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AIR FORCES AND A I R - F O N E  MOBJlEMTS AT LARGE ANGLES OF ATTACK 

AND HOW THEY ARE AFFECTED BY THE SHAPE O F  THE WING.* 

By Richard Fuchs and Vilhelm Schmidt. 

S u m m a r y  

'The present  repor t  is, i n  the  f i r s t  place,  a compilation of 

t h e  t e s t  r e s u l t s  now ava i lab le  from wing t e s t s  up t o  angles of 

a t t a c k  of 90'. Reports a r e  also given of t e s t s  with monoplane 

and auxi l ia ry  wings i n  the  Gtt t ingen wind tunnel f o r  t h e  purpose 

of p l o t t i n g  a s t ead i ly  r i s i n g  curve of t he  normal force  as a func- 

t i o n  of the angle of attack. 

The comparison of a s e r i e s  of t yp ica l  wings shows t h a t  t he  

s i n g l e  wing wi th  a u x i l i * a y  wing of Figure 24 g rea t ly  reduces the  

danger of spinning. This r e s u l t  i s  approached by t h e  staggered 

biplane wiig and by the  monoplane wing, whi le  the poorest  resul ts  

were obtained with the  ordinary biplane wing. 

In  replacing the  wing of a Junkers A 35 low-wing monoplane 

t h e  s ing le  wing with aux i l i a ry  wing of Figure 24, an invest ig+ 

i o n  of the  equilibrium of all t he  forces  and moments about the  

i rp l ane  shows t ha t  t h e  danger of spinning i s  completely e l h i -  

14, 1930, pp. 1-12, 
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The monoplane wing of Figure 24 wj th  t h e - a u x i l i a r y  wing s e t  

at a negative angle of 20°, which renders  spinning impossible, 

has a grea te r  drag and smaller l if t  at small angles of a t t ack  

than t h e  s ing le  wing. In  t h i s  form it i s  therefore  not adapted 

f o r  ordinary f l igh t ,  

However, i n  giving the  auxiliary wing of Figure 21  a posi- 

t i v e  decalage of  approximately 5', the  l i f t  and drag become nearly 

equal t o  those of the s ing le  wing. 

1, Notation 

x Path a x i s  i n  wind d i r e c t i o n  and i n  the  plane of sym- 
metry of w i n g ,  

y1 L i f t  ax i s  perpendicular t o  x and i n  plane of  symme- 
t r y  of wing. 

f Fuselage axes i n  plane of symmetry of wing and p a r a l l e l  
t o  plane of wing chord. 

y S t ru t  a x i s  perpendicular t o  f and i n  plane of syme- 
t r y  of wing. 

The pos i t i ve  d i r ec t ion  of all t he  axes i s  shown by the  ar- 

rows i n  Figures 1 and 2, 

Acceleration due t o  gravity. 

Density of air. 

Dynamic pressure. 

Area. 

span. 

Mean chord. 
According t o  the  index o o r  u,  these symbols 
apply e i t h e r  t o  the  upper o r  t o  the lower 
wing, 
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a (m) Distance between the  two wing 
the plane of symet ry  and a 
a l l e l ,  

the  t w o  wings located i n  the  sam 
It is pos i t i ve  when the l e  
upper wing is  f a r t h e r  forw 
lower wing. 

the  plane of symet ry ,  
angle of  a t t ack  of t h e  upper wing is  l a r g e r  
than t h a t  of the  lower wing. 

s (m)  Stagger, dis tance between the  leading e 

6 (0) Decalage, angle between the  wing chords loca ted  i n  
It i s  pos i t i ve  when the  

z (a) Distance between the plane of symmetry and the  wing 
element; t d z p a r a l l e l  t o  it. 

r (m) Distance between the  airplane C.G.' projected on the 
c chord plane of the  lower wing and the leading 

edge, 

h (m) Height of  the  ai rplane C,G, above the  chord plane 

v (m/s> A i r  speed. 

c of  the lower wing, 

ox (l/s) Speed of r o t a t i o n  about the  path ax i s  x. 
I' l i f t  xl w It !I !I It 11 

YI 

These are  p o s i t i v e  when ac t ing  clockwise about 
t h e i r  respect ive axes, as viewed i n  the  posi- 
t i v e  d i r ec t ion ,  

U ( 0 )  Angle of a t tack ,  a l e  between path ax i s  x and 

Aa=5_7.3 arc  t a n  7 
the  r o t a t i o n  OX, 

A 

fuselage ax i s  f (Figs,  1 and 2).  
zwX change i n  the  angle of a t t a c k  due t o  

l i f t  i n  the  d i r ec t ion  of the l i f t  axis 
yl, pos i t i ve  i n  the pos i t i ve  d i rec t ion  

- A (kg) c, - qF 

of Yl 

W (kg) cWr = - drag i n  the d i r ec t ion  of $he path ax is  
qF x, pos i t i ve  i n  the  negative d i r ec t ion  

of  Xa 
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N 

T 

X' 

L '  

IC 

L 

M 

I n  

we have 

- T 
C t - q F =  

ca cos a + cw s in  a, 
i n  the  d i r e c t i o n  of t he  s t ru t  axis y,  
pos i t i ve  i n  t h e  pos i t i ve  d i r e c t i o n  of y. 

