitable for 
supporting the missiles was made from measurements of forces and moments 
of the airplane and missile models. The tests were made at Mach numbers 
from 0.80 to 1.20. 

Large variations of missile forces and moments were observed for 
missile positions simulating launch or jettison within the local flow 
field of the airplane model. At transonic Mach numbers, the influence of 
the wing leading edge and shocks originating from components of the air-
plane were dominant factors contributing to the nonuniformity of the mis-
sile flow field. A simplified analysis of the data indicated that for a 
rapidly accelerating missile, however, these large variations in forces 
and moments would, not cause excessive displacements of the missile when 
launched from the airplane in level unaccelérated. flight. Idealized 
jettison boundaries estimated from the missile jettison data indicate 
satisfactory jettison would be achieved from the airplane in level flight 
at sea level but not at i-O,OOO feet altitude. 

Canting or cambering the pylons supporting the missiles generally 
resulted only in small changes in the longitudinal force and moment 
characteristics of the airplane model. However, when the missile was 
pylon mounted, the rolling-moment coefficient was decreased by canting 
the pylons.
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INTRODUCTION 

The use of missiles as armament for high-speed airplanes has created 
new problems that must be considered in integrating the airplane-missile 
combination into an effective weapon. Satisfactory launching and jetti-
soning of a missile may not be achieved if the missile is improperly posi-
tioned, within the nonuniform flow field created by the airplane. Tests 
at subsonic Mach numbers of a missile near the mid-semispan of a typical 
swept-wing-body combination (ref. 1) show large changes in aerodynamic 
forces and moments can be expected on the missile as it moves forward of 
the wing leading edge. A comprehensive treatment of this and other 
aspects of the composite missile-airplane problem is given in reference 2. 
At transonic and supersonic Mach numbers, shocks originating from compo-
nents of the airplane contribute to the complexity of the problem. 

Tests were made in the Ames 14-foot transonic wind tunnel at Mach 
numbers from 0.80 to 1.20 to gain some insight into the nature of the 
trajectory of the missile when launched or jettisoned. Measurements of 
forces and moments of the missile mounted in proximity to the airplane 
model were made. The effects of canting and cambering the pylons on the 
airplane and missile forces were also investigated. 

COEFFICIENTS AND SYMBOLS 


Airplane Model 

The coefficients and related aerodynamic parameters are with respect 
to a moment center on the fuselage reference line at 0.25. 

CD drag coefficient
drag 

CD0 drag coefficient at zero lift 

CL lift coefficient '
lift 

Cm pitching-moment coefficient
pitching moment 
,  

b wing span
b12 

c mean aerodynamic chord, b/2 

f 
c local chord
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()	
maximumlift-drag ratio 

dCL	 lift-curve slope 
dcL 

dCm 

dCL	
longitudinal stability parameter 

n	 load factor 

S	 wing area 

a..	 angle of attack 

angle of attack for zero lift 

Missile Model 

The force and moment coefficients are presented with respect to the 
x ! y I z T body system of axes fixed to the missile with the origin as the 
moment center at 0.531 of the missile length (center of gravity of the 
missile). An exception is the data presented for missile roll angles 
of 150 and 45; these data are with respect to axes through the moment 
center parallel to the xyz system. The direction of positive forces, 
moments and displacements are as shown in figure 1. 

CA	 chord-force coefficient, chord force 

	

CNm	 normal-force coefficient, normal force 

	

CYm	 side-force coefficient, side force 

rolling moment


	

C7.m	 rolling-moment coefficient, 	 q.Smbm 

pitching-moment coefficient, pitching moment 

yawing moment


	

Cnm	 yawing-moment coefficient, 

	

bm	 wing span
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pO.500bm 

J	 cm2dy 
0.lOObm 

cm	 mean aerodynamic chord of exposed wing,
m 

J	 Cdy 
0.1 OObm 

Cm	 local chord 

F,y,z	 applied forces 

g	 acceleration due to gravity 

moment of inertia 

Ixtz I 

Iy'z'	 product of inertia 

Ixty? 

Kxt , t , Z	
radius of gyration 

L	 rolling moment 

m mass 

N pitching moment 

N yawing moment 

p rolling velocity 

q pitching velocity 

r yawing velocity 

Sm exposed wing area 

t time 

T thrust 

u,v,w velocity components parallel to the 	 X I ,Y ? , Z S	 axes 

W weight 

x,y,z reference axes fixed to the airplane 

x',y',z' axes fixed to the missile 

incremental value 

8 angle of pitch
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'V	 angle of yaw 

angle of roll 

W/g 

pmCm 

(t)	 arithmetic mean value 

(•)	
do 
dt 

d2() 
( )	 dt2

General 

h	 altitude 

N	 Mach number 

q	 free-stream dynamic pressure 

B	 Reynolds number 

V	 free-stream velocity 

P	 free-stream density 

APPARATUS AND METHODS 

Wind Tunnel 

The tests were conducted in the Ames 14-foot transonic wind tunnel. 
This tunnel has a square perforated test section and an adjustable nozzle. 
Details of the test section and nozzle are shown in figure 2. Operation 
is continuous and Mach number can be varied from 0.30 to 1.20. Detailed 
longitudinal static-pressure measurements indicate a uniform flow; the 
variations in local Mach number are less than about ±0.003. Stagnation 
pressure in the test section is approximately atmospheric pressure. 
Variations in stagnation temperature are tolerated but the variations in 
Reynolds number that result are small and for this test, fell within the 
shaded region shown in figure 3. 

