TECFNICAL ZRISORANDUKS

ITATONAL ADVISORY COMEITTEE FOR AERONAUTICS

No 336

PRESSURE DISTRIBUTION ON JOUKOWSKI WINGS
By Otto Blumenthal
and
GRAPHIC CONSTRUCTION OF JOUKOWSKI WINGS
By E. Trefftz

From "Zeitschrift für Flugtechnik und Motorluftschiffahrt," May 31, 1913

> Washington
> October, 1925

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECENICAL MEBORANDUM NO. 336.
\qquad
PRESSURE DISTRIBUTION ON JCUKOWSKI WINGS.*
By Otto Blumenthal.

In the winter semester of 1911-12, I described, in a lecture on the hydrodyramic bases of the problem of flight, the potential flow about a Joukowski wing.** In connection with this lecture, Karl Toeprer and Erich Trefftz computed the pressure distribution on several typical wings and plotted their results. I now publish these diagrams accompanied by a qualitative discussion of the pressure distribution, which sufficiently indicates the various possible phenomena. For a quicker survey, I hevo civided the article into two parts, tho first pert dealing with the more mathemotical and hydrodynamic aspects and the sccond part, which is comprohensible in itself, taking up the real discussion from the practical standpoint.

* From "Zeitschrift fur Flugtechnik und Motorluftschiffahrt," Mey 31, 1913.
** Soe above magazine, Vol. I (1910), p. 281.

We obtain the entire number of all Joukowski wings of the longth $2 l$ with the trailing acige at the point $x=-l$, by laying, in a $\zeta=\xi+i \eta$ plane through the point $\xi=l / 2$, the clustor of ell the circles which contain the point $\zeta=l / 2$, eithor inside or on their circumference, and plotting these circles by means of the formula

$$
\begin{equation*}
z=\zeta+\frac{l^{2}}{4 \underline{q}} \tag{I}
\end{equation*}
$$

on the $z=x+i y$ plane. The circles, which contain the point $\zeta=l / 2$ on their circumference, thus become doubly intersected arcs and, in particular, the circle, winich has the distance $(-l / 2,+l / 2)$ for its diameter, becomes the rectilinear distance of the length $2 l$. The circles which contain the point $\zeta=l / 2$ inside, furnish the real Joukowski figures. The point $\zeta=-i / 2$ passes every time into the sharp trailing edge. The individual Joukowski wings are characterized by the following quantities (Fig. 1). The center \mathbb{M} of the circle K is connected with the point $H, \xi=-l / 2$, and the point of interscotion of this connecting line with the η axis is cosignatod by \mathbf{H}^{\prime}. The distance on' on the η axis is equal to half the hoight of the arc produced by describing the circle about M^{\prime} as its contor and is therefore designatod by $f / 2$, as half the camber of the Joukowski wing, f being its first charactcristic dimension. We have choson as tre
second charactoristic dimension, tho radii aifference $M A^{\prime}=\delta$. This gives a measurment for the thickness of the Joukowski wing.

We will now consider the determination of the velocity and pressure distribution which produce an air flow along the wing, in infinity, with the velocity V at an angle of $\pi-\beta$ with the positive x axis, β being the angle of attack of the wing.

The absolute velocity q of this flow is calculated thus: If $k(\xi, \eta)$ is the absolute velocity of the air flow, of velocity V and anglc of attack β, around the circle K in the ξ plane, then

$$
q(x, y)=\frac{k\left(\xi, y_{1}\right)}{\left|\frac{d z}{d \dot{b}}\right|} .
$$

It is, however,

$$
\left|\frac{d z}{d \xi}\right|=\frac{1}{\sigma^{2}} \sqrt{\left(\sigma^{2}-\frac{l^{2}}{4}\right)^{2}+l^{2} \eta^{2}}, \quad \sigma^{2}=\xi^{2}+\eta^{2},
$$

and along the circle K

$$
k(\xi, \eta)=\frac{1}{\frac{\sqrt{l^{2}+\hat{I}^{2}}}{2}+\delta}|2 v(\xi \sin \beta+\eta \cos \beta)+c|,
$$

wherc $2 \pi c$ is the circulation. This constant is dotormined. according to Kutte, by the condition that the velocity at the trailing edge is finite and therefore, since $d z / d \xi$ there disappears, k must also disappear at the point H. Thus we obtain

