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NATIONAL ADVISORY COMMITTEE

TECHNICAL MEMORANDUM

IGNITION AND COMBUSTION PHENOMENA

—

FOR AERONAUTICS.

NO. 482.

IN DI~SEL ENGINES.*

By F. Sass

Evidences were found that neither gasification

nor vaporization of tb.einjected fuel occurs

before ignition; also that the hydrogen coef-

ficient has no significance. However, the

knowledge of the ignition point and of the

“time lag” is important. After ignition, the

combustion proceeds in a series of reactions,

the last of which at least are ncw knovm.

It is remarkable that the Diesel engine has existed some

thirty years and has been brought to such a high degree of

technical perfection, without even am approxiinately correct ex-

planation of what occurs in the combustion space. T$ewere con-

vinced that the fuel (gas oil or tar oil), after its introduc–

tion into the combustion space, had to go th~ough a peculiar

transformation before igniting. It was thought that all the

fuel particles, which are still liquid at the time of injection,

must be converted into the gaseous form before ignition and that

no ignition and combustion was possible before the complete gas-

*“Ncuere Anscbau.ungen &ber Zund– und Verbrenmngsvorg!nge in
Diesel:motoren.““Zeitschrift des Vereines” deutscher Ingenieure,
September 10, 1927, pp. 1287-1292.
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individual drop. Diesel himself held this

he mentioned, as the seccnd of his lffundsinen-

tal ideas’tthe “gradual introduction rf finely divided fuel un-
.

~er ~ombusti~n ~f the same in this highly heated and compressed

air under simultaneous acticn nn the rutgoing
,

~or.tinued:

‘lSincea fuel can burn only after it has

pistnnl! and then

been gasified, the

immediat= result of thi~ s~c?nd fundamental.principle for all

norgaq~ous fuels is the gradual gasification of the fuel in the

wcrkirig ~yl.inder, .snmetimes cnly in ver’y small quantities for

math strmk~ cf th- piston, with the extraction of the heat of

gasification from the working process itself; in other words,

the development cf the process of gasification into a part rf

the working process in the working cylinder.lr

Also in many other places, Diesel spoke of the necessary

gasification of the fuel. In his book (Berlin, 1913, p. IsO),

he mentioned, as one of the “fundamental laws of DieseL-engine

construction, llthe Ilinjectionof the fuel with highly, compressed)

but cooled and purified air, not only

intimate mixture, but also especially

fication resulting from the fact that

for the production of =“

for the sake cf the gasi- ,

numerous fuel particles

. ..-
in the “whtilemass of the combustion air first gasify and then ,

*
ignite and thus produce the necessary heat for the gasification

*l’DieEntstehung des Die’selmrtors,!!Jahrbueh der SchiffbautQc&-
nischen Gesellschaft, Vcl. 14 (1913), p. 262.
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of the rest of the fuel, for which the heat of compression alone

is insufficient. ”

It is not certain as to whether this was Diesel~s opinion

from the first, or Ifhetherhe was influenced by P. Rieppells

article, which was published in 1907-8.* Rieppel was the first

who sought a scientific explanation

gas oils and aromatic coal-tar oils

the Diesel engine. On the basis of

engine, using gas oils and coal-tar

of the fact that aliphatic

behave quite differently in

observations of a running

oils and mixtures of the two,

and on the basis of experiments with “bombs,” he expected to

find the explanation in the fact that the usable fuels form oil

gases with the addition of only a little heat, while the more .

difficultly combustible oils require more heat or a longer time

for the formation of the oil gases.

According to Rieppel, the hydrogen coefficient of the fuel,

i.e., the molecular ratio of hydrogen to carbon, is of decisive

importance, because hydrogen is given off by the usable oils at

a relatively lok temperature and, due to its low ignition point,

which Rieppel put too low at 500°C (932°F), starts the self-

ignition of the other molecules. Aufh&user also accepted this

valuation of fuels according to the hydrogen coefficient~~ and

soon afterwards the opinion became general that the liquid fuel
,.

in the combustion space must be converted into the gaseous form

*Versuche ~ber die Verwendung von Teer/!len zum Betrieb des Die–
selmotors, Forschungsa.rbeiten, No. 55, $erlin, 1908. See also
V.D.I., ~01. 51 (190~), p. 613.
**Die TrieEmittel desDieselmotors mit besonderer Berficksichti-
@ng der Seeschiffahrt, ‘rJahrbuch der Schi.ffbautechnischen Gesell- ~
schaft, Vol. 14 (1913), p. 368.

