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.AIR’COOLIXG

AN EXPIZ.RII!ENTALiWTliOD OF EVALUATING THE COOLING EFFECT OF

AIR STFL3JWSON AIR–COCLEI! CYLINDERS. *

Ey J. F. A~cock.

It is no easy matter to estimate the cooling Dower of the

air stream over an air–cooled cylinder. Theoretical. treatment

i s ~:e-nerally inlpracticable owinx tO the complex nature of the

problem, while direct experiment has proved very difficult exc-

ept in the simplest cases. As a result the data available are

very liimited,a fact which has, in a,llprobability, seriously

retarded the de~-eloprnentof the air-cooled engine.

In the following pages is described an experimental method

w’nich.the writer has evolved for dealing witinthis pro’blem,and

soo~eof the data obtained by ~-tsmeans. This method has the

advantage of simplicity, both as regards apparatus and procedure,

and affords data which are accurate enough to be of considerabl..e

practical value.

The conditions governing the transfer of hea,t from a heated

surface to an air stream may be

H=KA

where H is the heat transfer,

expressed by the fonzula:

T,

A T the air-metal temperature

*From “The Automobile Engineer, ‘tApril, 1927.
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difference, and K a coef~icien.t expressing the 1’cooling powerll

of the air streainover the surface.
,..
This coefficient is, of course, a function of the velocity