$$
\left.\begin{array}{c}
k\left(\xi, r_{1}\right)=\frac{1}{\frac{\sqrt{l^{2}+f^{2}}}{2}+\delta} 2\left|\left(\xi+\frac{l}{2}\right) \sin \beta+\eta \cos \beta\right|, \\
\frac{q}{V}=\frac{\sigma^{2}}{\frac{\sqrt{l^{2}+f^{2}}}{2}+\delta} \frac{2\left|\left(\xi+\frac{l}{2}\right) \sin \beta+\eta \cos \beta\right|}{\sqrt{\left(\sigma^{2}-\frac{l^{2}}{4}\right)^{2}+i^{2} \eta_{1}^{2}}} \tag{2}\\
\sigma^{2}=\xi^{2}+\eta^{2} .
\end{array}\right\}
$$

This rathor involvod cxpression is simplified by the introduction of a new variable, the angle ω at the conter of the circle K, mossured from the radius $H H$. In this angle, the coorcinates ξ, η and the quantitics connected with them are expressed as follows: for abbreviation, we desigmate the radius of the circle k with $r=\frac{\sqrt{l^{2}+f^{2}}}{2}+\delta$ and introduce the angle A by

$$
\cos A=\frac{l}{\sqrt{l^{2}+f^{2}}}, \quad \sin A=\frac{f}{\sqrt{i^{2}+f^{2}}} .
$$

The geometric significance of A and ω is obvious from Fig. 1 . By simple calculations we now obtain

$$
\left.\begin{array}{rl}
\xi=-\frac{l}{2}+2 r \sin \frac{\omega}{2} \sin \left(\frac{\omega}{2}+A\right), \\
r_{1} & =-2 r \sin \frac{\omega}{2} \cos \left(\frac{\omega}{2}+A\right), \\
\sigma^{2}= & \frac{l^{2}}{4}-2 r r \sin \frac{\omega}{2} \sin \left(\frac{\omega}{2}+A\right)+4 r^{2} \sin ^{2} \frac{\omega}{2} \\
= & \frac{l^{2}}{4}+4 r \sin \frac{\omega}{2}\left[\delta \sin \frac{\omega}{2}-\frac{f}{2} \cos \left(\frac{\omega}{2}+A\right)\right]
\end{array}\right\}(4)
$$

Formula 2 for q is simplified by the introduction of the angle ω, to

$$
\left.\begin{array}{rl}
\left|\frac{g}{V}\right| & =\frac{\sigma^{2}}{r \frac{l}{2}} . \\
\sqrt{\cos ^{2}\left(\frac{\omega}{2}+A\right)+\frac{4}{l^{2}}\left[\delta \sin \frac{\omega}{2}-\frac{f}{2} \cos \left(\frac{\omega}{2}+A\right)\right]^{2}} \tag{5}\\
& =\frac{\sigma^{2}}{r \frac{l}{2}} \overline{2}
\end{array}\right\}
$$

From this we next derive a few general results which hold good for all the quantities f, δ, β.
a) On the trailing edge $\frac{q}{V}=\frac{l}{2 r} \cos (A+\beta)$.
b) On top of the wing, there is always a portion along which the velocity $q>V$, hence where there is a negative pressure. As proof of this, we will consider the center of the upper side, the point $\omega=\frac{3 \pi}{2}-A$. At this point $\sigma>r$, as can easily be soon geometrically (Fig. 1) or from formula 4. However, if we put $\omega=\frac{3 \pi}{2}-A$ in formula 5 , it then becomes

$$
\begin{gathered}
\left|\frac{q}{V}\right|=\frac{\sigma^{2}}{r \frac{l}{2}} \frac{\cos \left(\frac{\pi}{4}-\frac{A}{2}-\beta\right)}{\cos \left(\frac{\pi}{4}-\frac{A}{2}\right)} \frac{1}{\sqrt{1+\frac{4}{b^{2}}\left(\delta+\frac{f}{2}\right)^{2}}} \\
>\frac{\cos \left(\frac{\pi}{4}-\frac{A}{2}-\beta\right)}{\cos \left(\frac{\pi}{4}-\frac{A}{2}\right)}-\frac{r}{\sqrt{\frac{l^{2}}{4}+\left(\delta+\frac{A}{2}\right)^{2}}}>\frac{\cos \left(\frac{\pi}{4}-\frac{A}{2}-\beta\right)}{\cos \left(\frac{\pi}{4}-\frac{A}{2}\right)}
\end{gathered}
$$

