
Ill’
—-.—

TECHXICAL KS3MORANDUMS

I:ATIONM ADVISORY COMMITTEE FOR AERONAUTICS =?/$==$’

No. 493

)

THINCIMRACTERISTICSAERODYNAMIC

THEIR APPLICATION TO THE TAIL SURFACES

By A. Toussaint and E.

From L1A6rophile.j

PROFILES AND

AND AILEF.ONSOF

Carafoli

June, 1928

,- -.

Washington
Deceivber, 1928

https://ntrs.nasa.gov/search.jsp?R=19930090857 2020-06-17T03:51:37+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42795529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


. ~Illlllllllllllllmmlfllllllllllllllil“1, 31176014402177 ;

FATIONAL ADVISORY COMMTTEZ

TEC’HNIGALMEUORANDUU

,.-. . .-,,-->=, ,.
AERODYUAl:IC CHARACTERISTICS OF THIN

FOR AERONAUTICS.

No. 493.

.,,,.

EMPIRICAL PROFILES M7D

TIIEIRAPPLICATION TO THE TAIL 3URFACXS AND AILERONS OF AIFU?LANES.*

By A. Toussaint and E. Carafoli.

The ii~creasinguse of airplane wings equipped with ailer-

ons and the importance of knowing the aerody-namic characteris–

tics of tail units (e-mpenna~es)provided with itlovableparts

(rudders aiitelevators ) impwt some interest to the so-called

lle~~pi~ic~,l :3rofileso’* This term is applied to wing profiles

which are not drawn according to any theoretical ~i~ethod. Ck=mer-

ally these profiles are of no particular interest, since they

can alw~,ysbe replaced by theoretical profiles which satisfy

the s,~-j.eaerodyilamic and structural conditions. For the above-

mentioned applications, however, the “~rofiles~ modified W “~~le

deflection of the aileron, elevator or ruclder,necessarily be-

come e:lpiricalprofiles, of which it is import=t to kilowthe

aerodynaxtic cl-iaracteristicsand, above all, to k~~owhow these

characteristics are.affected by the ma[;nitude of the deflec-

tions. .

Fez’this pur:oose we thought best to employ the method p~o-

posed bj ‘~:-u::icfor the approximate theoretical study of tk~in,

slightly curved profiles, assimilable, from an aerodynamic view-
.—

*Fro”MLlA4rophile, June, 1928, pp. 179-183.
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point, to their mean camber line.

—.. ....–

Principle of the Uet,hod

(Givena profile l?JhOSe ;iteaiicariibel+ 1 ine AS13 is moderately

curved WkL lvhose chord ,AB= 1.

It is well knowiithat, in tkleconformal transformation

(1).

1
a.circle C, of radius a.—

4
and centel-ed at 0, gives a

stra,itghtline AB of length 1 = 4a.

On adopting the above transformation function (1), the

line ASB, very close to the chord AI?, will have for its

antecede;~t ir the ~ plane a curve S! ~,~]~ichl?~illlie very

close to i;]c:circle C, and which will cut this circle at the

poin-ts .41GridF! , antecedents of A and B.

The curve s! ;ilay“bedefined b~)rthe expression

c’=~ (1 + r) eie (2)

in which r is the radial segueilt,as a function of 6, ;Lleas-

uring the sr.a.11distance between the circle C and the curl-e

St along the radius vector of ‘f~.rguiil~nt” 6.

The ~:eonline ASB will “oeobtained by the transformation

z=~’+~ (~!)
5

which, Oil neglecting the texms in r2, gives
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Z=2acos~+2iar sin 6.

,..

For the abscissa X = 2 a cos f)
1 (3)

the ordinate will be Y = 2 a r sin9 ‘

To transform the circle @ into the ;urve S1 so that a

point ~’ = a (1 + r) eio of the curve S1 will &orrespond to

a point t = a ei~ of the circle C, let

●

Q’= e-l-p (4)

Under these conditions, the trailing edge B of the pro–

file ASB will correspond to the point Bt , (e = n) of the

curve SI and to the point Blo (V= V+ PO) of the circle C.

According to Joukowskits hypothesis, the point B!. i~ust be a

point of zero velocity. Hence, the circulation will have the

value

T’=4Tla v~in(a. +f30)

The tre.nsfor.ilationfunction undLer the general

(5)

form

-t-...

will enable us to pass from the circle C to t]~ecurve S1.

On replacing ~t and C by their respective values,

and, since P and r are vezy small,

(6) ,

Ilmll Illmmll 11 1111 1 , , ,, , ,., .,- .,,.,,..,,,.,,, .,, ,., , .,, , , ,, , , ,, . . . . .. . .. .. . . .,, .-. . .
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r~XAn~os(n+ l)”@+ ZBnsin(n+ l)@

PG2Ansin (n+l)$-2Bncos (n+l)6

Since the profile ASB has no thickness, the ordinate

y=2arsin0

takes the same value for & @ . Hence, r changes sign with G

and
AO=AI=A3=

● ...* = An= O.