cW cos ot - C a  s i n  a, 
i n  t h e  d i r e c t i o n  of the fuse  axis 
f ,  pos i t i ve  i n  t h e  negative 

normal force 

t a n g e n t i a l  force  

c t i o n  f, 

mornent about t he  path axis X. 

moment about t h e  l i f t  a x i s  yl. 

moment about t he  fuselage a x i s  f .  

moment about t h e  s t rut  ax i s  y. 1-11 
t h e  moments are pos i t i ve  when they acf; 
anticlockwise i n  t h e  pos i t i ve  d i r ec t ion  
about t h e i r  respect ive axes. 

moment about t h e  leading edge, For  bi-  
planes about the  biplane lower wing. 
It i s  pos i t i ve  when it reduces t h e  an- 
g l e s  of attack. 

Purpose an-d Scope of t h e  Invest igat ion 

a work. deal ing with steady spins  ( L , )  (Reference 2 ) ;  

&ready shown that the designer can g rea t ly  reduce the  

danger of spins by giving suitable shapes t o  t h e  wings, The dan- 

ge r  of spins  is completely eliminated when the  moments about the 

fuselage ax i s  f, caused by a ro ta t ion ,  about the  pa th  a x i s  

x and ch ief ly  due t o  the  wing, a r e  pos i t i ve ,  i . e ,~ .work ing  

against  a pos i t i ve  r o t a t i o n  For instance,  these moments are 

p o s i t i v e  only when each w i n g  eleraent, within a given range of 
*See Bibliography, page 19, 
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angles of a t tack  from a = 0' through 90°, exh ib i t s ,  p l e 1  

t o  t he  plane of symmetry, a normal-force curve as a function of 

a (subsequently denoted as the cn curve) which r i s e s  s t ead i ly  

with increasing angle of attaak. 

A Very small number of t e s t  r e s u l t s  of air forces  and air- 

force-moment measurements have been h i t h e r t o  available. This 

alone seems t o  warrant a c loser  survey of these r e s u l t s  which 

w i l l  a l s o  be used f o r  comparing the air forces  and moments of a 

c e r t a i n  number of  t y p i c d  wings such as the  monoplane w i n g ,  the  

ordinary and staggered biplane wing a d  l a s t l y ,  the  monoplane 

wing with auxi l ia ry  wing, 

plane wings were computed from English repor t s  t o  which we shall 

r e f e r  repeatedly and which a re  l i s t e d  .in t h e  bibliography at 

t h e  end. 

All t he  values h i the r to  used f o r  bi- 

The influence of  wing gap and decalage on t h e  a i r  forces  

and air-force moments of h i t h e r t o  known biplane wings could not 

be taken in to  consideration f o r  lack of t e s t  r e s u l t s  at laXge 

angles of at tack. 

kj, L 4 ,  and L5 ,  

of attack. These 

t y p i c a l  wings f o r  

such wings do not 

We r e f e r  the  reader t o  the  English reports 

which con$ain t e s t  r e s u l t s  up t o  mean angles 

measurements, made wi th  the  above-mentioned 

l a r g e  angles of a t tack  through 90°, show tha t  

f u l f i l l  the  requirements f o r  a s t ead i ly  in- 

creasing Cn curve. This f a c t  confirmed us i n  our i n t en t ion  t o  

develop a wing wi th  the most pe r f ec t  possible  c o n t i n u d l y  increas- 

ing Cn curve which would probably render spinning impossible. 
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We have been guided by the  idea  t h a t  a su i t ab le  combination 

of two wings might permit of i s ing  the cn curve of a mono? 

plane wing, which falls  off within the  range of mean angles of 

a t t a c k  near t he  maximw l i f t ,  so f a r  as t o  develop a s t ead i ly  in- 

creasing Cn curve roughly applicable t o  any wing element p a -  

a l l e l  t o  the plane of symmetry. It w a s  proposed t o  achieve t h i s  

r e s u l t  by means of an aux i l i a ry  wing of the  same span but of 

smaller chord., having, moreover, a c e r t a i n  degree of decalage 

w i t h  respect t o  the  main wing. The proper wing shape could be 

determined only by t e s t s  which were conducted i n  t h e  Gottingen * 

wind tunnel and regarding which we s h a l l  report  f a r t h e r  on, 

11 

3, Test I n s t a l l a t i o n  f o r  t he  Determination of the Air-Force 

Moments about the Fuselage and S t r u t  Axes Set Up by a 

Rotation ox about t he  Flight-Path Axis and of the Cor- 

Values f o r  Autorotation responding- - 2. v 
box 

The t e s t  i n s t  a l l a t i o n  is shown scheliiat i c a l l y  i n  Figures -1 

and 2. Two bearings ( A  and B )  r i g i d l y  mounted i n  the  mind 

tunnel c a r y  the  path ax is  x p a r a l l e l  t o  the  air f low,  A t  the  

f r o n t  end of t h i s  axis ,  which i s  f irst  s t ruck by the  air flow, 

the  wing models are preferably secured at the  center  of grav i ty  

S of  the airplane,  These models are  clamped at the  proper a- 

gle  of incidence ct t o  t h e  pa th  axis  x t o  which the  desired 

number of  revolut ions i s  imparted by an e l e c t r i c  motor. The mo- 

ments K 1  and L* about t h e  pa th  ax is  x a d  the  l i f t  axis v *: -7 

a r e  measured by a su i tab le  device, 

\ 
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When, a f t e r  breaking the  connection between t h e  motor and 