c) The velocity is zoro at the point $\omega=\pi-2 A-2 \beta$, which is always located on the lower side. At this point the. streamline onters the wing. Further general conclusions (i.e., applying to all f, δ, β) can hardly be drawn. We obtain considerably nore accurate expressions in the especially intercsting practical case where, in the vicinity of the leading edge, a pronounced velocity maximum and consequently a strong suction is prociuced. We will confine oursclves to this case in all that follows. Hereby we can, in formula 5 , first of all disregard the slight fluctuation of the factor σ^{2} for smali values of f and. δ and consider only the factor F, vhich must be alone decisive for the great changes in velocity. This factor, however, enables a simple explanation.

For this purpose, we introduce the angle $\psi=\frac{\omega}{2}+A+\beta$. The entering point of the streamline then lies at $\psi=\pi / 2$, where F disappears. In gencral, we have

$$
\left.\begin{array}{rl}
\frac{1}{F^{2}} & =\left(a^{2}+\sin ^{2} \beta\right) \tan ^{2} \psi-2(a b-\sin \beta \cos \beta) \tan \psi+ \\
a & =\frac{2}{2}\left(\delta \cos (A+B)-\frac{f}{2} \sin \beta\right), \tag{6}\\
b & =\frac{2}{2}\left(\delta \sin (A+B)+\frac{f}{2} \cos \beta\right) \cdot
\end{array}\right\}
$$

Consequently, F attains its maximum value at the angle ψ_{0}, which is given by the formula

$$
\begin{equation*}
\tan \psi_{0}=\frac{a b-\sin \beta \cos \beta}{a^{2}+\sin ^{2} \beta} \tag{7}
\end{equation*}
$$

and this value is

$$
\begin{equation*}
F_{\max }=\frac{\sqrt{\left(\delta \cos (A+i)-\frac{\frac{F}{2}}{2} \sin \beta\right)^{2}+\frac{l^{2}}{2} \sin ^{2} \beta}}{\delta \delta \cos A} \tag{71}
\end{equation*}
$$

We now naike the assumption, corresponding to the already announced purpose of our investigation, that F has a high maximum in relation to the value of $\cos (A+B)$ on the trailing ecige. We require, e.c., that $F_{\max }$ shall equal or exceed $\sqrt{3 .}$ This is mathematicelly the most favorable. Formula ${ }^{\prime \prime}$, with the zid of a rough estimate, then gives

$$
\begin{align*}
\frac{\sqrt{l^{2}+f^{2}}}{2} \sin \theta & \geqq \delta \cos (A+\beta)\left(1+\frac{f}{\sqrt{l^{2}+f^{2}}}\right) \\
& =\delta \cos (A+\beta)(1+\sin A) \ldots \tag{8}
\end{align*}
$$

With tis insertion, the numerator of tan ψ_{0} is smaller than

$$
-\frac{4 \delta}{l^{2}} \cos (A+\beta)\left[\frac{\sqrt{i^{2}+\Phi^{2}}}{2} \cos \beta-\delta \sin (A+\beta)(1-\sin A)\right]
$$

For small f, δ and B, this value is always negative and therefore the maximum value of F is assumed to be at a point located botween the entering point and the trailing edge on the portion of the surface belonging to the upper side.* On the

* Generally the point is located on the upper side. It lies between the entering point and the leading edge, only when δ is very small in comparison with f. For $\delta=0$, it lies on the looding ocige.
other hand, it can be shown that the maximum is located not far from tho entering point. In fact the greatly prepondereting member in the numerator of tan ψ_{0}, on account of formula 8 , is $\cos \beta \sin \beta$. The case is not quite so simple with the denominator, which is

$$
a^{2}+\sin ^{2} \beta=
$$

$=\frac{4}{\hat{l}^{2}}\left[\delta^{2} \cos ^{2}(A+\beta)-\delta f \cos (A+\beta) \sin \beta+\frac{\eta^{2}+f^{2}}{4} \sin { }^{2} \beta\right]$.
If we introcuce into the first member, on the right side of formula 8 , the above limit for δ, the denominator is then smaller then $2 \frac{\vec{E}+\hat{f}^{2}}{\hat{i}^{2}} \sin 2 \beta$. Hence $\tan \psi_{0}$ is either smaller or at most only unessentially* greater than $-\frac{1}{2} \cot \beta$, which shows that ψ is cither smaller or at most only slightly greeter then $\frac{\pi}{2}+2 \beta$. The point ω, at which F assumes its maximum value, is locatcd botween the entoring point of the streamline and the upper side and, at most, only slightly fartiner than 4β from the ontering point.