Investigations of the effects of model blockage and reflected waves 
in this and related smaller tunnels have shown that for blockage ratios 
(ratio of maximum model cross-sectional area to test-section area) of 
less than about 0.3 percent, the effects are generally small. Since the 
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blockage ratio for this investigation was about 0.1 percent, the results 
are considered basically free of interference from model blockage and 
reflected waves.

Models 

The airplane and missile.models used during this investigation were 
0 . 07- scale models. 

\ 
Airplane.- The model was constructed from steel, wood, and Duralumin 

and was equipped with canopy, inlets, control surfaces, etc. All control 
surfaces were set at 0°. The mass-flow ratio of the air flowing through 
the inlets was adjusted to a value of about 0.8 to represent a high sub-
sonic cruise condition. A sketch of the model showing the major compo-
nents is given in figure 4 and additional geometrical details are supplied 
In table I. 

The basic model configuration was equipped with missile pylons having 
symmetrical airfoil sections. Provisions were made for canting the lead-
ing edge of these pylons 30 toward the plane of symmetry (rotation about 
the z axis). Also furnished were cambered pylons similar in plan form 
to the symmetrical pylons with maximum camber at the wing-pylon juncture. 
Details of the symmetrical and cambered pylons are shown in figure 7. 

The model was sting supported on approximately the tunnel center line 
as shown in the photographs of figure 6. 

Missiles.- The airplane model was equipped with two missiles mounted 
on pylons beneath the wing as shown in figures 4, 5, and 6. Only the left 
missile was instrumented for measuring forces and could be either pylon or 
sting mounted. Missile position and attitude were varied by mounting the 
missile on stings of various lengths and-angles. The stings were mounted 
on supports attached to the wing of the model as in a typical setup shown 
in figures 6(b) and 6(c). 

The missiles were built of steel and Duraluxnin. A sketch of the 
missile model is presented in figure 7 and additional geometrical details 
are given in table II. For all phases of the test, the wings and tails 
were set at 00 incidence. 

Measurements and Accuracies 

Airplane model.- Model forces were measured with an electrical 

strain-gage balance mounted within the model. These measured forces were 

CONFIDENTIAL



NA.CA RIvI A77G01	 CONFIDENTIAL 

resolved into lift, drag, and pitching moment about the moment center at 
0.25. The accuracy of the coefficients are believed to be: 

CL = ±0.010 

CD = ±0.0010 

Cm = ±0.002 

The data have been corrected for an average upflow angle of 0.70 
evaluated from tests with the model upright and inverted. Surveys of the 
test section with probes that detected flow angularity indicated some span-
wise variation of upflow angle but the data have not been corrected for 
this effect. 1 Since the model span was relatively small, the spanwise 
variations in flow angle are believed unimportant. 

The effects of sting interference on the external pressures of the 
model forward of the duct exit were not evaluated. Experimental tran-
sonic research of similarly supported models indicate this effect would 
be small for this particular installation. However, the drag data have 
been adjusted to correspond to a base pressure equal to free-stream 
static pressure. 

Corrections for the drag of the internal ducting have been applied 
to the drag data. These corrections were determined from measurements of 
total and static pressures within the duct and at the duct exit. There-
fore the drag coefficients were based on a summation of the external 
aerodynamic forces parallel to the relative wind with the static pressure 
in the plan of the duct exit equal to the free-stream value. 

Measurements of the inclination of the model to the horizontal are 
believed accurate to within ±0.1 0 . However, inaccuracies in determining 
upflow give a probable accuracy of measuring angle of attack within about 
±0.2°. 

Missile model.- The forces of the left missile were measured with an 
internal five-component strain-gage balance. Axial force was not meas- 
urea, since it was considered irrelevant to the test. Because of the 
small size of the balance, the precision of measurement of forces and 
moments was only fair. The data have been corrected for deflections of 
the balance and the sting supporting the missile. 

iThe primary source of the upflow and the spanwise variations have 
been traced to mixing of the cooling air in the air-exchange tower. Sub-
sequent to these tests, the flow angularity has been reduced to a small 
value by installing a screen in the low-speed stagnation section of the 
tunnel circuit.  
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TESTS 

The tests were conducted at Mach numbers from 0.80 to 1.20 and 
Reynolds number per foot of about 4x10 6 (see fig. 3). Angle of attack 
was varied from about _30 to 90 but for some parts of the test this range 
was decreased because of fouling of the missile balance. 

Static longitudinal characteristics of the airplane model were meas-
ured to evaluate the effects of the pylons and missiles. Tests were made 
to determine the effect of pylon modifications on the lateral and longi-
tudinal characteristics of the pylon-mounted missile. Tests with the mis-
sile at several longitudinal and vertical positions were made to evaluate 
the forces and moments of the missile at various positions in the airplane 
flow field.