the  path axis ,  t h e  air  i s  blown against  the  wing at an angle of 

a t t a c k  above tha t  of maximum l i f t ,  t he  wing develops, of i t s e l f ,  

o r  a f t e r  receiving a more o r  l e s s  s t rong impulse, a r o t a t i o n  of 

gradually increasing speed which, a f t e r  a c e r t a i n  while, becomes 

uniform and i s  c a l l e d  autorotation. The English r epor t .  Lg .con- 

t a i n s  a good representat ion of such a t e s t  i n s t a l l a t i o n ,  The 

moments K and L about t h e  fuselage and s t r u t  axes a re  s t i l l  

determined by conversion of  the  moments K I  and L". It would 

be very des i rab le  t o  devise a t e s t  i n s t a l l a t i o n  f o r  the  d i r e c t  

measurement of the  moments K and L ,  which a re  extremely im-  

p o r t  ant f o r  spin invest igat ions.  

4. Calculation of the Air-Force Moments about t he  Fuselage 

and S t r u t  Axes Set up by a Rotation 

Pa th  Axis and of the  cprresponding 2v bwx values of Auto- 

sotat ion.  

Found Values 

ox about the Flight-  

Comparison of the  Calculated and Experimentally 

For t he  ca lcu la t ion  of the air-force moments the  monoplane 

and biplane wings a re  assumed t o  be cut i n to  the g rea t e s t  pos- 

s i b l e  number of elements t d z o r  ( t o  + tu) dz p a r a l l e l  t o  

t he  plane of symmetry, t h e  dis tance between these elements and 

the plane being Z .  Then, according t o  Figure 3,  the  moments 

R' and &' 

l if t  axes, as a r e s u l t  of t he  r o t a t i o n  

of  t he  monoplane wing develop about the path and 

byx. They are  a l s o  appli- 
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cable  t o  biplane wings when to f tu i s  subs t i tu ted  f o r  t and 

Fo + R, f o r  F. 

b +z 
R’ = - f [c, Ga + Aa) cos Aa + F b  

b z = - z  
cw (a 3- ~ a )  s i n ~ c i j  1 t zdz 

cos2 A a 

Q l  = [cw (a + A a) cos Arx - . F  b 
b 

= - 2  
t zdz ca (a + A a) s i n  A a ]  1 

cos2 A rx 
where 

Ox A a = 5’7.3 arc  t an  v. 

For  such wings, the l i f t  and drag of which a re  assumed con- 

stant over near ly  the  whole span, the  l i f t  and drag of the whole 

wing are measured only f o r  t h e  s t r i c t l y  required number of an- 

I 

g l e s  of a t tack  and p lo t t ed  i n  ca and cw curves against a ,  

The air-force coe f f i c i en t s  of the i n t e g r a l s  are  computed from 

these curves. They are  zpproximately appl icable  t o  a l l  the  

wing elements, 

The previously mentioned moments R* and Q’ about the path 

a x i s  x o r  the  l i f t  axis y have been detsrmined experimen- 

t a l l y  i n  England f o r  several  wing models, The angle of a t tack  
box a and - were given d e f i n i t e  values, By p l o t t i n g  R’ and 2 V  
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& I  against  a and - 2 v '  there  a re  obtained Figures 18 and 19 

i n  which the p l a i n  l i n e s  represent t e s t  values and the  dash 

l i n e s  represent values obtainbd by calculat ion,  There i s  a fair- 

l y  good cgreement between the  curves determined by t e s t s  ,and 

those obtained by calculat ion,  The moments R and Q about the 

fuselage 2nd s t r u t  axes, p l o t t e d  i n  Figures 16 and 17 ,  czn be 

c d c u l a t e d  as fol lows from R1 md & I  i n  Figure 4: 

R r= R' cos a 9 Q f  s i n a  (3) 

Q = Q' cos a - R1 s i n a  (4 )  

These inoments are  obtained i n  a d i f f e r e n t  way from the  curves 

en and ct = f (a) by means of the following in t eg ra l s :  

t zdz - & = -  1 I f c n ( a + A a ) -  
F b  cos2 a a 

t zdz 1 & = -  f c t  (a + Aa) 
F b  COE? A a 

where 

(51) 

A s  shown below, these i n t e g r a l s  may be, i n  general, solved 

i n  a simpler and more accurate way than the  i n t e g r a l s  

Figure 5 i l l u s t r a t e s  our  method. 18 shows the d i s t r i b u t i o n  of 

t h e  normal force  over t he  ming span. 

causes the m g l e  of a t tack  u + Act t o  vary continuously by the 

1 and 2. 