II
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before ignition could occur. It is strange that no one seeins

to have raised the questi~n as to the possibility cf the complete

conversion of the fuel inte the gasecus fcrm in the extremely

short interval between injecticn and ignition, which is ‘generally
.

only a few thousandths of a second,

The Experiments of Wollers and Ehmcke

Eveq now we are far from the full explanation of the igni-

ticn and combustion phenomena. If the right beginning has been

made, this is due chiefly to the researches of Wollers and

Ehmcke,* which were undertaken at the suggestion of the late Dr.

Alt , in order to investigate the possibility of using coal-tar

ails in Diesel engines. These researches furnished convincing

evidence against the possibility of the formaticn of oil gas in

the engine, which has subsequently been confirmed by further ob-

servations of engines in operation.

Wollers and Ehmcke investigated four fuels characterized

by their different behavicr in Diesel engines, namely, light

natural-tar oil, paraffin oil, vertical-furnace tar and coal-

tar oil, in an electrically hea,tedbcmh, and analyzed the gaseous

mixturestibtained at fcur different pressures. It was found that

the experimentally found dependence cf the vapor pressures on the

temperature (Fig. 1), and on the time required for vap~rization— -—z. 11
*“Der Vergasungsvorgan~ der Treibmitte~, d= Oelgasbildung und
das Verhalten der Oeldampfe bei der Verbrennung im Dieselmctor, l’
Kruppsche Monatshefte, Vol. II (1921), p. 1. (See also N.A.C.A.
T.M. No. 281 - “Combustion cf Liquid Fuels in Diesel Eng,ine.‘t By
Ott@ Alt. )

—
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(Fig. 2) did not diff~r so much as one wculd be led tO suppo,se

‘.
15y’the b“ehav’iorof the fuels in a Diesel engine. In Figure 1,

for example, the curve of the easily burning paraffin oil nearly.

coincides with the curve of the difficultly burning vertical–

furnace tar and lies halfway between the curves of the ligh~ nat-

ural-tar oil, generally unsuitable for Diesel engines, and the

curve of coal-tar oil. Figure 2 conforms just as poorly with

the law, for the curve of the easily usable paraffin c?illies

between the light natural-gas oil and coal-tar cil.

In a subsequent series of experiments, the oil vapors were

condensed by suddenly cooliilgthe bomb, and the relative spaces

occupied by the oil vapors and oil gases were-determined by ‘meas-

uring the p.wtial pressure of the remaining oil gases. Here

also the results (Table I) disagreed with

opinion that gasification”of the fuel was

The difficultly combustible oils, namely,

the previous general

essential to ignition.

coal-tar oil and ver–

tical--furnace tar, gave for like pressures, a substantially

greater oil-gas output than the aliphatic paraffin oil (e.g.,

93% and 86% against 69% with paraffin oil), md it was onlY for

the aromatic light oil from natural tar that the gaseous Portion

of the mixture of gas and vapor was relatively small (54?).

The result of the gas analyses was surprising, that the arorflatic

coal–tar oil furnishes an abundant output of hydrogen, while.the

~.liphatic”paraffin oil was quite inferior in this respeCt. This

is the exact opposite of the previous conclusions from the be-
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cylinder.

TABLE I.

fuel oils into gas and vapor according tc
Wollers and--Ehmcke -

S~tu.rationpressure atm.-

Saturation temperature ‘C

[ Gas $
Vapor-gas mixture<

Saturation pressure atm.

Saturation temperature ‘C

Vapor-gas :Ilixture
{ ‘as;Vapor ‘O

Light oil from
natural tar

:m

54 19 8

46 81 92

Coal–tar oil

34 28

494 474

84 ~ 75
I

16 I 25

6

—

Paraffin oil

+

42 35

459 455

69 56

31 44

54

46

Vertical-
furnace tar

— ..—

41 ~ 28

464 I 445

86 I 75

——

13

413

12

88
———

The falsity of the forinerview is still more convincingly

demonstrated by the results of the ignition tests with the oil

gases from the four fuels and theilwith the liquid

selves. The ignition points of the oil gases were

in the Dixon furnace, while the ignition points of
._, —..

fuels theril-

determined

the liquid

fuels were determined with Moore!s ignition–point tester, both

,,
times in an oxygen stream (Table 11). The ignition points of

the. surprisingly higher than those of the liquid

iii
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fuels. Moreover, the ignition temperatures of the oil gases

generated iilthe bomb are all practically alike and show none of

the differences exhibited in the Diesel engine. On the contrary,

the ignitioilpoints of the liquid fuels, arranged according to

their magnitude, correspond exactly to their combustibility in

the engine.

