

TECHIICAL MELORANDUIS

NAT IOMAL ADVISORY COMIITELE FOR ALRONAUTICS

No. 364

KINETOGRAPHIC FLOW PICTURES
By I. Prandtl and O. Tietjens

From "Dic Naturvissenschaften," Vol. 13

TECHINCAL MENORMDUN NO. 364.

KINETOGRAPHIC FLON PICTURES.*
By L. Prandtl and O. Tietjens.

According to a method worked out by Professor F. Ahlborn in Hamburg, the flow of water can be photographed by strewing on its surface fine particles (such as lycopodium spores, grass seed, or powdered aluminum) and making short time-exposures. Each particle travels a certain distance during the exposure and is photographed as a short straight line. The total of all these short lines accordingly produces a picture which shows the direction of flow at every point and also its veloci.ty (by the length of the line). With the right amount of powder and a suitable length of exposure, the latter run together so as to indicate the strcamlines dircotly.

If it is desired to make such pictures with a kinctograpin, In order to determine the temporal succession of the flow phenomena, the difficultur may easily arise that the marks will bo too short on the individual negatives, due to the shortness of exposure, so that the streamlincs will not be recognizable. We therefore changed the drivinc mechanism of a kinctograph, so that the illumination lasted only $7 / 8$ of the time allotted for each exposure, $1 / 8$ being allowed for the shifting of the film

* "Kinenatographische Stromungbilder," roprinted from "Dic Naturwissenschaften, " Vol. 13, pp. 1050-1053.
in preparation for the next exposure. In order not to overtax the mechanism, the velocity of the shifting film must not be greater than in ordinary operation, in which about 0.4 of the time can be allowed for the actual exposure and 0.6 for the shifting of the film (at least in our camera, which is an old type made by Liesegang in Düsseldomf). On the basis of 16 exposures per second in ordinary operation, we thus obtained 3 exposures per second, which were sufficient for our purpose. The "film time-pictures" thus obtained are poorly adapted for kinctoscopic reproduction, since they give a very unnatural effect, even when correspondingly retarded by copying each individual picture several times in succession on tho positive film, as is done in trick pictures. The object of such pictures is not the same as in motion pictures, but only to onable the separato observation of cach successive picture. Obviously the successive pictures show tho path of each particlo practically without intercuption, since only $1 / 8$ of the distance is lost for each exposure. Hence the accelerations can bo dotornined, from which conclusions can be drawn regarding the field of force underlying the motion.

Sinco the device we omployod might bo applicable to other kinds of motion analysis, we will add a fow words concorning it. In addition to the normal 8-picture crank, there is also an axle for 4 pictures por revolution. Wo mountcd a Maltese cross on the latter axlo, as is customary in rinctoscopos.

In Fig. I, a is tho axlo of tho llaltoso drive, which is itsolf drivon in turn by on cloctric motor, by means of a cord, and is provided with a flywhoel. The 4-picture axle b carries tho Maltoso cross and a cogrincel, which engages with another cogwhecl on the axle c (diagrammatically represented, since the cogrthecl on the 8 -picture axle roally intervonos). In short, the action of the mechanism is such that (with a uniform rotational speed of the axlo a) the llaitese cross rests during $3 / 4$ of a rotation of the axle a, but then, during the remaining $I / 4$ rotation of the axle a, is itsclf carried through a quarter rovolution by means of the pin s, which at first imparts to it a gradually accelerated motion and then, at the end, a correspondingly retarded motion. Tho axle c thereby makes a full rovolution, only the middlc portion of which is utilized for advancing the film, so that for exposing and advancing the film, about $7 / 8$ and $1 / 8$ respectively, of a revolution of tho axle a is utilized.

