CASE FILE
 COPY

FECHTCAL MEDORINLUS

HATIONAL ADYISORY COMITTEE FCR AERONAUTICS
110. 383

SPITDLED AND HOLIO:F EPARS
By J. D. Blytin

From "Fligit," August 26,. 1926

":ashington
October, 1936

HATIONAL ADYISORY COMTTTEX FCR AERONAUTIUS.

> TECHTMCAL MFPORADDUA NO. 583. SDMDLED AND HOLLON SPARS.* By J̇. D. Blyth.

The most usual method of arriving at the maximum amount of spinding or hollowing out permissiole in the case of any particular sper section is by trial and error, a process which is apt to cecome laborious in the absence of good guessing - on luck. The following tables have been got out with the object of making it possible to arrive with certainty at a suitable section at the firstatterpt.

The following symbols are employed:

```
I = moment of inertia.
Z = Section modulus.
N = Sending monent.
T = Torque.
S = Shear Iorce.
f
ft " tensile " " "
\mp@subsup{I}{S}{}= " shear " " "
```

We will first consider a spar of rectangular section, laterally loaded only, which we wish to spindle to either I, \square, or \square section.

* Fron "Flignt," August 26, 1926.
if. A. 工.A. Techrical Memoranủum No. 383

$$
\begin{aligned}
& B=\text { Vidth of section. } \\
& D=\text { Depth " " } \\
& \mathbf{A}=\text { Thickness of flange. } \\
& t=4 \quad \text { " weo. }
\end{aligned}
$$

It should be noted that in the case of the hollow \square section, t is the combined thickness of the walls forming the web.

The most ravid method gives flange and web thicknesses slightly greater than are actually required, so the spar will be on the safe side. The procedure is as follows:

First find t, the thicknsss of the web. This is given by

$$
t=\frac{3}{2} \times \frac{3}{f_{S}} .
$$

Next finc the value of C, which is given by

$$
C=\frac{M}{f_{C} Z}
$$

where

$$
Z=\frac{B D}{B} .
$$

In Tainle I, values of λ are tabulated for values of C from 0 to 1.0 .

$$
\alpha=\lambda D .
$$

Table I. Vaiues of λ for all Values of c. Rectanguiar Sections.

C	0	1	2	3	4	5	6	7	8	9
. 0	0	. 002	. 004	. 005	. 007	. 009	. 010	. 012	. 014	. 015
. 1	. 017	. 019	. 021	. 033	. 025	. 027	. 028	. 030	. 032	. 034
. 2	. 036	. 038	. 040	. 04.2	. 044	. 046	-048	. 050	. 052	. 054
.3	. 056	. 058	. 060	. 063	. 055	. $06^{\prime \prime}$. 069	. 072	. 074	. 076
. 4	. 079	. 081	. 083	. 086	. 088	. 091	. 093	. 096	. 098	- 101
. 5	. 103	. 106	. 109	. 111	. 114	. 117	. 120	. 123	. 126	. 129
. 6	. 132	. 135	. 138	. 141	. 145	. 148	. 151	. 155	. 158	. 162
.7	. 155	. 169	. 173	. 177	. 181	. 135	. 190	. 194	. 298	. 203
. 8	. 208	. 213	. 218	. 223	. 229	. 235	. 242	. 247	. 254	. 261
. 9	. 268	. 276	. 285	. 294	. 305	. 316	. 329	. 345	. 365	. 393
2.0	. 500	-		-	-	-	-	-	-	-

The method will be nade clear by taking an example and workit out.

Suppose we have a spar whose section is 2 in. wide and A in. deep,

$$
\begin{aligned}
& \mathrm{H}=16,000 \mathrm{lb} \cdot-\mathrm{in} . \\
& \mathrm{S}=000 \mathrm{li} . \\
& \mathrm{f}_{\mathrm{C}}=5,500 \mathrm{lo} . \text { per square inch. } \\
& \mathrm{f}_{\mathrm{S}}=800 \mathrm{ll} .
\end{aligned}
$$

The spar is to be spindled to I section.
We get $t=\frac{3}{8} \times \frac{900}{800}=0.42$ in.

$$
\text { and } z=5.33
$$

whence $C=0.545$.
From fable I we see that when $C=.54, \lambda=.114$, anc
when $C=.55, \quad \lambda=.117$. Interpolating in these values we get a value in the present case,

$$
\begin{aligned}
\lambda & =.116 \\
\alpha=\lambda D & =.464 \mathrm{in} .
\end{aligned}
$$

1.A.c.A. Technical memorancium No. 383

Renembering that the values found are on the high side, we will make the flanges 0.45 in . deep, and the weo 0.4 in . thick. Oncoking the secticn so gotained, we find that we have for bending a factor of safety of 1.15 , and for shear a factor of safety of 1.14 .

The scction found in this way will be suitable in most cases. Occasions may arise, however, when it is desired to lighten the spar as much as possible, i.e., to spindie it to the limit. In this case the procedure is a little longer.