RESULTS AND DISCUSSION


Pylon Modifications 

An investigation was undertaken to determine the effects of pylon 
canting and pylon camber on the static aerodynamic forces and moments of 
the airplane and missile models. These tests were directed toward devel-
oping a pylon that would induce flows favorable to the reduction of forces 
of the missile when pylon mounted without adversely affecting the lift, 
drag, and pitching-moment characteristics of the airplane model. The 
effects of camber were evaluated from tests of the symmetrical and cam-
bered pylons shown in figure 5. The effects of canting were determined 
from tests of the symmetrical pylon with the leading edge canted 3 
toward the plane of airplane symmetry. 

Airplane characteristics.- The effect of the symmetrical pylons and 
the missiles on the lift, drag, and pitching-moment characteristics of 
the airplane model are presented in figure 8. Similar data are presented 
in figures 9 and 10 showing the effects of the canted and cambered pylons, 
respectively. These data are summarized in figure 11 in a comparison of 
aerodynamic parameters of the model with missiles installed on each of 
the three pylons with those of the clean configuration. The comparisons 
indicate that from the standpoint of best airplane performance, none of 
the pylons exhibited a clear-cut superiority. In general within the 
accuracy of the data, the increase in drag coefficient at zero lift and 
the reduction in maximum lift-drag ratios were about the same for all 
pylon configurations. 

A slight reduction in longitudinal stability -(dCln/dCL) was incur-
red throughout the Mach number range by adding the pylons and missiles. 
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This reduction of stability might be of some concern at Mach numbers near 
0 .90 where the static margin is small at low lift coefficients. 

Missile characteristics.- Static forces and moments of the pylon-
mounted missile are presented in figure 12 for the various pylon configu-
rations. The orientation of positive forces, moments, and displacements 
of the missile are as shown in figure 1 and the discussion and analysis 
of these and the data that follow apply only to the left missile. The 
presence of shocks arising from the airplane model, as will be shown 
later, may have a significant effect on the force and moment characteris-
tics of the missile. Since data were obtained for only a limited number 
of Mach numbers, namely 0.80, 0.90 , 0. 92 , 0.93, 1.00, 1.10, and 1.20, 
some caution should be exercised when extracting values from the joined 
curves at other than the Mach numbers of the test. 

An examination of figures 12(a) and 12(b) reveals that canting the 
pylon and missile effected 'a negative shift in the rolling-moment coeffi-
cient and a positive shift in the side-force coefficient with only minor 
changes in the other coefficients. In general, the rolling-moment 
coefficients were decreased about 0.02. 

To achieve a successful launch of the missile, considerable impor-
tance is attached to the values of moment coefficients in the initial 
phase of the launch. Depending on the magnitude of the missile accelera-
tion, large moments may cause the missile to rotate sufficiently to strike 
the pylon or some other component of the airplane. Even relatively small 
values of rolling-moment coefficient may be of some concern, since for 
typical missile configurations, the inertial resistance to roll is small 
compared to that for pitching or yawing motions. It would appear then, 
that depending on angle of attack, canting the pylon and missile may be 
useful for reducing the magnitude of the rolling-moment coefficients. 
Cambering the pylon, on the other hand, was relatively ineffective in 
modifying the force or moment characteristics as shown by comparing 
figure 12(c) with 12(a). 

Of interest is the large dependence of the force and moment coeffi-
cientson angle of attack since this variable determines in large measure 
the nature of the local flow field. Pertinent observations of the effects 
of increasing angle of attack made from figure 12 are (1) an increase in 
normal-force, pitching-moment, and rolling-moment coefficients and (2) a 
decrease in side-force coefficient with only minor changes in yawing-
moment coefficient. While it is evidentthe local flow field is a complex 
combination of varying dynamic and static pressure, flow curvature, and 
flow angularity, the effects observed can be explained in a qualitative 
fashion by resorting to subsonic wing theory. The wing at angle of attack 
is replaced by a sweptback bound vortex. The circulation due to this 
vortex can be resolved into components perpendicular and parallel to the 
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missile axis as shown in the sketch. For a highly swept wing, the compo-
nent parallel to the missile axis induces a strong lateral flow beneath 
the wing toward. the tip, causing a decrease in side-force coefficient 
with increasing angle of attack. Interference of this flow by the pylon 
induces a vortex about the missile axis causing a rolling-moment coeffi-
cient that increases with increasing angle of attack. The component per-
pendicular to the missile axis induces upwash forward of the leading edge 
causing large increases in normal-force and pitching-moment coefficient 
with increasing angle of attack. 

Missile in Launch Positions 

Force and moment coefficients of the missile at several longitudinal 
positions forward of the pylon-mounted position and at various attitudes 
with respect to the launch reference line are given in the following 
figures:

x/c e j cp Figure - x/c Figure 
).185 0 0 0 13 1.108 -8 0 0 17(b) 
.369 0 0 0 14(a) 0 -3 0 17(c) 

0 0 15 14(b) 0 -8 0 17(d) 

3 0 0 14(c) 1i477 0 0 0 18(a) 

-3 o 0 llI(d) 0 0 45 18(b) 
0 -3 0 lli(e) -8 0 0 18(c) 

.554 0 0 0 15(a) 0 -3 0 18(d) 
0 0 15 15(b) 0 -8 0 18(e) 

3 0 0 15(c) 1.846 0 0 0 19(a) 

-3 0 0 15(d ) -8 0 0 19(b) 
0-3 0 15(e) -16 0 0 19(c) 

.738 0 0 0 16 0 -3 0 19(d) 

.108 0 0 0 17(a) 0 -8 0 19(e)
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From these data it can be seen that the local flow fields signifi-
cantly influence the forces and moments on the missile as it moves for-
ward of the pylon-mounted position. The highly nonuniform flow near the 
wing leading edge appears to be the governing factor but shocks arising 
from components of the airplane are important if impinging on the missile. 