and Of the naizre of the air flOW’,afidmay also be a functior~ of

the heat flow or tem,peratilre. In fact,

r,erely a definition of the coefficient

~~~ithel~todata on -tP:issubject YRVe

methods. In oi~ecase, a,d.ummy cylinder

the above formula is

-~●

been obtained by two

or other object is placed

in an air stream, and is maintair.ed at a known

some form of “heating, generally electrical, in

loss can be measured. H and T being known,

has the cooling coefficient K.

This method is clea.rl:rs’~itablein a case,

temperati~reby

which the heat

one obviously

such as t’hatof

a radiator, where t’netotal cooling effect is the important

point, and wkere the lieatloss from the test object can easily

be measured. Applied tO an ~ir-cooled cylinder, it has the draw–

back that it only :ives the avem ge coolii~gof the cylinder, and

ignores the equally important questioriof the dist ribution of

this cooling in different parts thereof. Yoreover, experimental

clifficulties limit this method to simpler forms than

ly used in ?ractice.

The second source of info~ation is temperamre

in aclmal air-cooled engir.es. Valuable though these

have the following Iiclitations:

are normal–

measurement

are, they

1) They only Rive one varia’ole out of three, and-thus do not



l~.A,.C.A. Technical Memorandum Xo. 412 ~

tell the whole story. For example, a change in temperature may

be due to a chai~ge in the heat dissipated., or in the cooling

coefficient, or in both, and it cannot always be decided which

is responsible:

2) An actual &orkinq cylinder must be used, .a.iidnot a dumy.

T’b.epzesent method is intended not to supplant, but to sup-

plement those above described. It is applicable to the most

complex conditions, and can easily ‘o&used with dummy cylinders,

etc., by “mea~.s of lnrhichthe possibilities “of new “designs can be

exglored at a low expenditure of time and money.. It is by no

m ea-nsa ‘1laboratory’!method, since the apparatus is rugged

enough for ‘=orkshop condiiions, and no great skill is required.

BTiefly, the method is to explore the air stream around the

object by means of a snail metal “test piece, ” which is heated

and allowed to cool in the a~-rst~eam at t-hepoint where a read- “

ing is required. Knowi.np the surface area, and the heat capac-

ity of the test piece, the “cooling coefficient” K can be cal-

culat ed frem.the observed rate of cooling, and this coefficient

i’

is taken as applicable, relatively, if not absolutely, to the‘+;~!~,.

1;E) cylinder, etc., surface adjacent to the test piece. This, of
,’y,i
f,

~:oj

“course, involves -some assumptions which might be difficult to de-
lA
!i&
1ii Ri-fldtheo’retica.1~ y, especially where, as is usually the case, the

;jj

.~
test piece has a form different from that of ‘th& actual ,surface;,

to be cooled.
:,’.

These assumpt ions will be discussed later; but experiment

t,-.
:,b-

———
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a~pears to show that tileydo not, under ordinary conditions, .

lead to any serious error.

The principle involved in this method is not altogether

new, being that of the ltKatathermometerllused in medicaI. re–

search, but it has not, to the writeris knowledge, hitherto been

applied to engineering problems.

Apparatus

The IIcoolingmeter’i generally employed is illustrated in

Fig. 1. It consists of a bronze ball 3/8 inch diameter, into

which are silver-soldered copper and constantan wires of 22

S*W.G. These wires lead up the stem of the meter, which is

made as narrow as possible to avoid disturbance of the air flow,

and thence by means of flexible lea,dsto a.~galvanometerof any

suitable type. The cold junction is arranged in the flexible

lead about a foot from the handle, so as to attain the tempera-

ture of the air stream and to be unaffected by the warmth of

the operatorls hand. For a test the ball is heated by a spirit

lamp or other convenient source of heat, and is then placed in

the required position in the air stream. The time of cooling

over some standard range of temperature is.then measured, the

z->. range. usually taken being ,200 to 100 ‘C. above atmosphere, which

is fairly representative of aircraft en,gin.e practice. From this

time the rate of heat transfer and the cooling coefficient can

easily be deduced. Preferably the initial heating is carried up

. .. . . .-, . . - .. . .
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to say, 300 Oc . to allow the hcat flow to be,come steady before

the actual reading commences. ~.

A similar instrument has also been tried in which the ball

is replaced by a flat copper glate, it being thought that, with

such a surface, the conditions would more nearly resemble those

of the ordinary radiating fin. This instrument, however, has up
.

to the present been found to be less convenient in operation

than the ball type, as small va,riaticms in the attitude of the

plate to the air stream seriously affect the results.

The position of the stem does not seriously affect the re–

Suits, so long as it is not “up-wind.” With the stem down-wind,

the cooling is some 3 to 4 per cent less than with the stem at