Sknce the  r o t a t i o n  Wx 
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value A a = 517.3 arc tan zwx with increasing d is tance  z from 

t h e  plane of symmetry of t h e  wing and t h e  normal force  of  curve 

Cn corresponding*to the  angle of attack i s  obtained as a func- 

, p l o t t e d  against  u i n  Figure t i o n  of a ,  t h e  curve 11 
cos2 A a 

5 resembles, except f o r  t h e  f a c t o r  1 , a more o r  l ess  
cos2 A a 

extended po r t ion  of t he  Cn curve f o r  all values of a .  Herein 

l i e s  t h e  advantage of t he  method i n  so f a r  as it  enables 

the  

aga ins t  a. The estiriiation of the i n t e g r a l  is f u l l y  explained 

by Figure 5. 

curve t o  be more e a s i l y  and accurately p l o t t e d  cn 
cos2 A a 

5. Comparison o f  the  A i r  Forces and Air-Force Moments of t he  

Following Wing T w e s  i~easured  at Large Angles of Attack 

m o ~ o p l  xne wing, 
ordinary biplane wings, 
staggered biplane Prrings, 
monoplane wing w i t h  auxi l ia ry  
wing f o r  d i f f e r e n t  values of 
decalage, st%ger and gap 

The values of the  l i f t ,  drag and moment about t h e  leading 

edge, as measured i n  t h e  wind tunnel,  a r e  always p l o t t e d  against  

t h e  angle of at tack. The f l o w  about a s e r i e s  of wings sepa- 

rates suddenly at angles of a t tack  s l i g h t l y  above t h e  -maximum 

lift.  Two measurements were made within t h i s  c r i t i c a l  range f o r  

each s e t t i n g  o f  t he  angle of a t tack ,  i n  order t o  check i ts  var i -  

a t i o n  from l a r g e r  o r  from s rna le r  v d u e s .  The t r u e  magnitude of 

these values i s  not accurately known f o r  fu l l - s ized  airplanes.  

The values of t h e  sepaxated flow w i l l  probably have t o  be taken 
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i n t o  consideration on t h e  adsumption tha t  t he  separat ion does 

not  take  place suddenly but gradually, espec ia l ly  with a r o t a t i o n  

about the path axis. The cn curve w a s  therefore  p l o t t e a  so as 

t o  e s t ab l i sh  a gradual r e l a t i o n  between t h e  values of the def i -  

n i t e l y  separated f low and those of the  d e f i n i t e l y  adhering flow. 

The normal and tangential. forces  were ca lcu la ted  by  the forrnulas 

Cn = C a  COS a + cw s i n  CI and 

ted ,  together wi th  t h e  above values,  aga ins t  t h e  angle of attack. 

The ca l cu la t ion  of the  moments about t h e  fuselage ax i s  was based 

i n  most cases on the c, curve by means of equation (5) .  They 

were all p l o t t e d  i n  diagrams against  t h e  angle of a t t ack  and 

c- The a and values of w t o r o t a t i o n  about the fusel8ge 

axis, p lo t t ed  as curves i n  Figure 37, can be t i k e n  as t h e  zero 

p o i n t s  of these  diagrams. 

c t  = cw COS a - ca s in  01 and p lo t -  

bWX bwx 

a) Uonoplane Tine; 

The mezsurewents were made in  t h e  G6ttingen wind tunnel 

with two normal wings of 1 m span and 0.2 rn chord. One of t h e  

normal wings had t h e  normal Gh t ingen  423 sec t ion  of Figure 6 

and the  other roughly t h a t  of  Figure 9. Figures - 7 and 10 show 

the corresponding t e s t  r e s u l t s .  

b )  Ordinary Biplane Wings 

The t e s t  resul ts  of Figure 12  a re  taken from t h e  English re- 

p o r t s  L7 and L8. 

wing of 1.28 M span and 0.43 t o t a l  area,  -the sec t ion  of which 

w a s  obtained from t h e  English repor t s  L8 a d  L9 and i s  reprefient- 

ed i n  Figure 11. 

The t e s t s  were made with m ordinary biplzne 
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c )  Staggered Biplane Wings 

The t e s t  r e s u l t s  shown i n  Figure 15 were taken from t h e  

English report  L10, 

1,2 meter span and 0.38 square meter t o t a l  area,  whose p r o f i l e  

was taken from the  English r epor t s  Lll and L12, as represented 

i n  Figure 14, 

They apply t o  staggered biplane wihgs of 

The English report  Ll0 a l s o  contains data on the  measured 

and calculated moments R' and Qt about the path and the l i f t  

axes which a re  p l o t t e d  i n  Figures 18 a d  19. Figures  16  and 17 

show the  moments R and Q about the fuselage and s t r u t  axes, as 

obtained by ca lcu la t ion  wi th  the aid of formulas (3 )  and (4). 

With the moments about t he  path ax i s  balanced, the corre- 

values a re  obtained f rom the zero poin ts  b Wx sponding a and 3 

of the  curves i n  Figure 18, These - values of autorotat ion 

about the  pa th  ax i s  are p l o t t e d  i n  Figure 20 against  the  angle 

of attack. The same f igu re  l ikewise contains the  values of the  

Eng l l  8 h report  LLo which were determined by au toro ta t ion  t e s t s .  

The - bux values determined by t e s t s  and those obtained by cal- 

cu la t ion  agree f a i r l y  well when mean f i g u r e s  are taken f o r  t h e  

values  measured during p o s i t i v e  and negative r o t a t i o n s  

Furthermore, f o r  s m a l l  - bWx 'values, autorotat ion about the  path 

a x i s  develops only when 

u v  

2 v  

2 v  

Wx. 