Effect of airplane-model shocks.- To illustrate how impinging shocks 
can affect the force and moment coefficients of the missile, figure 20 
shows the variation of the coefficients along the launch reference line 
and the shocks the missile would penetrate. Coefficients are plotted 
versus position of the missile moment center and the symbols designate the 
corresponding positions of the wing and tail. The shock fronts depicted 
were taken from schlieren photographs of the flow of which figure 21 is 
typical. The data are presented for an angle of attack of 0.70 and are 
generally typical of level-flight law-altitude conditions. 

For Mach numbers greater than 1.00, shocks originating from the 
fuselage bow, the air inlets, and the wing-fuselage juncture are , indicated 
in the region of interest. The most significant effects of Mach number 
are observed when one or more shocks cross some part of the missile. 
Values of normal-force and pitching-moment coefficient obtained from tests 
of a 0.11-scale model of the missile (ref. 3) in a uniform flow at Mach 
numbers from 0.8 to 1.30 are shown at the left as a dashed line. With 
the missile at x/c = 1.477, a large increase in yawing moment occurred 
at a Mach number of 1.20, tending to yaw the missile toward the airplane. 
This effect is attributed to the increased strength of the bow wave and 
the attendant abrupt changes in flow direction behind the shock as Mach 
number increased to 1.20. Increasing Mach number caused a large decrease 
in normal-force coefficient when the missile is placed at x/c = 0.738. 
This is believed due to the inlet shock crossing the missile between the 
wing and tail. Corresponding reductions in pitching-moment coefficient 
are observed. Related smaller effects can be detected on the other force 
and moment coefficients when one or more of the shocks cross the missile. 

Missile Trajectory 

It is important to know the missile path in the initial phase of the 
launch to determine whether the missile will strike some component of the 
airplane. It is also important to know the missile attitude during the 
controls-locked phase of the launch, since the target may be lost from 
the field of view of the missile if large pitching and yawing motions are 
incurred. 

An estimate of missile trajectory and attitude from measurements of 
static forces and moments requires simplifying assumptions that make the 
equations of motion amenable to solution. The detailed assumptions and a 
development of equations relating missile position and. attitude to 
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external forces and moments are given in the appendix. The analysis is 
based on equations of motion for small disturbances with controls locked 
and the assumptions neglect aerodynamic damping and forces opposing the 
missile thrust. It is believed that the results of this analysis are of 
sufficient accuracy to define problem areas and to assess the probability 
of a successful launch. 

Airplane in unaccelerated flight.- The results of the analysis show-
ing the effect of flight altitude are presented in figure 22. The air-
plane was assumed in level unaccelerated flight and the angle of attack 
required is given in figure 27. Computations were based on an airplane 
wing loading of -i-O pounds per square foot and a missile thrust-to-weight 
ratio of 25. The inertia properties of the missile are given in table III. 
Except for forward motion, the missile was restrained by the launcher dur-
ing the initial 3 feet of the launch (to x/c = 0.185). Mention should be 
made that the analysis was hampered by a lack of data giving the complete 
effect of missile attitude on the aerodynamic coefficients at all longi-
tudinal positions. Where necessary, extrapolations of data have been 
made.

The results indicate that the vertical and lateral displacements of 
the missile with respect to the airplane are small and that the missile 
would not contact the airplane. At any given Mach number, the magnitude 
of the missile's vertical and lateral displacements decreased with increas-
ing altitude. This generally indicates that the effects of decreasing 
density of the air overshadowed changes in missile coefficients due to 
increased angle of attack. Similarly the magnitude of the rotational 
motions of the missile, in general, decreased with increasing altitude. 
At transonic Mach numbers the largest angles of pitch and yaw were 160 
and _150, respectively. It is believed these angles are not sufficient 
for the missile to lose the target during a routine approach. Abrupt 
changes in missile position and attitude as it traverses the shocks is 
not predicted by this analysis because of the averaging process over the 
intervals of the finite step-by-step computing procedure. 

To clear the launcher, the missile must travel approximately 10.5 
feet and allowable axial rotation before the tail contacts the launcher 
is approximately 140 . Figure 22 indicates that contact would not occur 
at transonic Mach numbers but clearance was marginal at a Mach number of 
1.00.

 Airplane in turning flight.- As an example of the effects of maneu-
vering the airplane when missile launch occurs, figure 23 shows the rela-
tive position and attitude of the missile during a turn to the left at a 
load factor of 3. The computations were made for flight at 20,000 feet 
altitude and a Mach number of 1.20. Shown for comparison are the dis-
placements presented in figure 22(c) for these same conditions but at a 
load factor of unity. In general, missile displacements are increased by 
this maneuver becauso of the usually larger aerodynamic forces of the 
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missile that result from the increased angle of attack. Turning of the 
airplane compensates in large measure for the linear displacements that 
occur from increase in angle of attack. Thus, a corresponding turn to 
the right would result in larger linear displacements of the left missile. 