right angles to the stream, this latter being normally the most

convenient position.

Calibration of the Instrument

To calibrate the instrument tests were carried out in (an

unobstructed air stream at speeds ranging from 5 to 110 MsPGH. ,

also in !’stillair,” i.e., s’hieldedfrom draughts, but with free

convection. It WaS, however, discovered that the cooling coeffi-

cient was not a function of the wiildspeed solely, but also of

some other factor, apparently the degree of turbulence. Thus for
,0ma-,.... ... ...,

two places 5 inches apart in the same fan stream, the cooling

coefficients for the same wind speed, as measured by a pitot–tube,

were found to differ by some 10 per cent.
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Fig. 2 shows the results of two calibration tests, one made

in the outlet duct of a.centrifugal fan, and the other in one

of the N.P.L. wind tunnels, the wind speeds being measured by

pitot-tube. Somewhat unexpectedly the cooling rate in the wind

tunnel. is higher, for a.given wind speed, than in the fan stream,

though the turbulence is p??esuma’olygreater in the latter case.

The only theory that the writer can put forward to account for

this is that, in the “turbulent’[ stream, the velocity at any

given point may fluctuate considerably. ” The pitot–tube, in which

the ‘pressurevaries as the square of the velocity, registers the

“mean square” value, which is higher than the true mean velocity,

while the cooling varies roughly as the 0.6th power of the speed,

and thus gives 10”wfigures in a varying stream.

In both of these tests the temperature range used was 200

to 100°C. above atmospheric. The surface of the ball was main-

tained in a dull but smooth conditioil. If completely sooted, the

10ss goes Up by about 0.5 unit in “still air.” Calculation gives

the radiation from a “black body “ under these conditions as 2.0

units, so that the emissivity of the surface in its normal condi-

tion is about 0.75 of the black body figure, which agrees fairly

well with other data for dull imetalsurface. Curiously enough,

a nickel–plated ‘oa,ll,when slightly “browned” by use, appears to
.,..... ,.. 0,-.

have an emissivity of about 0.6, which is rather high.

These curves can, however, ‘oefairly accurately expressed

by simple formulas, which are:

,,, ,,,..- -——
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l~(ind~~nn~l ...

. . Fan Stream ...

where H, Ho are the cooling

1:0.412

K- K. = 2.95v~”61

K– Ko.= 2..527°”‘3-

coefficie-nts at V M.P.H. , and in

7

“still air” respectively. The cooling coefficients are given in:

C.H.U.

sq.ft. X lm. x ‘C. A T

or

B.t.u.

being the mean

sq.ft. x hr. X oF. A T

metal-air temperature difference during the

test. These units are for brevity hereafter referred to as

“cooling units. ” It shouId be remembered. that this coefficient

must be multiplied bjr the temperature difference to ,qivethe ac-

tual heat flow.

A test was ina.de,a.t(afixed wind speed with various ranges

of temperature, the results being shown in Fig. 3. It will be

seen that the cooling coefficient attains a minimum at about

250qC., “a,ndincreases at higher and lower temperatures. The

whole variation, however, is not of any great significance, the

difference. ’oetween the greatest and least values being only some

8 per cent.

m.. ,.Ap.placabilityof Cooling Values Obtained by Cooling Meter.

to Actual %,diating Fins

As previously stated, this method aims primarily at giving

relative values for the cooling under different conditions,

— .-
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rather than directly applicable absolute values. It is, never-

theless, of interest to compare the cooling values so obtained

with such data as can be directly obtain,edunder actual working

conditions. Fortunately, this can be done, somewhat roughly it

is true, in the case of one of the cylinder heads tested, where

the heat gassed through a considerable depth of metal of known

conductivity, so that the heat flow could be calculated from

measurement of the temperature gradient. The mean fin tempera–

ture could also-be calculated fairly closely, from the thermo-

couple readings take-nat various ooints, so that an approximate

value of the heat transfer coefficient ca-nbe obtained. Thus in

two tests the figures in Table I were obtained.

Table I.

Heat ivIeanfin Cooling
flow temperature Fin coefficient
C.H.U. above area C.H.U. per
per atmospheric sq.in. hr. x ft. x

hour (AT) oC. AT

Wind speed 105 M.P.H.

With the cooling meter, figures were obtained at three

places on the mid–level of the fins (See Fig. 9), IIyll in the

front, 1!zII at the rear in the “shadow” of the sparking plug,
*>D..-’-.”.

and -If ~~”11 in the rear, but clea”iof the plug shadow.” The values

obtained at these points, with a wind of 108 M.P.H. , are:

Point Y 47.9
z 36.6
W 45.6.

1.
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The conditions at iizIi a.~egrobe.blv very localized, so

that the aver:~qe cooling coefficient ,!,ol~~dappear to be about

45 to 46 units, ~nrhicha~rees fairly well ~trith.1

very approximate values of 46 and 4~ obiained

Another case in which direct experiments