2 v  

ca 4- cw c 0 .  d a  
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d )  Monoplane Wing with Auxiliary Wing 

A l l  the measurements, t h e  r e s u l t s  of which are p l o t t e d  i n  

Figures  27 t o  32, were conducted i n  t h e  Ggttingen wind tunnel  

w i t h  t he  wings shown i n  Figures 21 t o  26, The monoplane wing 

had a span of 1 meter and a chord of 0.2 'raeter. The auxi l ia ry  

wing, of the same span, had a chord of only 0.07 meter. 

6. Comparison of the Dif fe ren t  Vings 

A s  shown i n  Figure 35, €he l i f t  of  t h e  monoplane wing wi th  

t h e  auxi l ia ry  wing of Figure 24 agrees, at s m d l  angles of a t tack ,  

w i t h  t ha t  of  t h e  ordiiiary biplane wings and of t h e  staggered bi- 

plane wings of Figures ll and 14. A $ l  these  wings have consid- 

er ably smaller l i f t  values than the  monoplane wing of Figure 6. 

For  = 6-5' the  drag of t he  monoplane wing with auxi l ia ry  

wing has just t h e  sane v a l u e  as that o f  t h e  s ing le  monoplane 

wing, w h i l  i t  i s  much l a g e r  at s m a l l  angles of attack. On 

the  other  hand, t he  of the  

biplane wings is  much smaller. 

ordinary 

At m e a  and l a rge  

and of t he  staggered 

the  l i f t  of the  rnono- 

p lane  wing w i t h  a u x i l i g y  wing i s  much g rea t e r  than  tha t  of a l l  

t h e  other wings wi th  near ly  t h e  sane cn curves. Its drag is 

almost t he  same as that of the inonoplane wing, while f o r  CL = 
90°, 

nary biplane wing. When the air i s  s t rongly blown from below 

it reaches nearly twice t h e  value of the drag of the ordi- 
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against  t h e  biplane wings, t h e  upper wing is  screened by the 

lower wing (L13) t o  an dxtent which increases  wi th  decreasing 

stagger.  For  t h i s  reason, t h e  drag of nonstaggered biplane 

wings inust be p a t i c u l w l y  small. 

The Cn curve near ly  coincides w i t h  t he  ca curve at small 

angles of a t t a c k  and mith t h e  

tack,  According t o  Figure 34, t h e  en curve of t h e  monoplane 
cw curve at l a r g e  angles of at- 

wing t v i  t h aux i l  i ary wing i n c r  ens e s q u i t e  s teadi ly .  Fur therinor e ,  

wi th in  a s m a l l  range of zngles o f  a t t ack  above t h e  maximum l i f t ,  

the  cn 
t h a t  of t h e  ordinary Sipltme wing s l i g h t l y  more, m d  t h a t  of 

t h e  monoplane wing much more, only t o  r i s e  again at l a r g e  angles 

curve of  t h e  staggered biplane wing drops but l i t t l e ,  

o f  at tack. The normal f o r c e  o f  the  ordinary biplane wing de- 

creases  considerably at angles of  a t t a c k  above 40'. 

The moments about t h e  leading edge a re  p l o t t e d  i n  Figure 36. 
I 

The moment of the  monoplane wing with aux i l i a ry  wing i s  smaller 

than  that  of t he  s ing le  monoplane wing, but much g rea t e r  than 

tha t  of the  ordinary and of t h e  staggered biplane ning, The mo- 

ments about t he  fuselage axis are  p l o t t e d  i n  Figures 8, 13, 16, 

and 33 against a and - 2 v  
corresponding a and - bwx values  of au toro ta t ion  about the 

fuselage ax i s ,  as p l o t t e d  i n  Figure 37, were obtained from t h e  

f o r  the  corresponding wings. The b@X 

2 v  

zero poin ts  of the moment curves. 

The monoplane wing w i t h  aux i l i a ry  wing can au toro ta te  only 

wi th in  a very s m a l l  range of r e l a t i v e l y  l a r g e  angles of attack. 
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The corresponding range of t h e  staggered biplane wing is  mate- 

r i a l l y  grea te r  and begins at much smaller angles of attack. 

Autorotation of t h e  s ing le  monoplane wing and of the  ordinary 

biplane wing b ig ins  at s t i l l  smaller angles of a t t a c k  and cov- 

e r s  a very vide range, which i s  widest fo r  the ordinary biplane . '. 

wing. A t e s t  of the wing f o r  the m a x i m u m  2v v,d.ues shovs, 

according t o  Figure 37, t h a t  the  monoplane wing with auxi l ia ry  

wing has the s u a l l e s t  and the  ordinary biplane wing t h e  l a r g e s t  

maximum value. 