TABLE 11.

Ignition points of oil gases and liquid fuels according to
~~ollers and Ehmcke

.—.
Igniticn points in oxygen stream

at 1 atm.

Paraffin oil

I Oil gases ~ Liquid fuels

614-555°C (1137-1211°F) 240°C (464°F)

Light natural-tar oil 615-651°C (1139-.1204°F) 326°C (619°F)

Coal–tar oil 645°C (11930F) 4450c (833°F)

Vertical-furnace tar I635–661°C (1175–1222°F) 468°C (874°F)

The practical equali-tyof the ignition temperatures of the

oil gases regardless of their source is explained, according to

the gas analyses of Wollers and Ehmcke, by the fact that oil-gas

mixtures all have the same constituents and differ only in the

proportions of these constituents. Therefore, it is extremely im-

probable that, for the ignition of the easily ignitible fuels,

the roundabout way through the i~uchmore difficultly .ignitible

oil gases is necessary. ,.

. .
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~~easuring the Ignition Temperature in the Engine

. .. . ● ✎✎ ✎✎ ✎ ✎ ��✎� ✍✍✍

Further p“roof that no gasificatio’n”cf the fuel can take

place in the combustion space before the ignition, is furnished

by the i~easurement of the ignition temperatures in the hot-bulb .

engine, i; which the ignition must naturally take “place just the

same as in a Diesel engine. The hot-bulb engine is particularly

well suited for such observations, because the wall temperature

of a porticm of the combustion space (namely, of the hot bulb)

c=fibe directly measured. The temperatures of the hot bulb given

in Table III were measured in a 30 HP. A.E.G. medium-pressure en-

gine of a new type at 15-16 atm. compression pressure and igni-

tion by’means of a small hot bulb a (Fig. 3), which was heated

by starting with a IIcartridge.lf The hot bulb was drilled at the

points 1-3 close to the inner surface, and a platinum platinum-

rhodium therino-electric couple introduced intc each hole, which

had a diameter of 5 mm (0.197 in.). Holes 1 and 2 were filled

with melted tin for better heat conduction. Hole 2 is near the

center of the fuel jet of about 30°, while holes 1 and 3 lie

nearer its rim. The accuracy of the thermo-electric couple, af-

ter ca,libraticn, was about Al%.

._

.

., ,
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9.30-11.00

11.05-11.30

11.35-12.10

12.15-12.45

12.50- 1.20

1.25- 2.00

Technical Memoraiidum

TABLE III.

Tem~ezatures of hot bulb of 30 HP. A.E.G.
medium-pressure engine under various loads

R.P.Ii.

400

405

410

415

420

2?5

Load

k W— .—
20.1 = 1/1

14.9 = 3/4

10.5 = 1/2

5.2 = l/4

Idling speed

Low idling spee

Temp.

Hole 1.—
365°C

290°C

320°C?

4400C

400°c

420°C

of hot bulb

Hole 2
—.—
3950C

3150C

360°C

4900C

460°C

4500(7

Hole ~

3500(3

2?OOC

3000C

460°C

430°c

4150C

9

Temp.
of

exhaust

281°C

211OC

1770C

159°c

125°C

lo9°c

The lowest temperatures of the hot bulb were obtained at

3/4 load corresponding to the injection period which varied with

the load.

fore ilore

acetylene

They were only 270-315°C (518-599°F) and were there-

than 100°C (180°F) below the ignition temperature of

which, according to Table IV, has, with 416-44QQc(780.8-

824°F) the lowest ignition point of all the constituents of the

oil-gas mixture. If, therefore, the gasification of the fuel be-

fore combustion were indispensable, no ignition could occur in

this engine from full load to about 1/4 load, because the te&per-
.,
;$
i) ature of the

I
,i
: est ignition

A?,$ howe”ver, the
i

ignition source in this load range is below the low-

temperature of the oil–gas constituents. In

ignitions are uniform ad sure at all loads.

reality,



N.A. C.A. Technical Uemoranduti No. 482 10

TABLE IV.

Ignition temperatures o! tileconstituents of an oil-gas mixture. .
according to ‘Yellers and Ehmcke—. —

In oxygen at,1 atm.