Thi S gives

rZXBnsin(n+”l)~

}
B~- ZBncos(n+l)O

The ~oefficients Bn are therefore defined by the formula

Bn=~~2nr sin(n-t-l) Ode (8)

The aerodynamic characteristics of the profile ASB are then

given by the following formulas:

1. Lift P=pV1’=4napV2 sin (a+@)

whence Cz = 21-r(a+ PO). (9)

2. Moment MA= Mo - P2acosa.

trlq (CL+ Y) J- T((Z+ PO)Cm.(A)2 ~ a2whence (lo)

xl = Q2 ~zi? being the term in L
c

of the transformation func-

tion (6). Thus, we have
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Xl = C2 e2iT = aa (1 + i Bl) (11)

The computation of Cz and Cm(A) leads therefore to the

Pcalculation of ~, Xl and Gf Y .

Calculation of !30

This angle corresponds to the pcint B03, that is, to .

e=l!r. Under these conditions the formulas (7) give

po=- ,XBncos(n+l)n=Bo -B1+BZ–BS+.OO

Replacing Bo, Bl, Bz ... etc., by their values derived from

fcrmula (8), we obtain

2Tr

Po=*fQ r(sino- sin2@+sin30.. .)d@

cr 2-ir i9
~o=p.im.~j ‘e , dO

6 1 + e~e

which reduces to

(12)

In practice the profile abscissas and ordinates are re–

f,erredto.the axes xl ~ yl and the relative coordinates

{

i=~=*(l-cose)

y!~=ra=+a

are preferably considered.

II
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Thus equation (12)

lJe:morandum

gives for

ITo.493

PO the value

...

Po=;fl~’ - —=j’’qfl($)d~
Q (1 -OJniT 0

by letting

f, (E)= 1

Tr(l-!)/f (l-t)

6

(13)

When the mean line ASB of the profile is known, equation

(13) can be integrated by employing computed values of fl (~).

Calculation of (Xl) and of y

Since Bl is small, formula (11) gives

p= x
1 = a2 (1 + B ,2) ga’

Similarly

The value of Bl is found by equation (8), which gives

Letting VO=;BI and employing the relative coordinates

5 and q, we obtain
. ,.

,..
with

... , ,,.

f2 ”(t)”= ‘1-25)
J-

(14)

(14’)
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beiore, the values of fz
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(~) can be

7

for

(14)equation>.. di-fferenta’oscissas

will be accomplished

the mean camber line

according to the values of q obtained on

ASE. Expression
Cm(A)

then

becomes

Cz

In

(lo”)

a,erodyna-miccharacteristics of

profiles, assimilable to their mean camber line, due to their

empirical

relative thickness and curvature, can be calculated from the

for-mulas

= 2iT[a

Cm. = -

fa (E) d

(9’)

0.25 c~

+ 2j1~
c

the function

(lo’””)

thefl (~) and fa (~) are given,for which

ta,blebelow ::.sfunctions of ~ .

.—. —. .

0.05 “

1.54

4.13

0.?0

2.31.

-0.87 ,

0.10

1.18

2.67

0.80

3.98

-1.5

0.025

2.09

6.~0

0.20

1.00

1.50

0.30

0.99

0.40 I (3.50

1.08 1.27

0.87 0.41 \ o

0.60

1.62

-0.41

0.90

10.6

2.67

0.95

29.2

- 4.13
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Profiles Having AiiyIiem CanlberLine

If ‘he ~lea,ncamber line of the profile cannot be represei~t-

ed by a simple relation between q and ~, the integrations

can be fim.deeither graphically or mechanically, by ‘making the

products q fl and q fz acco.rdi’ngto the values of q derived

from the ;;~eancamber line. In general , the value of T fl ir.

this calculation increases indefinitely toward.the trailiit:g

edge (i.e., for ~ = 1). ?Je can theilevaluate the integral

qfldg, from g==otog=o.95, and estimate the por-
0
tion of the integral from ~ = 0.95 to ~ = 1.0. Assuming

that this :~ortion of the mean camber line is rectilinear, we

find that the additional. contribution anounts to 2.9 q’, q’

being the relative ordinate for ~ = 0.95 (according to Glauert).

Profiles with Particular Mean Camber Lines

Wrlenthe form of the mean camber line can be expressed by

a simple ratio between q and ~, the values of PO and V.

ca-nbe calculated by direct integration. For example, the

equation

q=’b~(l-~)(c-g)

represents a profile whose mean camber line is of double curva-

ture When c varies between ~ and 1. Direct integration gives
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%=~(4 c-3)

and ,.,,,.... .:.—....,-,,’.,,- P. = $$”, .

from which Cm. = ~ (7 - 8c) is derived.

For c = ~ we get Cmo = o.

Application to Tail Units with Movable Parts

For a stabilizer having a symmetrical biconvex profile,

the deflection of the elevator HB by a certain moderate m.:;le

P, form a profile whose mean camber line is composed of two

strai?ht lines, AH and F(B.

Let o be the ratio of the i~ovablepart HB to the total

surface area AH + HB, then:

(-J= E!2. ~ &I

AB’~(H)=AB= l-U
andh=~=ff(l-~)~

For ~ varying from O to (1-0) we get

and for ~ varying from (1 - o) to 1 ~reflet

undLer these conditions the values of F. ~md PO are .

calculable by direct integration of formulas (13) and (14).