In Figure 38 the  maximum values of the negative moments 

bOx 

about the fuselage axis  corresponding t o  the respect ive angles 

of a t tack ,  namely, the  minimum values of the  

p l o t t e d  i n  new diagrams against  zv and a. It now becomes 

apparent how much the nionoplane wing w i t h  a u x i l i a r y  wing d i f -  

f e r s  from a l l  the  other wings. IVhile the  o thers  have r a the r  

l a r g e  negative moments, the  corresponding moments of the  mono- 

plane wing w i t h  auxi l iary wing are negl igibly small, 

R curves, are  
&X 

The monoplane wing w i t h  auxi l ia ry  wing w a s  spec ia l ly  t e s t e d  

f o r  decalage, stagger,  and gap. Figures 39 and 40 show the  in- 

f luence of decalage. A t  small angles of a t tack  i n  normal f l i g h t  

t he  l i f t  i s  increased with increasing decalage between the  aux- 

i l i a r y  and the monoplane wing. Since, according t o  Figure 9, 

t he  monoplane wing w a s  t e s t e d  without the  honeycomb, the  measured 

lift Va;lues a re  probably t o o  large.  Hence, at s m a l l  angles of 

a t t ack  and f o r  a pos i t ive  decalage of the  auxi l ia ry  wing of 
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about 5O, t he  l i f t  of the monoplane wing i s  ne 

The drag of t he  monoplane wing wi th  auxi l ia ry  wing i s  smallest 

and equal t o  t h a t  of the s ing le  monoplane wing at s m a 3 1  angles 

o f  a t tack  and for a s l i g h t l y  negative decalage of the  auxi l ia ry  

wing of approximately 5'. 

equaled. 

The drag increases  gradually when 

t h e  auxilirxry wing i s  def lec ted  from t h i s  pos i t ion  i n  e i t h e r  

d i rec t ion .  

s t i l l  near ly  equal t o  t ha t  o f  the  monoplwle wing. 

For a pos i t i ve  decalage 02 approximately 5' it is  

I n  reducing the wing gap o r  s tagger ,  as shown i n  Figures 41 

t o  44, the maximum l i f t  i s  increased and s h i f t e d  towaxd l a r g e r  

angles of a t tack .  A t  s m a l l  angles of a t t ack  the  l i f t  and drag 

a re  scarcely changed by c2 var i a t ion  of t he  wing gap or  stagger. 

In  comparing the t e s t e d  monoplane wings w i t h  auxi l ia ry  

wings it appears t h a t  the wing w i t h  approximately -20' deedage  

of  t h e  auxiliary wing, bes t  suiked t o  prevent spinning, i s  not 

s u i t a b l e  for  normal f l i g h t  at small angles of a t tack,  It may, 

however, be adapted t o  t h i s  purpose by giving the  auxi l ia ry  

wing a decalage of appr$ximately +5O,  

therefore  be adjustable  over at least one-third of i t s  outer  

portion. 

t h e  section and the  chord of the a u x i l i a r y  wing. 

The auxi l ia ry  wing should 

Besides, much b e t t e r  r e s u l t s  a re  obtained by changing 
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?. Change i n  the  E q u i l i b r i m  of A l l  t he  Fore and Uornents 

Acting on a Junkers A 35 Low-Wing Monoplane when Its 

Standard Wing i s  Replaced by the Wing Shown i n  Figure 24 

The following inves t iga t ion  i s  a sequel t o  our study of 

t he  steady sp in  ( L 2 ) .  

bo ls  used. As shown i n  Figure 45, a l l  the  ca and cw values 

of the whole ai rplane axe g rea t ly  changed by the  subs t i t u t ion  

It contains an explanation of the sym- 

of t h e  monoplane wing with auxi l ia ry  wing of Figure 24 f o r  t he  

Junkers A 35 low-wing monoplane. Also, according t o  Figure 46, 

the moment about the  spar ax i s  i s  changed, but t h i s  change i s  

probably o f f s e t  by a corresponding de f l ec t ion  of the e leva tor ,  

SO that  the  curve of the o r ig in& airplane holds  good without 

any m a t  e r i d .  var ia t ion.  

The RF moments about the -fuselage axis ,  ch ie f ly  due t o  

the  wing, are  determined f o r  the  s ing le  monoplane wing with 

aux i l i a ry  wing i n  exactly the  same way.as i n  the above work and 

p l o t t e d  i n  Figure 4_7 against  t he  angle of attack and the  angle 

of gl ide.  The a and p values,  f o r  which the  moments about 

the  fuselage ax i s  are balanced when a l l  the  forces  about the  

a i rp lane  are i n  equilibrium, a r e  derived from the  zero points  

of the  above curves. 

with the  curve d,, Even w i t h  no a i l e ron  moment % a curve 

d can be p l o t t e d  which, however, extends over only a s m a l l  

range of  angles of a t tack  and reaches g l id ing  angles not exceed- 

ing a maximum value of -6OO. 

These values a re  p l o t t e d  i n  Figure 48 

It i s  rather far from all the b 
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curves including those p l o t t e d  f o r  s t rong “pullsi1 on t h e  s t i c k  

and designed t o  balance t h e  moments about t h e  spar axis. 

I n  p l o t t i n g ,  over a l l  a values,  constant pos i t i ve  o r  neg- 

a t i v e  a i l e ron  moments % 
banks during p o s i t i v e  r o t a t i o n s  W ,  t h e  absc issa  o f  the curves 

p l o t t e d  i n  Figure 47 must be s h i f t e d  upward or  downward p a r d -  

l e 1  t o  i t s e l f ,  The a and cp v d u c s  of t he  new zero po in t s  

a r e  a l s o . p l o t t e d  i n  the  d cuxves of Figure 48 with the  param- 

e t e r  RKO No d curve can be p l o t t e d  f o r  very small negative 

a i l e r o n  rnornents which a re  possible  at a l l  angles o f  attack. 

which throw t h e  airplane i n  o r  out of 

There can be, therefore ,  no equilibrium of t he  moments about the  

fuselage axis i n  curv i l inear  f l i g h t .  