Hydrogen Hz
I

580-590°C (1.076-10940F)

]~e~hane c H4 I 556-7000C (1033-1292°F)

Ethane Cz H~ 520-630°C ( 968-11660F)

Propae C3 H~ 490-5700C ( 91&.10580F)

Ethylene C2 H4 1 500-5190C ( 932- 9660F)

Acetylene Cz & ~ 415–4400C ( 781- 8240F)

Carbon monoxide CO 637–658°C (1179-12160F)

Vaporization before Ignition

The Gften contested question as to whether vaporization of

the injected fuel is necessary ‘oefore ignition can take place,

1 has likewise been clarified by recent researches. Alt* rightly

I calls attention to the fact that the mean boiling,points of many

difficultly combustible aromatic fuql oils are lower than the

corresponding temperatures of gas oil a~ldparaffin oil, and that, \

on the other hand, the mean boiling points of the aliphatic fuel

oils are higher than their ignition points. From this fact Alt

concludes that vaporization cannot be especially important for

ignition, since otherwise the higher the ignition point above the

*“Flussiwe Brer.ns-\of”feund ihre Verbrennung i-nder Dieselmaschi-ne,”
V.D.I., vol. 67 (19.23),p. 586, and the special number llDiesel-
maschinen,f’ 1923. (For translation, see N.A.C.A. Technical Mem-
orandum No. 281).
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Neumann* has recently investigated the vaporization process

mathe-matically and found that, due to lack of time, no appreciable—

vaporization of the fuel drops can occur before ignition (Fig..4).

Only the time lag is available for the vaporization, i.e., the

time between the beginning of the injection and’the beginning of

the combustion. This interval is even shorter than assuiiedby

Neumann, who calls it the interval between the beginning of the

delivery stroke of the pump and the visible pressure increase in

the indicator diagram. In reality, a considerable portion of

this time (generally more than half) is consumed by the ‘inject-

ion lag,l’that is,

pump stroke and the

for the compression

the interval between the beginning of the

beginiling of the injection, which is used

of the fuel oil and the expansion of the de-

livery tube. Accoidin8 to our OVTnmeasurements, the time lag is

only 1/400 to 1/300 or, at r[ost,1/100 second. In this short

time, according to FiLmre 4, the volume of the drops can have

diminished hardly O.1~. It may therefore be said that practically

no vaporization of tne injected fuel occurs before ignition..

Hydrogen
.

Table V gives the”results

Coefficient
.

of the analysis of six aliph’atic

fuel oils in the chemical laboratory of the A.E.G. (Allgemeine
.

Elektrizit&ts-Gesellschaft ) turbine factory.** Of these the_—— ..—.
*!lun.tersu-c]lungen ~ber die s~lbstz~ndu~g fl~ssiger Brennstoffe, l’

V.D.I., Vol. 70, (1926) p.’lO7l.
**Thus far.th”elal~oratoryhas”chemically tested OVer 80 fUel Sam-
ples from various sources, the najority of them.in the running
engine.
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Mexic”an gas oil II has a hydrogen coefficient of

?.54 ~ (84.99 ~ 12) =“1.066; South-Africw gas oil, ,

8.56 ~ “(86.44 ~ 12) = 1.19. Both these values are very low in

comparison with the maximum of about 2, and nevertheless both

these fuels
,.
The Mexican

are quite usable and have very good heat values.

gas oil I, on the contrary”, is useless, due to its

hard-asphalt content of 0.975~%,notwithstanding its greater hy–

drogen content of 11.5% and its favorable hydrogen coefficient

of 1..63. In starting’the ignition, the hydrogen does not play

the part which has hitherto been ascribed to it. ‘It does not

first split off and thereby introduce the ignition, of which it

is incapable,* due to its high ignition temperature of 580-590°C

(1076-1094°F) , Table IV, but burns only after the beginning of

the combustion, simultaneously with the carbon, in a roundabout

way through a series of intermediate substances which character-

ize the combustion reactions of the fuel oil.

—

*In aromatic fuel oils, ecg. coal-t= oil, which give off hydro-
gen on being heated, the hydrogen can introduce the ignition.

I —
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TABLE V

Elementary ainalysesand index values of several fuel oils

Source of Oil

{

c?(:
Element ary ;
analyses @N 1’

s “

“Ash T
Water II

Hard asphalt II

Flash point Oc
Burning point II

Solidifyiilg point !!