The increase in roll angle due to increasing load, factor results in 
marginal rotational clearance of the missile for a load factor of 3. On 
the basis that decreasing altitude increases the missile rotations as 
shown previously for unaccelerated flight, it is probable that the missile 
would contact the pylon in roll if a load factor of 3 were required at 
lower altitude.

Missile in Jettison Positions 

Force and moment data simulating possible missile jettison positions 
below the carry position are presented in the following figures: 

z/c e Figure 
0 . 0308 0 0 0 211-(a) 

3 00 24(b)
-3 00 2)4(c) 

. 0923 0 0 0 27(a) 
8 o 0 25(b) 

-8 0 0 25(c) 
-16 0 0 25(d) 

. 2051 0 0 0 26(a 
8 o 0 26(b 

-8 0 0 26(c) 
-16o0 26(d)

From these data it can be observed, as was the case with simulated 
launch positions, that the force and moment coefficients are highly 
dependent on angle of attack, missile position, attitude, and Mach number. 
However, as might be expected, the influence of angle of attack decreases 
with missile distance from the pylon-mounted position. In this connec-
tion, it can be observed by comparing figure 24(a) with figure 12(a) that 
a small vertical displacement of the missile reduced the variation in 
rolling-moment coefficient with angle of attack by about 50 percent. This 
is believed due primarily to creating an opening between the launcher and 
missile allowing passage of the lateral component of the flow. Thus, a 
reduction in rolling-moment coefficient of the missile in the pylon-
mounted position might be achieved by strategic openings in the pylon. 

Jettison boundaries.- An idealized analysis of the data was made to 
estimate the approximate boundaries for satisfactory jettisoning of the 
missiles. This analysis assumed that jettison was achieved by the 
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unbalanced force due to gravity without assistance from other devices. 
Furthermore, because of the limited data, it was assumed that the coeffi-
cients in the longitudinal plane were independent of missile attitude and 
displacement in the lateral direction. However, the boundaries take 
account of possible lateral motions if it is assumed that the coefficients 
in the lateral direction are functions only of missile position and atti-
tude in the longitudinal plane. The boundaries do not take into account 
longitudinal motions due to missile drag. 

The results of the analysis are shown in figure 27 for release at 
altitudes of sea level, 20,000 feet, and 1 0,000 feet for level unacceler- 
ated. flight. The upper boundary shown at sea level and. 20,000 feet gives 
the airplane angle of attack for which the missile would not depart even 
though jettison was initiated. This boundary is defined by considering 
the free-body static forces and moments of the missile in the longitudinal 
plane, the inequality relating CNm C, and missile weight being 

m W Cos cL 

CNmCiimT> qSm 

and the dimension, f, as shown in the sketch. Other aerodynamic forces 
were neglected. Sufficient data were not available to obtain this 
boundary at 40,000 feet.

CqS 

Fz

	

	 - - - - 

f
- 

--	 - - 

W cos a 

The lower of the two boundaries was determined from an analysis of 
the dynamic motions of the missile and neglects damping. Below this 
boundary, a region is defined wherein the missile would jettison satis-
factorily; that is, at a minimum z/c of 0.207 without contacting the 
airplane. Primary concern was contact of the missile wings with the 
pylon due to positive rolling and negative yawing motions * Pitching and 

lateral motions were generally small at low angles of attack. 
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The results shown in figure 27 indicate that jettisoning of the mis-
sile becomes less satisfactory as the altitude for release increased from 
sea level to i-O,OOO feet. At -i-O,OOO feet altitude, jettisoning was unsat-
isfactory throughout the Mach number range of the test, primarily because 
of the large rolling moments of the missile induced at high angles of 
attack.

CONCLUDING EEMABKS 

Static force and moment measurements at transonic Mach numbers of a 
missile model showed large variations of forces and moments due to posi-
tion and attitude within the flow field of the airplane model. The domi-
nant factors contributing to the nonuniformity of the local flow are 
believed due to the influence of the wing leading edge and shocks origi-
nating from components of the airplane model. If launched at Mach numbers 
greater than 1.00, the missile would traverse shocks from the wing-
fuselage juncture, the air inlets, and the fuselage bow. When the missile 
penetrates the bow wave at a Mach number of 1.20, a yawing moment is incur-
red tending to yaw the missile toward the airplane. A simplified analysis 
of the data however, indicates that for a rapidly accelerating missile the 
large variations in forces and moments would not cause excessive motions 
of the missile when launched from the airplane in level unaccelerated 
flight. 

Idealized boundaries estimated from the missile jettison data indi-
cate the missile would jettison satisfactorily from the airplane in level 
flight at sea level but not at 40,000 feet altitude. 

An investigation of the effects of cambering and canting the pylons 
showed canting the pylons decreased the rolling-moment coefficients of 
the missile in the pylon-mounted position. Cambering the pylons, however, 
had little effect on the missile loads. 