the necessarily

above.

have been made is

that of honeycomb radiators. The cooling coefficient obtained

in this case comes to 4-7.2C.H.U. per ft. x hr. X OC.DT for a

radiator tube of L/D = 6, to which the

gine may be taken as roughly equivalent,

It appears, then, that the absolute

head fins of this en-

in a 108 M.P.H. wind.

cooling values obtained

from the IIcoolingmeter“ are fairly representative of those ob-

tained in practice under similar-conditions.

Another factor to be considered in applying cooling meter

data to actual practice is the effect of the variations in air

temperature which occur in practice. The air at the rear of a

working cylinder, foz example, is hotter than in the front, hav–

ing been,heated in its passa,gepast the cylinder. In cooling

meter tests, however, which are most conveniently done with a

cold cylinder or with dummies, this effect is not present, and

the cooling values given will, therefore, in some cases, be too.

high. To discover the influence of this factor under the condi- c

tions obtaining in practice, the air temperature in the front and
,,. ..

rear of an aircraft engine cylinder was taken, by means of a mer–

cury thermometer, when the engine was running under load, on the

test bed, the mean cylinder temperature being about 200°C. and
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the air speed.105 M.P.H. The values

> Front of cylinder

Rear of cylinder

recorded were:

... ~~oc ●

... 47°c.

It is clear, then, that with high wind speeds, the correc-

tion needed for this tempeznture effect is small, but with lower

speeds it may become serio>~-s.

P].ate Instment

Mention has been made previously of a modified form of in–

strument in which the test piece was in the form of a flat plate.

This has not been used to the same extent as the ball type,

since its sei~sitiveness to its attitude to the air stream ren–

ders it rather troublesome. It is, however, useful for close-

quarter work among fins, etc. It gives readings of the cooling

coefficient which are -normallyabout 10 ner cent less than those

given by the ball type,

ta.inedunder different

in Fig. 4, which shows

conclitions, on the air

this relationship being fairly well main-

conditions of flow. This is well shown

comparative tests ma,deunder identical

flow around a ‘dummy cylinder, using both

the plate and ball instruments.

.s== . . .

In the

carried out

Experiments Made with the Instrument

,.
following notes details are given of some experiments

with.this instrument. It is not claimed that they

are compreliensive,but they exemplify the possibilities of the

method.
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With one exception all were made under test–bed conditions,

that is, with the cylinder “blown at” by a fan. These, of’course,

are not of such interest as would-be data gained under actual

working conditions, but although these should not, in most cases,

be impossible, there has hitherto not been any opportunity to

carry out such tests.

Figs. 5 to 7 show tests on dummy cylinders of various sizes.

These cylinders were made of tin plate, without fins, and carried.

at their upper end a lfjig”by which the coolinq meter can accu–

ra.tel,ybe loc=ted both circumferentialiy and radially. The ball

of the cooling meter was some 5 inches below the top of the cyl–

inder, so as to be clear of any disturbance of the air flow due

to the “jig.” All the tests were made at a constant wind speed

of 35 M.P.H.> measured on the center line of the cylinder, while

the standard temperature range of 200 to 100°C. above room temp–

era.turewas used throughout. Readings were taken at every 15

degrees around the cylinder, with intermediate points in places

where rapid changes were found, while check readings were taken

every”30 degrees.
,

In Fig. 5 are shown three tests on cylinders having diame-

ters of 2 in., 4.4 in., and 7 in., With a “radial clearance” –

i.e., distance between ball center and cylinder surface – equal

in each case %o-O.2of the cylinderdiameter. Thus the propor-

tions of the a,ppara,tusare the same throughout and only the

scale varies. The three curves, it will be seen, are substanti-

—. .,.,.--,... ... I . . . . .. ..!.
..-.—
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ally similar iilform, though with appreciable local variations,.

due probably to eddies. It would appear, therefore, that with–

in this range of size, there is no serious “scale effect,”

though the variation between” the maximum and minimum values is

somewhat less with the 2–inch cylinder.than with the others.

Fig. 6 shows a similar series of tests, but with the same radial

clearance of 0.4 in. throughout . In this case the curves are

practically identical except at the rear, where the cooling is

much higher with the 2-inch cyli-nder.

Fig. 7 shows three tests on the 7–inch cylinder with increas-

ing raoial clearances. These differ very little, except at the

rear, where the sudden drop in the cooling occurs farther

Tear as the clea~ance increases. The very sudden drop at

degrees with the largest clearance is rather remarkable.

part of the curve was checkeclat every 2 degrees, so that