Sp. G. at 20°C

1
German

paraffin
oil

2
Nc. Amer-

ican
gas oil

86.74
10.65
1.64
0.97

84.36
1-1.75
3.59
0.30

0.027
0.00
0.11

77
108

3

0.875

0,00
0.00
0.00

91
104

Below -15

0.863
I

Heat Upper kcal/kg 10738 11500

value Lower II I 10162 10866

Viscosity lit12°c
in II20 II

Engler 1130 11
degrees II50 II

2.13 at 10°C
1.68

——

1.23

1.67
1.41

——
——

3
Mexican
gas oil I

84.61
11.50
1.66
2.23

0.00
0.00
0.975

67
131

-5.5

0.875

10856

10253

2.69
——

1.?6
1.44
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Table V (Cont. )

14

Eleinentary analyses ad index values of several fuel oils

4
..Mexican
gas oil II

5
Argentine
gas oil

6
So. African

gas oil
Source of Oil

{

G$
Elementary H ‘f
analyses O~N ‘r

84.99
7.54
5.02

84.65
13.54
1.63
0.18

86.44
8.56
5.00
0.00

0.02
Traces
1.167

1 s “
.—

Ash “f
Water
Hard asphalt II

I 2.45

ODO1
0.00
0.00

Traces
0.00
O*OO

210
255

0.865
—

10843

10193

Flash l~oint 0(,-j

Burning point II

Solidifying point I!

Sp. G. at 20°C

112
141

‘-5.0

111
133

Below -15

1 0.870 0.921

Heat

value

Viscosity
in

Engler
degxees.

Upper kcal/kg

Lower “

At l~°C
1!20 II
IIjo It
II50 !f

10919 10759

10297

13.22
7.03
4.58
1.95

10512

1.83

l:i7
1.44

45.18
29.25
16.96
5.46

Explanation of the Ignition According to Tausz

If neither gasification nor

occurs before the ignition,

appreciable vaporization of the

the fuel drops must ignite di-fuel

rectly from the liquid state, for which reason they mus% first
.

be heated to a certain temperature. The ignition point, which

must not be confused with the flash point or burning point, is

the lowest temperature at which a substance can ignite spontane–

I -----
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the ignition-point tester, which is

A described byHarc15_ Mcore in The Automobile Engineer (1920, p.

i 200), ,andwhich has been improved by the Friedrich Krupp Company.
j

The deteriainatim ~an be mhde either in air or oxygen at atrnos–

pheric pressure. It is More accurate to find the ignition point

in compressed air at the plessure reached at the end of the com-

pression in the Diesel engine, as did Tausz and Schulte. *

The three cases give quite different values for the ignition

point (T:?dleVI).

TABLE VI.

Ignition ~~oints of a few aliphatic fuels in air and in oxygen at
1 atm. znd in compressed air, according to Tausz and Schulte ’

Gas oil

Kerosene

Shale oil

Paraffin

Ignition points -1 Ignition points
tam

In Air

jspheric pressure in con—
In Oxygen

~ 270:C
{.
205°C

I518 F 401°F

{ ::: ‘0 2~50c
a

{
2000C?

!1509OF ,392°F

{

272

-_.?--l

II 29(30C

{
2000C

522 1!5540F 392°1?

{
243 ~12~80c
463 II4960F

~ 228~C
~442 F

-— .— ..—

]ressed air
Pressure
atmospheres

27

26

23

11..5

*“Ueber Z&ndnunkte und Verbrennungsvorgange im Dieselflotorl’Halle,
1924; V.D.l~, Vol. 68, May 31, 1924, pp. 574-578. (For translat-
ion. see Y.A.C.A. Technical Memorandum No. 259 - I’Determination/
of Ignition Points of Liquid Fuels Under Pressure,” by J. Tausz
and F. Schulte, 1925.

‘*
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The ignition point is generally lower in oxygen than in air and
.,,,.,....,, ,.,........,..

still lower in compressed air of the usual pressure in Diesel en-

gines. For a few substances (such as ethyl benzene, allyl alco-

hol, triilitrophenol, etc.) the ignition temperature is higher in

oxygen than in air. This fact caused Tausz to give an interest-

ing explanation of the ignition, according to which the substances
*

absorb oxyger.before ignition, forming superoxides (peroxides),

i.e. supersaturated oxygen compounds which are stable only in a

transitory pressure and temperature range, beyond which they sud.

denly decompose. This decomposition produces much heat. and the

substance i~nites.

With substances whose ignition point is higher in oxygen

than in air, the superoxidej before it decomposes (i.e. ignites)

can absorb ifioreoxygen, thus forming a substuce with a higher

ignition point. The oxygen absorption needs to take place only

in a relatively small portion ~f the molecules in the fuel drops,

because the heat freed by the decomposition of the superoxide

suffices to decompose the remaining molecules in the fuel drop, ‘

i.e., to start the combustion; Only in so far as the oxygen ah-,

sorption signifies decomposition of the fuel to a very slight de-

gree, are we justified in claiming that the injected fuel decom-

poses before ignition.
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Ignition Points in CloinpressedAir

m , ... ..., ,.. . .,,

The experiinenks
!j

of Tausz and.Schulte also showed that the ig-
.