Ames Aeronautical Laboratory 
National Advisory Committee for.Aeronautics 

Moffett Field, Calif., July 1, 1957 
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APPENDIX


MISSILE LAUNCH EQUATIONS 

The equations defining the missile path and attitude with respect to 
the airplane are developed by relating applied forces and moments to the 
time rate of change of momentum and moment of momentum, respectively. The 
development is based on the airplane's being in level unaccelerated flight 
when launching occurs and therefore the airplane is used as a reference 
frame for the fixed-axes system. A moving system of body axes is attached 
to the missile as depicted in figure 1. For these systems of axes the 
following equations relate the forces and moments applied to the missile 
to the inertia forces and moments (see, e.g., ref. ii): 

Applied forces along fixed axes 

EFx = ma = mi 

Fy = may = InP. 

EF = ma = in 

By symmetry, the x',y',z' axes define principal axes and therefore 

Ixtyl = Ix t z t = 'z'y'	 0


IZ I = lyt 

The equations for the applied moments about the body axes are: 

EL' = DIx' 

EMy?Iyt+rP(Ixt1zt) 

ENzi = iit + pq(Iy	 lxi) 

Because of the limited amount of data, it was assumed that the mis-
sile forces were independent of the angle of roll. Thus the missile 
normal force and side force lie in planes perpendicular and parallel to 
the xy reference plane, respectively, as shown in the sketch. This 
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X 

assumption is partially substantiated by experimental data. Summing the 
applied forces in the x,y,z directions gives: 

LFx T cos e cos jf - W sin a - C qSsin e cos 4r - 

Cyq.mSrnsin ji -	 0 cos ic = 

EF
CAM qmSmcos 0 sin r = y 

EFZ = - CqSCO5 0 + W cos a. - T sin 0 + CAM qSsin 0 = 

and summing the applied moments about the xT ,y' ,z' axes gives: 

= C 1 qS111b	 1x' 

EMt	 = Iyt + rp (i" - It) 

ZNi = Cnm Siflbm = iz' + pq(Iyt - IXT) 

These equations for the translation and rotation of the missile com-
prise a system of nonlinear differential equations that are not solvable 
by ordinary methods. To effect a solution, the following assumptions are 
made:

1. The angular motions of the missile are small and the general 
rules for small disturbances apply. For the purpose of this analysis, 
this allows replacing cosines of angles by 1.0, sines by the angle, and 
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sines squared by zero. This disregards terms containing products of 
angular velocity components thereby neglecting motions due to inertia 
coupling. An estimate of angular velocities indicated inertia coupling 
may be of some significance in certain cases when the roll rate is large. 

2. The missile thrust is large in comparison to other forces in 
the x direction. 

3. Aerodynamic damping is small compared to the static forces and 
can be ignored. 

1. The mass and distribution of mass of the missile remains fixed 
during the launch. 

7. For a small finite interval, Ax, the attitude and coefficients 
of the missile can be averaged and are effectively constant. 

When these assumptions are employed, the equations of motion become: 

- T=O 

and for a finite interval, Lx 

- L - CyqSm - T4r' = 0 

Li + C'qS + Te' = 0 

Rotations

Ix 1ACP - C1 t qSb = 0 

lylL -	 = 0

MM 

ItL(	 C'qSb='O 

Substituting	 p(V+a1t+b1)2 where a 1 is the missile acceleration 

and b 1 the initial velocity at the beginning of the interval relative 
to the airplane, the equations are easily .sQlved by , double qdrature 

after separating variables. The solutions are: 	 -	 -. 

Translation in the x direction: 

X =	 a 1t2 + b 1t + Cl.,. 
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where

T a1=g 

initial velocity 

c 1 = initial displacement 

Translation in the y direction: 

A y =	 a2zt4 + bAt3 + cAt ± dt 12

where 

a	
Cyai2	 W/g 

2	 2-CM 11 

Cyai(V+bi) 

Um P 

c?(v2 + 2Vb 1 + b12) 
m	

2CmL 

and d2 is the initial velocity at the beginning of the interval 

y = Ey 

Translation in the z direction: 

=+ b3Lt + c3 t2 + dAt 12	 6

where 

a = -CNa12 

2c 

-CN'al(V+bl) =	 m
c

+ 2Vb j + b12) 
C 3 =	 2c - p.	

+ gcos c - a16' 

and d3 is the initial velocity at the beginning of the interval 

z=Eiz 
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Rotation of the x' axis: 

Lq = j aLt4 + b4it3 + ct + 

where

,	 2 
m1Jma1	 2 gKxv a4 2 

	

=	 Kxt2i.t	
tx 

b4 = Cibmai(V+bi) 

CmKx ? 1.1 

+ 2Vb 1 + b12)


	

c4=	 -	 2 
2CmKx T .L 

and d4 is the initial velocity at the beginning of the. interval 

p =Acp 

Rotation of the y' axis: 

L9 = ' 85Lt4 + b5tt3 + . c5Lt + dt 
12

where

Cm'a2  

2KytIL 

= Cmai(V+bi) 

KyT 
2 

L 

Cm(V2 + 2Vb 1 + b12) 

	

c5=	 2 
2KytI1

	

	 - - - 

and d5 is the initial velocity at the beginning of the interval 

e=re  

Rotation' of the z' axis:  

=	 at4 + b6Lt3 + c6 t2 + dt 

12- CONFIDENTIAL
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where

Cnbmai2 
a6 

= 2K2t	
Kz'2 =	 Iz' 

- Cn1Dmai(V+bi) 
be	 2 

c( +	 ^b12) 
ca 
=  

2Kz?2}1 

is the initial velocity at the beginning of the interval 

CONFIDENTIAL



22	 CONFIDENTIAL	 NACA RN A57G01


REFERENCES 

1. Alford, William J., Jr., and King, Thomas J., Jr.: Experimental 
Static Aerodynamic Forces and Moments at High Subsonic Speeds on 
a Missile Model During Simulated Launching From the Mid-Semispan 
Location of a 450 Sweptback Wing-Fuselage-Pylon Combination. 
NACA RN L56105, 1957. 