Lastly, it may be remarked that in formula 6 for $\frac{1}{F^{2}}$, both the powers, $\tan ^{2} \psi$ and $\tan \psi$, appear to be multiplied by small coefficients. Both these nembers therefore assume quite large values for largo values of $\tan \psi$, i.e., in the immediate vicinity of the entering point and the leading edge. Hence F differs but little over the wholo surface, with the exception of the specified region, from the value $\cos (A+\beta)$ on the trailing edge and therefore only slightly from unity. * "Unessentially" means that the deviations are of the order of magnitude $f / 九, \delta / \imath$.

II

The results of the computations in I arc as follows: A Joukowski wing is charactorized by the throe dimonsions, nemoly, the length $2 l$, the cambor f and the radii difference反, which is expressed in the thickness of the wing. To these is adied the angle of attack β. The points on the surface are most conveniently computed vith the aid of a variable ω of the engle at the center of tho circle in Fig. 1. The formules for the coordinates will not be given hore. In practice, a graphic process is employed which is explained in the accompanying note by E. Trefftz (pages 130-131 of this same volume of "Zeitschrift fur Flugtechnik und Motorluftschiffahrt.") We require only the following data: $\omega=0$ gives the trailing edge; $\omega=\pi-2 A\left(\tan A=\frac{f}{l}\right)$ gives the leading eoge and the intermediate values of ω correspond to the lower surface of the wing。 $\omega=\pi-2 A-2 \beta$ gives the entering point, i.e., the point where the air flow strikes the surface and hence where the velocity is zero.

The ratio of the aosolute velocity q of the air.flow on the wing to the velocity V in infinity is given by

$$
\begin{equation*}
\frac{q}{V}=\frac{\sigma^{2}}{r \frac{l}{2}} \mathrm{~F} \tag{5}
\end{equation*}
$$

$r=\frac{\sqrt{q^{2}+f^{2}}}{2}+\delta$ is the radius of the circle in Fig. I and
σ the cistance $O B$ in the same figure. Both factors, σ and F, depend on ω : for small f and δ, the value of the factor $\frac{\sigma^{2}}{r \frac{l}{2}}$ differs but little from unity. The properties of the factor F, as obtained by the calculations of I, can be sumarized as follows.

On the trailing edge, F has the value $\cos (A+\beta)$ and decreases at the customary angles of attack (about 6°), from the leading edge to the entering point, where it becomes zero. For small f and δ, the decrease takes place very slowly throughout most of the lower side and first becomes rapid in the immediate vicinity of the entering point.

From the entering point, F increases rapidly and attains near the leading edge, a maximum of the order of magnitude Bl/28. This is approximately also the maximum value of the velocity ratio q : V. For this maximum value, the ratio of the angle of attack to the thickness of the wing is thercfore decisive, the camber having, in the first order, no effect on it. In constructive wing shapes, where δ and β are of tho same order of magnitude, the velocity at the leading edge is accordingly not very great. This result is important because it explains the effect of rounding the leading edge. The result is still more striking when, we consider the radius of curvature ρ of the leading. edge. It is, namely, with unessential omissions $\frac{\rho}{l}=16 \frac{\delta^{2}}{l^{2}}\left(1-4 \frac{\delta}{l}\right)$. The radius of curvature therefore diminishes rapidly with decreasing δ, the rounding
off of the leading edge being very slight, and the maximum velocity ronains within noderate bounds. The negative pressure on the lcading adge, which, according to Bernouilli's equation, is proportional to $\mathrm{q}^{2} / \mathrm{v}^{2}$, is computed by the introduction of the radius of curvature in the first approximation, to $4 \beta^{2} \frac{l}{\rho}$. I consider this simple formula worthy of attention. The course of F along the top of the wing can finally be characterized as follows: At some distance from the leading edge, F changes but slowly. If therefore, the maximum value of F is much greater than unity, it falls abruptly at first and then gradually approaches the value at the trailing edge. Only in the vicinity of the leading odge does the factor F give us sufficiently accurate information concorning the course of the velocity q. Everywhere else we need to know thie course of σ. This can be easily found geometrically from Fig. I. On the leading odge σ has the value of $\mathrm{l} / 2$. From the triangle $H M O$, it follows that σ assumes its minimum value for the engle $w_{m i n}$, which is given by

$$
\frac{\sin \omega_{\min }}{\sin A}=\frac{\frac{1}{2}}{\sqrt{\delta^{2} \cos ^{2} A+r^{2} \sin ^{2} A}}
$$