Since even t h e  a i l e ron  moment RKmax o f  rnaximm a i l e r a n  

de f l ec t ion  decreases with increasing angle of  a t tack ,  very def i -  

n i t e  maximurn a i l e ron  inornents can be reached only within a l i r n -  

i t e d  range of angles of  attack. The d curves p l o t t e d  i n  Fig- 

ure 48 against  the constant a i l e ron  moment have, therefore ,  an 

upper l i m i t  t o  t h e  angle of attack. Above t h i s  l i m i t  t he  rno- 

ments can be no longer balanoed and it becomes impossible t o  

keep t h e  a i rp lane  i n  a banked posit ion.  

The d curves of c e r t a i n  a i l e ron  moments cut  the b curves 

of c e r t a i n  e leva tor  moments EH i n  such a manner t h a t  steady 

s p i r a l  f l i g h t  becomes possible ,  i f  t h e  moments about t h e  s t rut  

a x i s  a r e  also balanced f o r  the a and cp values of t he  po in t s  

of in te rsec t ion ,  Steady sp22al f l i g h t s  do not resemble spins. 

They may be r a t h e r  steep but they only requi re  a very s t rong 
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a i l e r o n  moment, and t h e  corresponding angle of a t t ack  does not 

exceed tha t  of m a x i m u m  l i f t .  Besides, even t h e  s l i g h t e s t  change 

i n  the  a i l e ron  moment g rea t ly  disturbs t h e  conditions of equi- 

librium, They d i f f e r  i n  no way from ordinary s p i r a l  f l i g h t s .  

I f  a sp in  i s  considered as a very s teep  s p i r a l  f l i g h t  at 

angles of a t t a c k  above t h e  maximum l i f t  and, contrary t o  t h e  o r -  

dinary s p i r a l  f l i g h t ,  with very small a i l e r o n  moments, possibly 

zero,  t h e  above considerations show tha t  a spin,  thus defined, 

i s  not possible  with an a i rp lane  equipped w i t h  the  wing of Fig- 

u r e  24. 
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Fig .1  
Schematic represent at i 
i n s t  allat ion .  

Figs.  1,2,3,4. 

o x  x 

Fig.2 / ’ ’ ~  
on of the t e s t  

X 

Fig. & 
Fig.3 L i f t ,  drag and variation o f  For  the  conversion of 

the angle of a t t ack  due t o  t he  inoinents about the 
the ro t a t ion  of a wing element about pati1 peth 2;nd l i f t  axes t o  
a, .xis parallel t o  the plane o f  momeilts about the fuse- 
sgmrnet r y  . lage and s t r u t  axes . .  
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Fig.5 

Fig. 6 

Fig. 7 

Example of air-force distribution over the w i n g .  

---.1;=0,20*-.------ 4 k---- 
Monoplane wi-ng (Gott. 423) of 1 ra span and 0.2 & area. 

Lift, drag, moroent about the leading edge, normal and tangential 
forces plotted against the angle of attack of the monoplane w i n g  
of Fig. 6. 
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Fig.8 Calculated moment about the fuselage axis plotted against the 
angle of attack and P f o r  the monoplane wing of Pig.6. 

k --I-- . t = 0.2~3---- ----A 
Fig.9 Profile of monogiane wing of 1 rn span and 0.2 m’ area. 

1.4r 
1.21 ‘n Without honsycomb 

P 

0.8 ’”v 
1 

Fig.10 Lift, drag, moment a%out the leading edge, normal and tangential 
forces plotted against the angle of attack of monoplane wing 
of Fig.9. 
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Profile of 
---_I. 

~ ~ 0 . 0 7  6 
Profile of L9 s=o.oll 

Fig.11 Profile of the ordinary biplane wing of 1.28 m span and 0.43. & 
total area. S is the C.G. of the airplane. 

cn 
Ca 
cw 
cm 
Ct 

1.2 1- 

Fig.12 Lift, drag, moment a5out the leading edge, normal and tangential 
forces plotted against the angle of attack for the ordinary 
biplane wing of Fig.11. 

bw 
2v 

0.02 

0.01 
0 

-0.0 
bw 
2v 

Fig.13 Calculated moment about the fuselage axis plotted against the 
angle of attack and bsfor the ordinary biplane wing of Fig.11. 

2v 



Profi le  o f  L12 

Fig.14 Profi le  of the staggered biplane wipgs of 1.2 aa span and 
0.38 m2 t o t a l  area, 

Fig.15 L i f t ,  drag, normal and tapigential forces plotted against  the 
angle o f  at tack f o r  the staggered biplane wing of  Fig.14. 

0 
0 
0 

0 

-0 

-0 

~=18.3 

b X  
2v 

FFig.16 Moment about the fuselage axis ?lotted ag2Lnst t 3 e  angle of 
at tack and bwx f o r  the staggered biplane wing.of Fig.14. 