First find t as before.
Hext find the value of $\frac{f_{c} t D^{2}}{6}$, and subtract the value so found from the known value of M. Calling the remainder in', find the value of 0 , which in this case is given by

$$
0=\frac{L^{1}}{\hat{F}_{C^{2}}}
$$

Where $Z^{:}=\frac{(E-t) D^{2}}{6}$.
Jook un the value of λ in rible I; and as before, $d=\lambda D$. Taking as an cxample the spar already described.
As before, $t=0.4 \mathrm{in}$.
Then $H=W-5,500 \div \frac{0}{6} 4 \times 15$

$$
=10,1501 \mathrm{~b} \cdot-\mathrm{in} .
$$

$$
\pi^{1}=4.27
$$

$$
c=.433
$$

whence $\quad x=.087$, ard $d=0.35$ in.

This section has for bending a factor of safety of 1.01 .
We will next consider a spar of rectangular section, laterally loadec as before, together with an end load P. In this case the procedure is divided into two steps, as follows:

First find the section neglecting end load, in the mamex already described, and let A square inches be the area of the section so found. This enables us to find the value of P / A.

Repeat the process, using the value $f_{c}-\frac{P}{A}$ instead of f_{c}, or, where applicable, $f_{t}+\frac{?}{A}$ instead of f_{t}. It should be noted that for compressive end loads the numerical value of P is taken as positive, while if the end load is tensile the numerical valuc of P is negative.

Taking as an example the spar already worked out, and supposing that it is subjectod to a compressive end load of 1000 lb . Neglecting the end load, we havo as before

$$
\begin{aligned}
& t=0.4 \mathrm{in} . \\
& \bar{\alpha}=0.45 \mathrm{in} .
\end{aligned}
$$

Fe get $A=3.04$ sq.in., and $\frac{P}{A}=323$.
Hew value of $f_{C}=5,500-329=5,171$.
Since the shear stress is unaffected by the end load, t remains as before.

$$
c=\frac{16,000}{5,171 \times 5.35}=0.58
$$

Whence $\lambda=0.2 .25$

$$
\text { and } d=0.5 \mathrm{in} .
$$

This scction has a factor of safety of 1.13 .
If tho Perry correction is to be applied the method is similar. In this case the section is found as before, and the value of $f_{c}-\frac{P}{A}$ derived, and also the valuc of P_{e}, the Euler load for the spar treated as a strut for the length of the portion between points of contraflexure. Now multiply M by $\frac{P_{e}}{P_{e}-P}$ and with the new values of i and f_{c} proceed as before.

We now turn to snars of circular section. These are most commonly subjeoted to a lateral load, combined with a torsional load; and this case me wili consicer, firsf taking the case of wooden spars, where the thickness t of the wall is not small compared with the dianeter D (this being the external diameter).

The procedure is as follows:
First find $T e$, the equivelent torque. This is given ioy

$$
T_{e}=\sqrt{\mathrm{T}^{2}+\mathrm{T}^{2}}
$$

Next. find the value of 0 , which is given by

$$
C=\frac{16 \mathrm{Te}_{e}}{\pi D^{3} \stackrel{i}{s}}
$$

Furn to Table IE, and find the value of λ corresponding to the value of C.

Then

$$
t=\lambda D
$$

Table II. Values or λ for all values of C. Circular Sections.

0	0	1	2	3	4	5	6	7	8	9
.0	0	.001	.003	.004	.005	.006	.008	.009	.010	.012
.1	.013	.014	.016	.017	.019	.020	.021	.023	.024	.026
.2	.027	.029	.030	.032	.033	.035	.036	.038	.040	.041
.3	.043	.045	.046	.048	.050	.051	.053	.055	.057	.058
.4	.060	.062	.054	.066	.068	.070	.072	.074	.076	.078
.5	.080	.082	.034	.086	.088	.090	.093	.095	.098	.100
.6	.102	.105	.108	.110	.113	.116	.118	.121	.124	.127
.7	.130	.133	.157	.140	.143	.167	.150	.154	.158	.162
.8	.166	.170	.175	.179	.184	.189	.194	.200	.205	.212
.9	.219	.226	.234	.243	.250	.264	.277	.292	.312	.342
1.0	.500	-	-	-	-	-	-	-	-	-

In ermploying this method it must be remembered that the wall thickness found is not greater than is actually required; and further, is only that required to resist the shear stress due to torsion, no account having been taken of the shear stress due to direct shoer. In the case of such spars the shear stress due to direct shear is not usually high, anc with a little practice it will be found casy to estimate the amount (winch is very smali) by which the computed value of t must be increased for safety.

In the case of circular metal spars, where the thicrness of the wall is small compared with the outside diameter, the required thickness t is given at once by

$$
t=\frac{2}{\pi D^{2}} \times \frac{T e}{f_{S}} .
$$

No examples have been given in the case of spars of circular section, as it is thought that the examples vorked out in the cascs of spars of rectangular section show the method sufficiontly clearly.