!.:
nition point is generally lowered by increased pressure for a feW

‘i~
6 substailcesnot used as engine fuel, but can also be raised to a‘:+
,,

certain degree. Mixtures behave differently from the original

substances. A few of the ignition curves are shown in Figure 5.

The gas oil mostly used in Diesel engines ignites, at the custom-

ary compression pressure of about 30 atm..,somewhat above 200°C

(392°F). Kerosene behaves similarly. The ignition point of gaso-

line is higher and.that of benzol considerably higher. Neverthe-

. less, both these oils burn well in Diesel engines, though the com-

pression must be considerably higher, especially for benzol.

Since these produce high stresses in the ~orking parts and since

they cost considerably more than gas oil, they do not come under

consideration for Diesel engines.

Neumann expresses the opinion that it is more correct to at-

tribute the lowering of the ignition point to the increasing den-

sity, rather than to the pressure Of the air> since the fuel

drops are heated by conduction,,which depends on the air density.

By plotting the ignition points foupd by Tausz and Schulte

against the air density y , Neuinfin obtains the curve (Fig. 6)
~ .,, .,,.

of the absolute ’’ignitiontemperatures Ts, which follows the -*

law Ts = C_’Y-m, in which C ~ ~09 and m = 0.16 for aliphatic

oils. We can follow Neumann in so far ‘as the air density and not

1:- --
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the air pressure” determines the-ignition point. The formula for

the mean ignit-ion-temperature.o-f differentfuel oils is of no

practical importance, however, because the ignition points of var-

ious fuels exhibit differences which must be considered in de-

termining the compression, although they do not appear in the

formula.

,.

The

ignites,

with the

injected

Time Lag of Injection

gas oil almost exclusively used for Diesel engines

according to Tausz and Schulte, at about 200°C (39Z0,F)2

customary compression in Diesel engines. The fuel drops .

into the combustion space must-be heated to at least

this temperature. It is known, however, that, in order to guar-

antee the starting of the engine from the cold condition, a.t

least 27 to 28 atmospheres pressure is required for airless in-

jection engines and about 30 atm. for air-injection engines, be-

cause of the cooling ca,usedby the expanding injection air. If

we assume 28 atm., we find (according to the gas-entropy diagram

of Schule@) 500°C (932°F), as the final temperature corresponding

to an initial temperature of 27°C (80.6°F) , and 5500(7 (1022°F)

for an initial temperature of 50°C (122°F), i.e. temperatures of

about 300-350°C (540-630°F) above the ignition point.
.
This is ciearly shown by Figure 7. The intersection points

of the ignition curve for gas oil with the curves of the com-
.—

~llDiethermischen
nischen Feuergase
(1916), p; 630i .

Eigenschaften der einf~chen (,J~seUnd der tech-
zwischen 0° und 3000°C, ” V.D.I., Vol. 60

.. . ,,, ,,. .,.—..- ,...,,,-..,.,..,.,,, .,. , . #... . . . . .. .. . .... .. .. . .. ,., ——.
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pression pressures fox 2~°C (80.6°F) and 50°C (122°F) initial

““temperature’-sho?~-the s-aiiecompression pressuresat which the ig-

nition point was obtained in the cold and in the hot engine.

The points are surprisingly low, at only 6.1 and 7..3atm, That

the compression pressure must, nevertheless, be much greater, is

due to the fact that the fuel drops require some time for heat-

ing to their ignition point. This heating must be effected, how-

ever, by the time the crank shaft has moved 3-5°.

The time ~etween the beginning of the injection and the ig--

nition is called IItimelag!fby C. J. Hawkes,~ who first investi-

gated this phenomenon. Figure 8,shows it for Scotch shale oil

(Sp.;G. 0.86) in air under 14 atm. of pressure, as plotted

against the temperature. At 500°C (932°F) it is about 0.007 sec.

This value seems too large, which may be due to inadequacy of

, the experimental apparatus. The compressibility of the oil was

disregarded, and there inighthave been

zontal fuel valve. Fundamentally, the

icance of the time lag indicates great

air pockets in the hori-

knowledge of the signif-

progress since, in con-

nection with the dependence of the ignition point on the pres-

sure, it enables the choice of the compression.

Further ineasurements of the time lag would be valuable,

since.th,elocation of.the ..t@e point in relation to the.dead
,.,

center, in which the ignition occurs, deteri~ines the maximum

pressure and hence the working stress, the shape of the indi-
..-.