....,-., ... .. . . . .. . . . ,,..,-—--,-..—. . —, —-,-—.- .. ...- ...
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Thus we &et

1(s
... -~os~{ h

1 - a ‘-(1’_“”;”)d);“(1:;””’ -
%

..... .

and

.
and finally

L-

and
f ‘2;”_”~p,

c =h <-— +~-

p--iql - (s) 2G

,. ..-

arc COS%G-

0(1-g)

10

(15)

(1s)

Aerodynamic Characteristics

Here we have:

In practice, the lift coefficient is expressed as a func-

tion of the’deflection ~ of the elevator and of the angle of

attack of the relative wind on the stabilizer. AH. Therefore,

we may mite

cz=2’rr@l+rnop) (17)
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Since h % a (l-cJ), and @ an,dy=,ul + ?’l.,.=,Wl+~~,
.,-----,,,-’..-,‘,’,,, ,,, ,,--’

we finally obtain
..4. t!

FiGuxe 3 represents the variation of m. with resPect to

o according to formula (18). The experimental results of dif-

ferent aerodynamic laboratories, for deflections (3 varYing be-

tween + 5° and +15° , are here shown. The locations of these

represe-ntative points with reference to the theoretical curve

show that the value of the coefficient “m, applicable in the

formula

PJz = zll(a+mp)j

diminishes somewhat with the magnitude of the deflection ~ .

As regards this analysis, we need only to call attention to the

fact that the experimental points very close to the theoretical

curve EWPIY to elevators extendi-ngOVer the ‘hole ‘ail ‘Pm

without any central cut-out. ~[~henthere is such a,cut-out, the

experiinental values of m are somewhat smaller than the theo-

retical values, and the empirical expression

m=~~ (19)

very closely represents the mean values applicable to moderate

deflections (p < 100).
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Similarly the

tain~d as.,..= ,..,.

moment coel?ficier.t
Cm(A)

is finally ob-

,.”, .,, ,’-’”

cm(A) ‘-0”25

The experimental data

(20)

available for verifying this theo-

retical forinulaare, however, very few.

Application to Wings Provided with Ailerons

The preceding results may be extended to the case of sup–

porting wings equipped with ailerons for the purpose of in–

creasing the mximum lift coefficient.

Let ASB represent the mean c?unberline of a wing profile,

the rear portion of which HB forms an aileron rotating about
o

the hinge H (Fig. 4). The aerodyna;fliccharacteristics of the

undisturbed mean camber line are given by formulas (9’) and

(10t), as previously demonstrated.

Le-h ~ represent the angle of deflection, such that the

mean camber line becomes AHB. As previously shown, the approx-

imate theory is applicable to moderate values of deflection @ ,

so that the chord ABl of the modified

equal to the chord AB of the original

The aerodynanlic characteristics of

profile is very nearly

profile.

the profile ASB1 will

be calculable by the application of formulas (13).and (14) to

the equation of the line ASB1 with respect to the,axes ‘OX1

and oyt, Y being the angle which ox makes with OXr. Let
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~P. For the portion” Ml, characterized by

the relative abscissa f = (1 - ~) we then get: ““-.

In an analosous manner for the portion HBl we Zet:

~’=g

‘rlf:?l +(l-a)p( l-t)

The calculation of 130’ and V-O’ is in this CaSe made b~r

formulas (13) and-(14) applied between O ad (1 - Q) for

the portion AH arid between (1 - 0) and 1 for the portion

HBI . We thus find

and

*
+(l-cJ)p J1 (1-5) f2 (E) df] (14’ )

l–~

The first iiltegral in ~o[ represents the ~~le of” zero

lift so of the profile ASB. The other two integrals repre-

sent the angle of zero lift of the deflection ~ of the eleva-

tor. This m.gle being A 130, we b.a.ve

-2 Tr(a+po+A (30)
Cz(?,)-

— —
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P. is calculable

,. mean camber .line”’

A P. can be

ble elevator, i.e.

frofilthe equation ~ = f (~) of the initial

AS.’’”’””’”

calculated as already d.esc~ibed for the mova-

, by the formula

with

If the chord AB of the original profile is taken as the

reference line, the angle of attack is then al = w - Y ~ a –0~

and the result is

cz=2n(a1+Bo+m 13).

The first integral. in the expression for Not represents

the value of PO for the original profile. The other two inte-

grals represent the correction A I-Lodue to the deflection of

the aileron. A V. will be calctil.atedas in the case of the

elevator, and we have

or

Cmo(p ) = cmo(p==o) - ~Jm”ab

Experiments with wings equipped wi.tk ailerons verify quite

well the theoretical values of A PO, in particular for posi-

tive inodera.tedeflections $ . In general, the values of

. . ..
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2 J--m==)3~ACmo =,,
,,. ,..,,-,~,,,”.,-,.-

under the same conditions, are somewhat larger than those found

experimentally. The deviation is similar to the one found i-m

the case of wing profiles having an appreciable %no ●

Translation by
National Advisory Committee
for Aeronautics.
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