Hence

$$
\sin \omega_{\min }=\frac{1}{\sqrt{\frac{4 \frac{\delta}{2}_{2}^{f^{2}}}{}+\frac{4 x^{2}}{l^{2}}}}
$$

For the angle $2 \omega_{\text {min }}$, we again have $\sigma=\frac{l}{2}$ and then σ
increases further, up to the angle $\omega_{\max }=\omega_{\min }+\pi$. The value of $\omega_{\min }$ increases with f / δ. For $\frac{f}{\delta}=0, \omega_{\min }=0$, hence the valuc of σ is smallest on the trailing edge and greatest on the leading edgc. Conversely, for $\frac{\delta}{\hat{I}}=0, \omega_{\min }=(\pi / 3)-\mathrm{A}$ and is thereforc situated in the micile of the lower surface. In general, with increasing f / δ, the minirmm value of σ moves from the trailing edge to the midale of the lower surface; the point where $\sigma=\frac{l}{2}$ again from the trailing cage to the leading edge, while the maximum value of σ moves simultaneously from the leading edge to the micidle of the upper surface.

In order to get an iajea of the course of the velocity, we must now estimate the mutual effect of the factors F and σ^{2}. I will proceed with this discussion in close connection with the diagrams, which I must first explain. Their arrangement is the same as for the diagrans in Eiffel's "Resistance die l'air." Each figure has, at the bottom, an accurate outline of the wing section. Vertically above each point of the wing, there is plotted from a zero line on the vertical the ratio q^{2} / V^{2}, the upper curve corresponding to the upper side and the lower curve to the lower side of the wing section. The dashed line shows the unit distance from the zero line. The area enclosed by the q^{2} / V^{2} curve gives, when multiplicd by $\frac{\gamma}{2 g} V^{2}$, the lift of a unit width of the wing. The chosen angle of attack is $6^{\circ}(\beta=0.1)$, the air flow being horizontal.

I am dividing the discussion into several paragraphs.
I. The strong suction on the greator portion of the uppor surface is comon to all the figures. This is indeed the chief source of the lift, while the pressure on the lower surface contricutes only a small increment. This can be easily verified from the general laws. In fact, as already statcd, F diminisnes very slowly along the under surface from the trailing edge almost to the entering point. Henco, F differs but little, on most of the lower surface, from the valuc $\cos (A+\beta)$, which it has on the trailing odge, and thercfore only a little from unity. Since also the factor $\frac{\sigma^{2}}{r \frac{l}{2}}$ falls only slightly bolow 1 , up to the vicinity of the entering point, q / V is certainly not much smallor than one and henco there is only a slight pressuro.
2. Fig. $2 \quad\left(\hat{y}=0\right.$ and $\left.\frac{\delta}{2}=\frac{1}{10}\right)$ indeed shows a suction effect along a portion of the undor side. Since tho valuos of f arc hore less than unity, such a suction erfect cen only bo vory small. Its apocerance is duo to relativoly large values of σ^{2} and depends essontially on tho ratio $f: \delta$. Between the trailing edge and $\omega=2 \omega_{\min }$ no suction cen ocour, because σ is here smaller than $l / 2$. Any suction effect can therefore be expocted for only small valuos of $f: \delta$, where $\omega_{\text {min }}$ is small. For $\delta=0$ any suction effect is entircly impossible, since $2 \omega_{m i n}$ thon corresponds to the leading edge.

The suction effoct has also beon cxporimentally determince by Eiffel on the ving "en aile c'oiseau" which probably alone of all the surfaces tested by him can be compared with a Joukorcki wing section.*
3. Even on the upper side, the course of the velocity is characteristically affected by the ratio $f: \delta$. This is clearly shown by Figs. $2-4 . \quad f / \delta$ is expressed on the upper surface in the position of the angle $\omega_{\max }=\omega_{\min }+\pi$, for which σ has its maxirum value. The fact that σ continues to inorease from the leading edge as far as $\omega_{\text {rax }}$ causes the maximum value of q to move farther from the leading edge than the maximum of F and the fall in velocity to be less rapid. We differentiate "slightly camiored" wings ($\mathbf{i} / \delta<2$), in which $\omega_{\max }$ in near the leading edge, and "highly cambered" wings (f/ $/ \delta 3$), in which $\omega_{\max }$ lies nearer the midide of the upper surface. Fig. 2, with $f=0$, is a typical example of a slightly combered ving. Here the maximum value of σ is situated in the leading eage and the values of F and σ therefore docroasc