2. Froning, H. D., Munter, P.' L., and Pedraglia, R. M.: A Study of the 
Aerodynamic Phenomena Arising From the External Carriage of Air-
To-Air Missiles. Rep. No. SM-27101, Douglas Aircraft Co., Inc., 
Aug. 17, 1956. 

3. Livezey, W. F., and Nixon, M. S.: Stability and Control Data from 
Subsonic, Transonic, and Supersonic Wind Tunnel Tests on an 
11-Percent-Scale Model of the Sparrow II Missile. Rep. No. SM-19468, 
Douglas Aircraft Co., Inc., Dec. 20, 1955. 

. Perkins, Courtland D., and Hage, Robert E.: Airplane Performance 

Stability and Control. John Wiley and Sons, N. Y., 1949. 

CONFIDENTIAL



NACA EN A57G01	 CONFIDENTIAL	 23 

TABLE I. - GEOMETRIC PROPERTIES OF THE AIRPLANE MODEL 

ing 
Airfoil sections 

Root	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . . . . . . .	 .	 NACA0005modified 
Tip...	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 NACA 0003.2 modified 

Area,	 sq ft	 .	 .	 .	 .	 0	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 ....... 0	 2.729 
Span,	 ft	 .	 .	 .	 .	 ......	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 0	 2.34-
Root chord, ft	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 0	 1.756 
Tipchord, ft	 .	 .	 .	 .	 .	 .	 .	 .	 . ............. 0.583 
Mean aerodynamic chord, ft	 o	 ................ 1.218 

-	 Aspect ratio	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 ...... 2.02 
Taper ratio.	 .	 .	 .	 ......	 . .	 .	 .	 .	 ........ 0.332 
Sweepback O.25c, deg * 	 .	 .	 .	 .	 .	 . .	 .	 .	 ......... 46.5 
Dihedral,	 deg	 .	 .	 .	 .	 .	 .	 .	 .............. . 0 
Incidence, deg	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .......	 .	 . -	 0 
Geometric twist, deg	 ................ .	 .	 • o 

Vertical tail 
Airfoil sections 

Root (rudder base)	 .	 .	 .	 •	 .	 .	 . .	 .	 .	 .	 .	 .	 NACA 0005.1 modified 
Tip .......	 ....... NACA 0003.2 modified 

Area,	 sq ft	 .	 .	 .	 .	 .	 ....... .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 0.342 
Span,	 ft	 .	 .	 .	 .	 .	 .	 .	 .	 .	 ...... .	 .	 .	 .	 .	 .	 .	 .	 . 0.662 
Mean aerodynamic chord, ft	 • . . . .	 .	 .	 .	 .	 .	 .	 .	 .	 •	 .	 . 0.549 
Sweepback 0.25c, deg	 .	 .	 .	 .	 •	 .	 . .	 •	 .	 .	 .	 .	 ...... 8.2 
Aspect ratio	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 ......... 1.28 
Taper ratio	 .	 .	 .	 .	 ....... .	 .	 .	 .	 ........ 0.155 

Fuselage 
Length,	 ft	 .	 •	 .	 ..................... 3.278 
Maximum depth, ft .	 ........... 0.332 
Maximum width, ft .	 .	 .	 .	 .......... •	 •	 .	 .	 .	 . •	 0-332 
Fineness ratio	 .	 •	 ......... . 9.86
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TABLE II.- GEOMETRIC PROPERTIES OF THE MISSILE MODEL 

o
Airfoil sections, double wedge 	 ............ t/c = O.O417 

Area, exposed two panels, sq ft 	 .	 .	 . .	 . .	 .	 .	 0.01237 

Span,	 ft	 .	 .	 .	 .	 .	 ............	 . .	 .	 .	 0.2341 

Root chord, exposed, ft	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 0.1132 

Tipchord..,	 ft	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 ............ 0 . O19I 

Mean aerodynamic chord, exposed, ft 	 .	 . .	 . .o	 .	 .	 0.0112 
Aspect ratio, based on total area and span .	 . .	 .	 .	 3.0 
Taper ratio, ratio of tip chord- to root chord 

at plane of symmetry .	 .	 .	 .	 . .	 .	 .	 .	 . .	 .	 .	 O.142 

Sweepback, . deg	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 . 