2v 
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b”;, 
2v 

Fig.17 Moment about the strut  is plotted against the angle o f  
a t tack and i_ b e .  f o r  the s tagpred  biplane wing of Fig.14. 
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V-18.3 / 

-0.02 

Fig. 18 Moment 
at t aclc 

Q’ 

Test . 
C a l  culat e d - - - - -  

5 -  b% 
2v 

about the path axis plotted against the angle o f  
and- f o r  the staggered bi2lane wing o f  Fig.14. 

2v 
vr18.3 

0.2 
bw . 
X 

-0.01 2v 
-0.02 

-0 03 
-0.04 *- Test 

-- - - Gal culat e d 

Fig.19 .Eoment about the lift axis plotted against the angle o f  
at tack and b w x .  f o r  the staggered biplane wing of Fig.14. 

2v 



N. I? 

prom autorotation test at, 

Fig.20 bmx values of autorotation about the path axis and dca +ew values 
2v da- 
plotted against the ~ n g l e  of attack for the staggered biplane wing 
of Fig. 14. 

Profile of Fig.9 I I  a = O  A30 

Fig. 21. Profile of monoplane wing with auxiliary wing of 1 rn span 
and 0.27 L$ total area. 

Profile of monoplane wing with auxiliary of 1 m span and 
0.27 2 total area. 



Profile of Fig.9 t,=O ,070 

a-0.130 

seo.043 

Fig.23 Fig.24 

d 

a= 0.130 

Profile of Fig.9 
0 6 = t5, 

t0=0.070 
Profile of Fig.9 

Fig .25 Fig.26 

Profile of monoplane w i n g  with auxiliary wing of 1 m span 
and 0.27 d total area. 
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With honeycomb 

Fig.27 Wing of Fig.21 

.comb 

Fig.28 Wing of Fig.22 

Fig.29 Wing of Fig.23. 
Lift, drag,rnoroent about leading edge, normal and 
tangential force of the different wings. 
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C 

1.2 
1 .o 
0.8 

0.6 With honeycorn% 

c, 0.4 

Ct 

Fig.30 Ving of Fig.24 

'n 
'a 
cW 
Cm 
e t  

Fig.31 Wing of Fig.25. 

With honeycomb 

Fig.32 Wing of Fig.26. 
Lift, drag, moment about leading edge, n o m 1  and 
tangential force of the different wings. 
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Fig.33 Calculated moment about the fuselage axis plotted against the 
angle of attack and bwx for the monoplane wing with auxiliary 

wing of Fig.24. 
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Fig.33 Calculated moment about the fuselage axis plotted against the 
angle of attack and bwx for the monoplane wing with auxiliary 

wing of Fig.24. 
2v 

'n 
0 . 4 "  ~*.-.*,-"---- 

/ Single nin@ of Fig. 6 - - - 
Ordinary biplane wirgs of Fig. 11 - . . -- 

. Staggered biplane w i n g s  of Fig. 14 -- - -L 

Single wing with auxiliary wing of Fig.24- 
'0 'aJa I I I ' ,  

-10 10' 20°300400500600'70 80 90 a: 

=W 
Ca 

Fig.34 Normal force plotted against the angle of attack. 

a 

Fig.35 Lift ,and drag plotted against the angle o f  attack for the 
wings of Fig.34. 
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Fig.36 Noment about the leading edge plotted against the angle of 
attack for the wings o f  fig.34. 

I *,. ""'1 - 
# - : i / *  / -.-Single wing of  Fig.6 

t ,./* ' -..-Ordinary biplane wings 
/' of Fig. 11 

/ *  of Fig. 14 

j '  / .  1' --- Staggered biplane wings / +  j 
.- 

- Single ?zing with auxiliary .- 

- ning of Fig.24 
- 
- 

Fig.37 The box values of autorotation about the fuselage axis plottea 

against the angle of attack. 
2v 

-Ooo2 t 
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Fig.38 The maxim negative moments about the fuselage axis plotted 
against the angle of attack for the wings o f  Fig.37. 



N.A.C.A. Technical Memorandum No.573 Figs .39,40,41 

1 
0.4 

0.2 

-.. - Single wing of Fig.9 
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* . - . - I - - . - 81- 5' of Fig.23 
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Fig.39 Normal force plotted against the angle of attack and 
decalage. 

C 1.4 a 
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-100 l(JO200 30040050°600700800900 CL 

Fig.40 Lift and drag plotted against the angle of attack 
and decalage f o r  the wings of Fig.89. 
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.,. 1 - 1  

Fig. 4.2 of attack 

1.4 

Single wing with auxiliary wing 0.8 

0.6 -,--s=43 of Fig.22 
-s=O o:? Fig.26 
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' I ,  ' -1-&,I-, 

10" 20°300400500600700800900a: 

Fig.43 Normal force plotted against the angle of attack 
and the stagger. 

L 

10°200300.100500 60' 7 O 0 8 O 0 9 O o ~  

and 

Fig044 Lift and drag plotted against the angle of attzck 
and the stagger for the wings of Fig.43. 
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Fig.45 Lift and drag of a Jmkers type A 35 lov-wing monoplane 
plotted against the angle of attack. 

---With original wing 
O o 8 ' r  ,-,Replaced by single wing with auxiliary wing of Pig.24. 
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Fig.46 Noments about the spar axis of a Junkers type A 3 5 .  
low-wing nonoj$me plotted against the angle of attack. 
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