* Eiffel, "Resistance de l'air," 1911, Table XII; also p. 105 and "Comploment," p. 192 ("aile Nicuport"). The Eiffol figures show that the suction effect increases on the under sicec with decreasing angle of attack. This is in agroement with our theory, for the factor F increases, as shown by formula 6 , at overy point on the under side with docreasing β. Another suction effect, which Eiffel finds on the trailing adge of nearly all wings, is doubtless due to the formation of vortices.
simultancously, thus producing a very pronounced maximum vclocity, although the naximm velocity is not important in itsclf. On the other hand, Fig. $4(f / 2=1 / 5, \delta / 2=1 / 30)$ shows, in spite of a twice as large maximum velocity, a romarkably slow velocity decrease toward the upper side. In fact, in these experiments, the maximurn of σ is cituated at about $1 / 3$ of the upper sicie and a more ropid velocity decrease accordingly first begins behind this point. Wo note also the small intermediate maximum on the uppor sido, which is caused by the increase of σ^{2} in spite of the simultaneous decrease in F. The mean between Fig. 2 and Fig. 4 is held by Fig. 3, with $f /=1 / 10$ and $\delta / h=1 / 20$. Here $\omega_{\max }$ does not lie very far from the leading edge, about $1 / 6$ of the upper side, the increase in σ^{2} vanishes under the decrease in F and along the greater portion of the upper side we note a unirorm failing off in velocity, due to the simultaneous decrease in the factors F and σ^{2}.

These relations were also found in Eiffel's experiments with the wing "en aile doiscau." Even the intermediate maximum of q on highly cemberea wings is found on his figures.*

Lastly, I wish to call attention to the fact that the measurements of Fig. 4 appear to me to be worthy of cormendation, on account of the very uniform stressing of the upper side.

* On Eiffel's figures, it appears that, with decreasing β, the naximum vclocity moves backward from the leading eage on the upper side. This also agrecs with the theorctical conclusions.

4. Fig. 5 has a very slight rounding $(\delta / 2=1 / 50)$ at $f / \ell=1 / 5$. Therefore $\frac{l}{2} \frac{\frac{8}{\delta}}{\delta}=2.5$ and henco the very high velocity maximum on the leading edge. We have already seen that the high maxima must decrease very rapidly toward the upper side. The region of this steep decline corresponds to an angle of about the size β. During the drop, however, there is in the figure a long space of almost constant velocity. This is explained, as in paragraph 3, by the fact that the maximum value of σ is located at about $1 / 2.5$ of the upper side. Only behind this point is there again a rapid decline to the trailing edge. This behavior is generally characteristic for highly cambered wings of slight rounding and occurs also on Eiffel's diagrams.

As regards the production of the diegrams, it may be noted, in conclusion, that they were drawn acoording to the very convenient method of E . Trefftz, as set forth in the accompanying note. Wherever it appeared necessary, the plotting was verified by calculation.

GRAPFIC CONSTRUCTION OF JOUKONSKI WINGS.*
By E . Trefftz.

In plotting the oross-sectional outline (or profilc) of a Joukowski wing, we proceed as follows (Fig. 6).

We first plot an $x y$ system of coordinates with the origin 0 such that the x axis forms the angle β with the horizontal direction of the wing and mark on the x axis the point I, for which $\mathrm{x}=-l$, anc on the y axis the point F , for which $\mathrm{y}=\mathrm{f}$.

We now deccribe two circles and label them K_{1} and K_{2}. The center M_{1} of the first circle is situated on the straight line LF at a distance 2δ from the point F (beyond the section LF). The circle, moreover, passes through the point L. The second circle likewise passes through the point L and its center M_{2} is likowise on LF, the position of M on L LF being detcrmined by the following condition. If $O V_{1}$ is the portion of the positive x axis cut off by the circle K_{1} and. OV_{2} the portion cut off by the circle K_{2}, then $O V_{1} \times O V_{2}=i^{2}$.