Incidence,	 deg	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 ...... .	 0 

Tail 
Airfoil sections, double wedge .	 .	 .	 . .	 . .	 .. t/c = 0.0290 

Area, exposed two panels, sq. ft .	 .	 .	 .	 .	 . .	 .	 .	 0.01007 

Span,	 ft	 .	 .	 .	 .	 .	 o	 ........	 •	 •	 •	 •	 •	 •	 ...... 0.2332 

Root chord, exposed, ft	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 0.1079 

Tipchord	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 0 

Mean aerodynamic chord, exposed, ft 	 .. .	 . .	 .	 .	 0.0720 

Aspect ratio	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 3.46 

Taper ratio	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 0 

Sweepback, leading edge, deg . 	 .	 .	 .	 . .	 . .	 .	 .	 77 

Incidence, deg .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 0 

Fuselage
o.866 Length,	 ft	 e	 .	 •	 •	 •	 •	 •	 .	 .	 •	 •	 •	 ........ .	 a	 •	 •

O.O67 Maximum diameter, ft .	 .	 .	 .	 .	 .	 .	 .	 . .	 . .	 .	 . 

Fineness ratio	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 18.8

TABLE III.- INERTIA PROPERTIES OF THE MISSILE 

LLssile weight, lb ...........a .............381 

Pitching and yawing moment of inertia, slug-ft 2 .......	 109.5 
Rolling moment of inertia, slug-ft 2	 1.325 
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Figure 3.- Variation of Reynolds number with Mach number. 
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I	
All dimensions in inches 

28.14

39.33	
Ipi 

Figure II. The 0.07-scale model of the airplane. 
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All dimensions in inches 

Pylon 

Launcher _\ 
MissIe 
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0.547
Az

WE 

0.700 I 

--Moment center 

k1 0.140	 Left missle- launcher-pylon assembly 

-.-I k- 0.210	
F- -
	 y 

Section B-B	 •.----. ___________________ 
(typical) 	 z:O 

Cambered 

	

___________________ -	 ii:==- z:0.350 
Symmetrical -'

z :0.700 

Sections A-A (theoretical) 

SectionA-A basicpylon Section A-Acamberedpylon 
z:0 tz0J00 Az=0 a z:0.700 

X )' X ' X p lower Yupper X y 

0 0 0 0 0 0.160 0.160 0 0 
0.038 0.028 0.069 0.028 0.020 .137 .167 0.069 0:028 

.075 .038 .138 .038 .038 .123 .170 .138 .038 

.150 .052 .275 .052 .073 :,01 .171 .275 .052 

.225 .061 .412 .061 .125 .075 .167 .41,2 .061 

.300 .068 .550 .068 .195 .048 .158 .550 .068 

.450 .079 .826 .079 .300 .013 .145 .826 .079 

.600 .084 1.100 .084 .405 -.017. .131 1.100 . .084 

.750 .087 1.376 -.087 .510 -.039 .119 1.376 .087 

.900 .088 1.650 .088 .615 -.057 .109 1.650 .088 
1.091 .088 3.400 .088 '.720 -.071 .101 3.400 .088 
1.091 .088 3.591 .088 , .825 -.081 .094 3.591 .088 
1.419 .085 3.919 .085 .914 -.086 .090 3919 .085 
1.729 .078 4.229 .078 1.033 -.088 .088 4.229 .078 
2.047 .065 4.547 .065 1.103 -.088 .088 4.547 .065 
2.362 .048 4.862 .048 .1.294 -.088 .088 4.862 .048 
2.685 .027 5.185 .027 1.622 -.085 .085 5.185 .027 
2.841 .015 5.341 .015 1.932 -.078 .078 5.341 .015 
3.000 .002 5.500 .002 2.250 -.065 .065 5.500 .002 

2.565 -.048 .048 
2.888 -.027 .027 
3.044 -.015 .015 
3.203 .002 .002

Figure 5.- Details of the symmetrical and the cambered pylons. 
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Figure 11.- Longitudinal aerodynamic parameters of the airplane model. 
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Figure 12.- Force and moment characteristics of the missile moimted on 

pylons; x/c . = 0. 
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Figure 12.- Continued. 
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Figure 12.- Concluded.. 
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Figure 14..- Force and moment characteristics of the missile in launch

position x/c = 0.369. 
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Figure 14.- Continued. 
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Figure 14.- Continued. 
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Figure 15.- Force and moment characteristics of the missile in launch 

position x/c = O.551. 
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Figure 15.- Continued. 
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Figure 17.- Continued. 
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Figure 18.- Force and moment characteristics of the missile in launch
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Figure 19.- Force and moment characteristics of the missile in launch 

position x/c = 1.846. 
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Figure 22.- Continued. 
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Figure 22.- Concluded. 
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Figure 23.- Effect of load factor, with the airplane in a left turn, on 
the missile attitude and position; left missile launched at 20,000 
feet altitude and a Mach number of 1.20. 
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Figure	 Force and moment characteristics of the missile in jettison 

position z/c = 0.0308;'ili = p = 00. 
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Figure 21I.. Continued. 
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Figure 211. Concluded. 
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Figure 27.- Force and moment characteristics of the missile in jettison 
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Figure 25.- Continued. 
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Figure 25.- Continued. 
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Figure 25.- Concluded. 
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Figure 26.- Force and moment characteristics of the missile in jettison

position z/c = 0.2051 ; i = cp = 00. 
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Figure 26.- Continued. 
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Figure 26.- Continued, 
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Figure 26.- Concluded. 
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Figure 27.- Jettison boundaries of the airplane-missile combination. 
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