Tho pictures we have thus far taken concern the phenomena of flow past rotating and non-rotating oylinders, in which, after our experiments on the Magnus effect, we felt an especial interest. (Of. "Naturwissenschaften" 1925, p. 93 ff.) For these pictures we had a water tank 35 cm wide, 30 cm deep and 3 m long (about $1.15 \times 0.98 \times 9.84 \mathrm{ft}$.). The obstaclo used was a vertical cylinder, $4.5 \mathrm{~cm}(1.77 \mathrm{in}$.) in diametor and 25 cm (9.84 in .) long, which was rotatable on ball bearings
and had on its lower end, near the bottom of the tank, a disk $9 \mathrm{~cm}(3.54 \mathrm{in}$.$) in diameter. The top end was just even with$ the surface of the water, as show in Fig. 2. The cylinder was mounted on a car, which ran on rails and was set in motion by falling weights. Since the streamlines of the relative motion of the liquid with reference to the cylinder axis were to be photographed, the camera and motor both had to be mounted on the car. The cylinder was rotated by means of a cord, one end of which was wound around a spool at the top of the cylinder, its other end being either fastened to the edge of the tank or passed around a pulley and returned to the car, thereby doubling the rotational speed of the cylinder. Other rotational speeds may be obtained by using spools of different diameters. Both the film strips (figs. 3-4) plainly show the differemce between the customary film picture (Fig. 3) and the film timepictures obtaincd with the modified camera (Fig. 4). Both sets of pictures were made of the flow phenomonon, namely, the formation of a pair of eddies behind the rotating cylinder. It is obvious that $F i g$. 3 shows nothing regarding the motion of the liquid, but only the momentary state of the powdered surface, winle Fig. 4 is a set of streamline pictures which give a good idea of the nature of the flow.

Figs. 5-12 are enlargements of tho film time pictures, Figs. 5-8 showing the flow about the non-rotating cylindor, while Figs. 9-12 are the corresponding pictures for the rotating
cylindor. In tho timo-film, tho incividual pictures do not follow immodiatcly aftor ono another, but aro so solectod (with the omission of sonc of the pictures), as to shom especially charactoristic flow phenomena. The direction of flow is from loft to right in all the pictures.

Fig. 5 shows how, at the boginning, (in the condition of accelcration), there is an almost pure potential flow, while Fig. 6 shows how two eddies begin to form from the boundarylaycr matcrial collecting at two points on the rear wall of the cylinder. Fig. 7 shows this pair of eddies in considerably augmented state, just before the instant when they dissolve (since this condition is unstable) and give place to an irregularly agitatod dead-water region. Fig. 8 shows the permancnt condition.

Figs. 9-12 show the corresponding phonomena for the rotating cylinder, and indood for the case when tho ratio of tho peripheral velocity of the cylinder (u) to the velocity of the undisturbed flow (v) is $4,\left(\frac{u}{v}=4\right)$, the direction of flow being from left to right and the rotation of the cylindor being in the clockwise direction. Fig. 9 differs but littlc from Fig. 5, the flow being likewise potential in the first stage of the motion. Figs. 10-12 show the constantly increasing effect of the rotation. Instead of the pair of eddies, thore is now only one eady and this is on the side of the cylinder where the water and the cylinder surface are moving in
oppositc dircctions. After this so-callcd. "starting-oddy" has advancod to a cortain stage (dopendent on tho rotation spood of the oulinder) and has left tho cylindor, wo havo a flom bicture in which the front and the rear damming point alnost coincido and in which the original dircotion of flow has unciorgono a considerablo deflection.

Fig. 12 shows how the streamlines are crowded closcr together on the upper side of the cylinder, corresponding to a greator velocity and a reducod pressuro (negative prossure), and how, on the other side, the streamlines soread farther apart, corresponding to a smaller velocity and a consequont greator pressure (positive pressure). These pressure differences produce the cross-current force which is known as the "Magnus effect" and which, in this case, is directed from below upward.

[^0]N.A.C.A. Technical Memorandum N. 364 Figs. $1,2,3 \& 4$

Fig. 2 Cylinder with driving cord and supporting arm.

Fig. 3

Fig. 4
N.A.C.A. Technical Memo. N. 364

Fig. 5.

Fig. 6.

Fig. 7 .

Figs.5-8 Non-rotating ©yl.

Figs.5,6,7,8,9,10,11 \& 12

Fig. 9.

Fig. 10.

Fig. II.

Figs.9-12 Rotating cyl.u/v=4 668 A. 5

[^0]: Translation by Dwight Miner, National Advisory Committee for Aeronautios.