rapid drop undoubtedly exists.

All these curves have a characteristic double-humped

to the

160

This

this

form,

with maxima at 60 to 70 degrees, and at 130 to 135 degrees, the

forward peak being, as a rule, slightly the higher. The drop

from the rear peak to the “dead-water” region behind the cylin-

der is generally sharp, an~L in some cases extremely so. Gener–
.-..

al”ly,however,

tle less than

erage cooling,

the cooling at the rear (180-degrees) is but lit-

in the front, which is rather surprising. The av-

over the whole circumference, closely approaches
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the value recorded at the the cylinder remova3.

results to an appre–

cylinder axis with

cases r,odify the~eCooling fins in most

ciable extent. A typical series of tests was made on an aircraft

engine cylinder 5.5 in. here X 7 in. stroke. The cooling wind

fan through a

the duct is la

to the cylinder

for this cylinder is supplied by a.motor-driven

louvered duct to steady the flow. The

in. high and 12 in. wide, its location

being shown in Figs. 8 and 9.

Table II.

!3all instrument. Fan R.P.IL.= 9s0.
above room. l~e~n cooling = 32.0
hr. X oC.AT. Bracketed figures

mouth of

relative

Temp. range 200-100°C~
c.H.u./sq.ft. x“
~ of mean.

c

36.1
(17.3.0)

3!5.0
(109.5)

32.2
(100.5)

DA B

36.0
(112.5)

35.5
(111.0)

35.1
(110.0)

33.1
(103.5)

31.8
( 99.0)

33.9
(106.0)

30.8
( 96.5)

28.6
( 89.5)

36.3 -
(113.5)

36.8
(115.0)

1

2

3

4

5

6

36.3
“(113.5)

32.2
(100.5)

36.8
(115.0)

34.’7
(108.5)

35.5
(111.0)

33.9
(106.O)

29.0
90.5)

26.2
82.0)

32.8
(102.5)

3~.o
96.5)

25.1 “
78.5)

23.1
72.0)

30.8
96. 5)

34.1
(106.5)(

.(

(

(

(

(—

27.1
84.5)

21.4
67.0)

29.4

35.1
(110.0)(

(

(-

33.7
(105.0)

2?.2
85.0)

34.5
(108.0)

7
,.. (— 92.f3~_

The distribution of air flow over the mouth of the duct was

investigated by means of t’ne cooling meter, the results being “‘

—-,. .-—. .. . ,——..—,—
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.
shown in Takle II. From this it appears that the velocity in-

creases fairly steadily from the bottom to the top of the duct.

As the same tendency occurs in the case of a radial engine in

the air, this characteristic is not harmful.

The cooling around the cylinder barrel was then investi~ted

A plain cylindrical portion of the barrel, 2 in. below the top

of the cylinder, and unobstructed by pipe–work, etc., was chosen,

and readings taken from O degree (up-wind) to 180 degrees (down-

wind) by stages of 11 1/4 degrees. The radial position of the

ball was 1/4 in. off the fin tip, or 1 1/4 in. off the body of

the cylinder.

Tests TFJere made with four wind speeds, 41, 63, 83, and 108

M.P.H., these speeds being measured over the cylinder head, and

the results obtained are shown in Figs. 10 and 11. The charac–

teristic curves are substantially the same for all the speeds,

there being a region of moderate cooling in the front of the

cylinder, a maximum va,lueat a’oout70 de,grees, and then a fa.ll–

ing”off to a region of low cooling from 140 to 180 degrees. The

sudden drop at about 120 degrees is very marked in all cases,

and presumably this point is the beginning of the “dead water”

or eddy region. ,

The effect of the fins, ‘due presumably to their frictional

drag, is to suppress the rear hump found with the bare cylinders,

while accentuating,

“dead water” region

both in extent and in lack of cooling, the

at the rear.

.. .. .
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Tests were made ?t a few places at other levels on the cyl–

inder .ba.rrel,and showed substantially the same characteristics.

A curious point observed was that the exhaust pipes, which spring

off the cylinder at an angle of 45 degrees, are not the cause of

any “dead-water” regiOn in their rear, the cooling immediately

behind the pipe being practically the same as in the clear flow.

Possibly this is due to their oblique attitude to the air stream,

which gives them an effective section of elliptical form, which

“stre~filline.1’is more or less

Cylinder Head

.4dummy head was fitted to this engine for the purpose of

these tests, having a more or less flat top carrying a,number of

cooling fins. The arrange:flentof these is shown in Fig. 9.

Cooling tests were made at the points Y, Z, and w, at the

mid-level of the fins, and at the point X, 1* in. above the

fin tips, to give a “free wind” value for comparison. The fig-

ures obtained for these positions are given in Table III.

Posi–
tion

Table III.

Cooling for wind speed,
—

!

41 , 63

31.0 I 43.6
I

30.1 ~ 39:7 ““

1-9.0 ~ 25.5

24.3 ~ 33.0

M.P.H.

83

46.4

42.5

28.0

35.5

108

53.0

47.9

36.6

45.6
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It appea,rs that where the flow is unobstructed, except by

‘“ the-fins, ‘as in the ‘W ~osi.tion, the.cooling.at the back is

not much worse tha,nat the front (Y). The position Z, how–

ever, is in the “shadow!’of the sparking plugs, and this reduces

the cooling considerably at this point:

In the tests recorded above, the Cylinder was exposed to an

otherwise unobstructed air stream. This more or less represents