We now draw, from the point 0 , the two lines OA_{1} and $O A_{2}$, so as to form equal angles with the x axis, A_{1} being the point of intersection of the first linc with the circle K_{1} and A_{a} the intersection of tre second line with the circle * From "Zeitschrift für Flugtechnik und Motorluftschiffahrt," May 31, 1913, pp. 130 and 131.
K_{2}. Then the center P of the line $A_{1} A_{e}$ is the point sought on the Joukowski wing profile.

In plotting the preceding figures, 24 points were found in this manner for each one, by shifting the first line from the point $L 15^{\circ}$ each time and drawing the second line symmetrically with reference to the x axis.

In order to determine the pressure on each point of the profile, when the wing is exposed to a horizontal wind having the velocity V, we must know the velocity q at which the air flows by each point of the profile. The pressure on each unit area of the wing surface is then proportional to q^{2}.

We can now find the values of q in a very simple nanner. For this purpose, we draw a horizontal line through the point I. If we designato by h tho distance of the point A_{1} (of the circle K_{1}) from this horizontal line, we obtain, for any desired point P of the figure, the corresponding value of q in the following manner. We take from the diagram the distance between the points A_{1} and A_{2}, at the middle of which we had found the point P, and also the distances of the point A_{1} from the origin 0 , from the center M_{1} of the circle K_{1} and from the horizontal line passing through L. We then have

$$
q=v \frac{0 A_{1}}{A_{1} A_{2}} \frac{2 h}{1 M_{1} A_{1}}
$$

The mathematical proof for the given constructions is simple. As already mentioned, the profile of a Joukowski wing
can be constructed by describing on the z plane, with the aid of the formula $z=\zeta+\frac{l^{2}}{4 \xi}$, the circle k, determined by the camber and radii difference. This circle passes through the point $\zeta=-\frac{2}{2}$.

The systems of coordinates are plotted both in the ξ plane and in the z plane in such manner that the ξ axis and the x axis form the angle β with the horizontal wind direction.

If we now describe, in the z plane, both circles, which we obtain from the given circle K in the ζ plane by employing the two conversion formulas

$$
z_{1}=2 \zeta \text { and } z_{2}=\frac{t^{2}}{2 \zeta}
$$

then these are the same two circles we designated above by K_{1} and K_{2}.

The point A_{1} has the coordinate z_{1} and the point A_{2} has the coordinate z_{2}, hence the center of $A_{1} A_{2}$ has the coordinate $z=\frac{1}{2}\left(z_{1}+z_{2}\right)=\zeta+\frac{l^{2}}{4 \zeta}$, as desired. P is therefore an actual point on the Joukowski curve.

The following formia holds good for the velocity q at which the air flows by every point on the Joukowski figure.

$$
q=\frac{k(\xi, \eta)}{\left|\frac{d z}{d \xi}\right|}
$$

From $z=\xi+\frac{l^{2}}{4 \xi}$ it follows that

$$
\frac{d z}{d \zeta}=1-\frac{l^{2}}{4 \zeta^{2}}=\frac{1}{2 \zeta}\left(2 \zeta-\frac{l^{2}}{2 \zeta}\right)=\frac{z_{1}-z_{2}}{z_{1}}
$$

whence we obtain

$$
\left|\frac{d z}{d \zeta}\right|=\frac{A_{1} A_{2}}{C A_{1}}
$$

since the absolute value of $z_{1}-z_{2}$ equals the distance $A_{1} A_{2}$ and the absolute value of $z_{1}=$ the distance $O A_{1}$. For $k(\xi, \eta)$, we obtain, from formula 2 of the preceding article, $k=\frac{2 V h}{M_{1} A_{2}}$, in which h is the distance of the point A_{1}. from the horizontel line passing through L. In the expression there given for the numerator, it is equal to h and the denominator is equal to $\frac{1}{2}\left(M_{1} A_{1}\right)$, as may be easily verified. We thus obtain

$$
q=V \frac{\partial h}{M_{2} A_{1}} \frac{0 A_{1}}{A_{1} A_{2}}
$$

which is just the formula given above for q.

Fig. 1

Fig. 2: $f=0, \delta / l=\frac{1}{10}$

Fig. 3: $f / 7=\frac{1}{10}, \quad \delta / 7=\frac{1}{20}$

Fig.4: $\mathrm{f} / \bar{\ell}=\frac{1}{5}, \quad \delta / l=\frac{1}{20}$

Fig. $5: f / \tau=\frac{7}{5}, \delta / \tau=\frac{7}{50}$

Fig. 6