*“Fuel Oil in Diesel Engines, “ Engineering, Vol. ,CX,Dec. 10,
1920, p-’786. ..
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cater diagram, the combustion and the fuel consumpti”ori. The

time lag cannot, however, be put equal to the time between the

beginning of the fuel-pump stroke and the pressure rise in the

offset indicator diagram. We must, on the contrary, subtract

from this time the injection lag, which must be determined sepa-

rately, as explained by Hesselrnan.*

Combustion of Hydrocarbons

The question as to how the injected fuel burns after igni-

tion in the Diesel engine has not yet been fully answered. We

do not know accurately the composition of the fuel oils, but
aliphatic

only that they are very complex mixtures of/hydrocarbons, when

of petroleum or lignite tar origin, predominantly of the compo-

sition Cn H’2n~2 (paraffins) and Cn Han (olefins or naph-

thenes) in chain compounds, and of aromatic hydrocarbons for

coal–tar, belonging to the :laphthalenefi.f’luorene,phenanthrene

and ~thraceile groups of ring compounds.

Disregarding the ever-present impurities, the combustion

products of both series of hydrocarbons contain CQ and ~0.

It iS trUe, however, that the fuel oils, in burning, “do not

first separate iiltO C and E which then simply combine with

the the oxygen in the compressed air. The combustion of the fuel.

oils consists, r.zther,in passing through a whole series of in-
—._._

*1’Hochdruck&lmotor mit Einspritzung des Brennstoffes ohne Druck-
Iuft,llV.D.1., Vol. 67 (July 1923) pn. 658-562. (For ~ranslation
see N.A.C.A. T.II.No”.312 —“‘Hesselm& Heavy–Oil High-Compression
Engine, ~tby K. J. E. Hesselman. )
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termediate compounds, which are different for the gas ,oils as
-.

compared with those for’the aromatic hydrocarbons.

Frmz Fischer* takes xylen~ (C. fiUD) as an example. Its

molecule, ~~henl~eated, splits up into toluene, benzene, ethy-

lene, “methane, etc. Thereupon the inolecule again enlarges and,

with the liberation of hydrogen, forms diphenyl (~z H.o). s

With the continued loss of hydrogen, ever-larger molecules are

formed, which are finally corAparable only to a great carbon

skeletoil.

The aliphatic ~as oils, which are generally used in Diesel

engines, behave differently. They decom-pose, on heating, into ‘

smaller molecules, especially ethylene (CZ H4). Apparently

this decomposition leads through methane (C H4), since all hy-

drocarbons show a tendency to decompose into C HA ~d CO>~*

The combustion process of ethyleile and methane is now well known.

1 In 1884

bon konoxide

spark, while

Dixon*** found that a perfectly dry mixture, of car-

and.oxygen could not be exploded by the electric

the addition of very small quantities of water va-

por caused the mixture to explode im-medi.ately.**** While Dixon

*l’Dieneuesten” Anschau.ungen &ber die Vorg&nge bei der Verbren-
nung und der Oxidation der Kohlen !1Gesammelte Abhandlungen zur
Kenntnis der Kohle, Vol. IV (1920\, p. 448.

** H. Von Wartenber~, ‘lVerbrennungsvorg&nge im Dieselmotor,lf
V.D.I., Vol. 68 (19247, p. 153.
***’’Conditions of Chemical ChanEe in Gases: Hydrogen, Carbonic

IIpllil..Traiis.RoY. SocW ~Oxide and Oxygen, .
(1885), p. 617.

London, Vol. 1~5

****According- to M:mchot (Chemiker Zeitschrift, Vol. 47, 19.23,
p. 781), dry carbon monoxide is not nonignitihle but only diffi-
cultly ignitible.

——
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oxidized to C02 according to the formulas
C**

co + lj20”=”’co> + I& and
.,

that it must also include
,“

co

2H2 -I-02 = 2H20, WieI.and* demonstrated

formic acid (HCOOH):

+ H20 = HCOOH

HCOOH = C02 + Hz

H2+O=H=0

Even this explanation of the combustion is incorrect, for Von

Wartenberg and Sieg** have shown that hydrogen peroxide (H2 02),

which had previously been found in the combustion of CO, is

also a necessary inter-mediate compound in the combustion of CO:

(70+ H20 = HCOOH (1)

HCOOH = C 02 -I-& (2)

Hz + 02 = Hz Q (3)

H202=~O+0 (4)

CO occurs again as the last terinin the combustion formulas for

methane md ethylene, i.e. the same substances into which the

gas molecules decompose during combustion. According to Bone and

Wheeler*:~* the coinbustion of methane takes place as follows:

CH4 + 02 = CH20 + H20 (5)

in which the formaldehyde is simultaneously oxidized, according
~=

*l!!ZurVerbrennung des Kohlenoxyds, !tBerichte der Deutschen
Chemischen Gesellschaft. Vol. 45 (1912). D. 679.
**llUeber den Mechanisms einiger ’Verb~&n~ungen,IIBer. d. Deut-

schen Chem. Gesellschaft, Vol. 53 (1921), p. 2192.
***’tThe slow oxidation of methane at low temperatures, 11Proceed-
ings of the Chemical Society, Vol. 19 (1903), p. 191.
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to the formulas

CE20 + 02 = (!02-t-H20 (6)

and 2CH20 + 02 = 2C0 -I-2H20, (7)

tc C02 and CO. The latter is then further cxidized, through

HCOOH, Hz and H202, to C02 and H20. If formulas (5) to

(7) are combined with formulas (1) to (4), we find that methane

qust burn according to the following reactions:

CH4 + 02 = CH20 -!- H20

CHaO + 02 = C02 -I-H20

2CH20 + 02 = 2(?0+ 2H,0

CO -i-H20 = HCOOH

HCOOH = C02 + Ha

Hz i-02 = H202

H202 = H20 + O

Thus there are net less than five intermediate prcducts, namely,

formaldehyde, carbon moncxide, formic acid, hydrogen and hydro-

gen peroxide which, however, iinmediately disappear so that only

co~ and H20 rerflain.
.

The reactions are similar for ethylene, which burns to car-

bon moi~oxicleand hydrogen (Bone and Wheeler, Jour. Chem. Sot.,

Val. 81, 1902, p. 535),according to the formula

C2Ha + 02 = 2C3 + 2H2

thus involving the following reactions., ‘ .-..

. - -
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02 = H202

Ha 02 =H20

CO + H20 = HCOOH

HCOOH = CO= + Hz

H2 + 02 = I& 02 .

Hz 02 =H20+0

The number of interinediateproducts is one less than for inethaae.

The <ormula for the combustion of acetylene is

c2&+02=2co+I&

involving the following reactions.

C2 i% + 02 = 2C0 + Hz

HZ+02=H202

Hz 02 = Hz O+ O

CO + Ha O = HCOOH

HCOOH = C02 + Hz
.

H2+02=H20Z

Hz 02 = H2Q+0

Among the combustion products of ethane from the paraffin

series, Evans (llTheCheinistryof Combustion,!! The Chemical Age,

Vol. V, 1921, p. 36) found formaldehyde pnd formic acid, showing

that its combustion is similar to that of methane.

Since it is thus denmnstrated that the gas oils, in burning,

decompose into smaller molecules, chiefly ethylene and methane,
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it is extremely probable that, along with the above-mentioned

.,prgdu?~s,th~..:,~nalconbustio~ PrO~UCtS Of the gas OilS ~e alSO..

present. In truth these are only the last reactions. We do not

know how many preceding reactions there ares Their number i~ay

be very large and it is to be hoped that chemical research will

yield further information and lead to the complete explanation

of the combustion of hydrocarbons in Diesel engi.nes~

If ignition and combustion of the fuel oil in “Diesel engines

take place as stated above, the question may be raised as to how

the combustion reactions can be controlled so that the final

combustioilproducts will be only C02 and H20, It is known that

other ploducts are also formed. We only need to remember the ‘

often srqokyexhaust. If the exhaust gases are not clear, they

must contain particles of soot, which are not pure carbon but

contain ‘molecularly complex hydrocarbons.* In such a case, the

combustion has taken an ufidesirable course.

In order to avoid this, there must be no overheated parts

in the combustion space above a certain temperature limit, which

is about 600°C (l112°F} for aliphatic fuel oils~ Liquid fuel

dr~ps must not come in contact with such hot parts, since a sort

of ‘bracking” would occur, the result of which is a sooty exhaust.

*K. A. Hofmamn and W, Freyer, llTJasser-lgslic’neKolloide aus
kunstlichen Kohlen, llBerq d. Deutschen Chem. Gesellschaft, Vol.
53 (1920), p. 2078.

..
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Noreover, the question of the control of the combustion re-

actions in-’theDiesel en~ine leads to the important matter of

mixture formation, which is a mechanical problem to a much

greater degree than has hitherto been assumed.

Translation by Dwight M. Miner,
National Advisory Committee
for Aeronautics.

,. . ,, ,, .,, , . . ..
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