aircraft engine practice, hut in motorcycle work, the chief field

for air-cooling at present, the problem is complicated by the

presence of mud–guards and similar obstructions. To place a com-

plete motorcycle in a fan stream is no small order, and tests on

the road with the aid of a.side-car are hardly practicable with

existing apparatus, since the galvanometers used in thermoelec-

tric work are too delicate for use on a road vehicle. The writer

has, however, made two tests in which an ap~roximation to motor–

cycle conditions was attempted.

In the first a dummy cylinder was “blown at” by a fan in

the usual ma,nner, but a “mud-guard” was interposed, as shown in

Fig. 12, the dimensions being approximately those of a typical

350 cms single-cylinder engine. In Fig. 13 are given the re-

sults obtained under these conditions, those with the “mud-

guard” ~emo”vedbeing given for comparison. These results are~. .,
distinctly surprising, particularly in the front of the cylin–

der, where the cooling is actually increased by the mud–guard.

At the sides of the cylinder the cooling is decreased, while at
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the rear it is unaltered. The lower (dotted) curve shows a test

->. made with the actual motorcyc-le, on which the above “model” was

based, the machine being placed head on to the wind in a.nopen

field. This test is, of course, extremely rough, especially as

the wind was rather gusty, but the general characteristic ap-

pears more or less the same as in the “bench” test. This method

has distinct possibilities, since it avoids the heavy cost of

“blowing at“ a complete machine, but hitherto the writer has not

had an opportunity of ceriously trying it out.

Future Developments

Both air and land transport offer a,wide scope for invest-

igations of this type. In tt~eradial aircraft engine the cool-

ing oroblem is relatively simple, and has been thoroughly stud-

ied, but of otb.er types, such as the Vee, much less is known,

and there are many possibilities to be explored. The motorcycle

field is practically virgin ground, and ~resent practice appears

to be purely empirical, as is shown by the extraordinary diver-

sity of cooling fin arrangements. The cooling of twin and multi-

cylinde~” engines, in particular, well deserves study, likewise

the effect of leg–shields and of cowling of various forms.

It is likely,
-. .. .

of engine will be

and therefore the

moreover, that in the future unorthodox t’ypes

introduted, in which the cylinder position,

cooling problem , differs greatly from normal

E
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practice. The development of such types would, it seems prob–

.> able, be considerably simplified by experimerlton these lines.

In conclusion, the writer would iike to express his thanks

to ?!essrs. Ricardo

experiments, which

laboratory.

& Company for pamission to publish these

were carried out ‘at their ShOTekEdITI research
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Fig.1 Ball type cooling iiletsr.
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Fig.2 Calibration curve
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Fig.3 Effect of temperature on heat transfer
coefficient . wind speed (calculated)27 1<.F.FI,
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A Degrees around CY1.
Ball

———. Flate
Cooling around 7 in.unfinned cylinder.
0.4 iii.clearance.~inii35 1{.P.H.at cylinder center.

Fig.’l Co”rnparativetests with ball and plate type meters.
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--&* Cooling test “onunfinned cyli.n~ers.Radial

clearance =’-0.2x Cylinder diameter.
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?lind speed on cyl.axis with cylinder removed=35 M.P.H.
Cooling meter No.3 Ball,2 in.cylinder.
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Fig.6. Cooling tests on unfinned cylinders. Constant
radial clearance = 0.4 in.
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Fan speed 1100 R.P.M.
I?ind speed on cyl.axis with cyl.rsmoved=35 11.P.H.
Cooling meter No.3 Ball,O.4 in.radial clearance.
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Fig.~ Cooling tests on unfinned cylinder 7 in.dia.
P.adial cler.rance= 0.4,0.,9,1.’1in. ~,. ,.
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Diagram shot7ing relative
cyliild.crand fan cluet .

Fj.g.9

Figs.8 & 9

positions of

Fla,nview of cylinder head and
fan duct .
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FiEs.12 & 13

Ilcla.tive position of cylinder and mudguard
as in Beardmors 3 & S cycle.

Fig.12 Cooling tests oildummy cylinder lrith
and mithout “mlld~llard”.,*
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A Test oilcomplete cycle iil

& 2 5 Cooli:.g in still ?.ir(frso
wind.V=5.8 M.P.H.appTx*.
convecton no draughts)
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~~ Degrees around cyl.

Test oildummy cylinder with wiildo’ostructcd-by mudguard.
*.7.>,. rnrindspeeda,t cylinder center-line with cyl.removed

(no mudguard )=35 M.P.H.
Dummy cyl. 4.4in.dia. Radial clcarancc from surface of cyl.
to c~ntcr of ball = 0.4in.(no fins).

Fig.13 Cooling resterball.


