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PREFACE

In mahing available in English the present article by

R. Becket on Impact Waves and Detonation, there is here pre-

sented with complete bibl" _" _• oo_ap-y not only an excellent crit-

ical resume of previous experimental _d theoretical inves-

tigations of the Berthelot Explosive Wave but also the most

notable recent contribution that has been made to the subject.

, Among the numerous thermodynamic and kinetic problems

that have arisen in the application of the gaseous explosive

_reaction as a source of power in the internal combustion en-

gine, the problem of the mode or way by which the transforma-

%ion proceeds and the rate at which the heat energy is deliv-

_T_ __ed t0 the working fluid bec@me very early in the engine's

development a problem of prime importance. It was Nernst who

_ _<_irst made it clear in s:n address entitled "Physico-Chemical

Considerations Concerning the Process of Combustion in Gas

Engines," given before the General Conference of German Engi-

neers held at Na_Tdeburg in 1905, that the thermodyn_nies of

the gas engine did not rest, as is assumed in the case of the

steam engine, upon the thermodynsJ_ics of a gaseous wor_In_

fluid of constant composition; but that a thermodynamic refer-

ence cycle of maximum work applicable to internal combustion

engines r_ust be referred to the thermodyne_zic cycle of the

chemical transformation taking place within the cylinder, viz.,

A=RT _ nK. l
W

JOSEPH S. AMES COLLECTION,



N.A.C.A. Technical Memorandum No. 505 ii

m

At the san_e time hc also pointed out that the rapid energy re-

lease within the cylinder raised other important problems be-

sides that of the thermodyne_nios of the chemical reaction.

These questions had to do with the hydrodyns_ics of the fluid,

the profound effect of impact waves and their propagation

through the burned and unburned gases. He showed how many of

the phenomena connected with the combustion of the explosive

gases observed by Berthelot, Dixon, snd others found adequate

explanation in hydrodynamic laws of fluids. This important

phase of explosion phenomena was made the subject of eXtended

investigation by Jouguct and Crussard with results that have

been very generally accepted. The work of Becket here given

is a notable extension of these earlier investisations, be-

cause it covers the entire range of the explosive reaction in

gases - normal detonation and normal burning.

The successful practical working of the gas engine depends

upon an explosive range usually designated as normal burning.

The National Advisory Committee for Aeronautics has supported

investigations into this phase of the reaction and would here

call attention to some of the results of this work that seem

to supplement in some measure the analysis left incomplete in

the work of Becker. Reports of this work on the kinetics of

the gaseous explosive reaction at constant pressure may be
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found in the Committee's Technical Reports • Nos. 17S, 280 and

305.

Of particular interest in this connection as indicating

a relation between the two known modes of explosive transfor-

mation - normal detonation and normal burning - is the experi-

mental work of Wendlandt, "Experimental Investigations of the

Limits of Detonation in _,_ixtures of E_plosive Gases," Z. f.

physik, chem. 17=0, g37 (1924). Also, bearing directly on the

subject of combustion may be mentioned "Velocity of Reaction

and Thermodynamics," by Z. E. Jouguet, Ann. de Physique 5, 5,

(1926). Also, "Thermal Equilibrium from the Standpoint of

Chemical Kinetics and Photochemistry," by Werner Kuhn, J. de
=

Chim. physique 23, 369 (1926).

NATIONAL ADVISORY C0}9_!TTEE

FOR AERONAUTI CS.

"A Constant Pressure Bomb," by F. W. Stevens.

nical Report 17o_ 176. (1023)

N.A.C.A. Tech-

"The Gaseous Explosive Reaction- The Effect of Inert Gas,"

by F. W. Stevens. }7.A.C.A. Technical Report No. 280. (1927)

"The Gaseous Explosive Reaction - A Study of the Kinetics of

Composite Fuels," by F. W, Stevens. N.A.C.A. Technical
Report No. 305. (1929)
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I_ACT WAVES A_D DETONATION.*

By R. Pecker.

PART I.

Int re duct ion

As Riemann (Uber die Fortpflei_zung ebener Luftwe!len yon

IW

endlicher Sohwin_ungsweite, Gott. Ges. d. Wiss. 8 (1880), und

Riemann's ges. Werke, 2 Aufl. S. 156. Vergl. auch Riemann-

V_Teber, Partielle differentialgleichungen, 5 Aufl. Bd. II,

S. 507) was carrying out the int _°eoratlon of partial differen-

tial equations for a one-dimensional flow of an ideal gas, he

made the discovery that a state of flow marked by constant

distribution of density and velocity could pass over to a state

of flow in which certain surfaces would form within the gases

at which the constsnt magnitudes - deusity _mud velocity - men-

tioned above would vary within finite limits. A discussion

concerning the further course of these disturbances can only

_.L • .follow after the differential equ=olons have been affected by

such conditions as will satisfy the equations of state for

the gas on both sides of the unstable surface. These condi-

tions lead to the statement that the laws of the conservation

of mass end of energy as well as the _mp_ct law must not be

violated by the pass_e of the gas through the unstable surface.

*From Zeitschrift fir Physik, Volume 8, p.381 et seq. (1922).

!
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Riemann in his treatment of the subject made the error of con-

sidering the energy equation unnecessary and introduced in its

stead the assumption that the changes ol" state suffered by the

gases in passing the unstable surface was adiabatic. In con-

sequence, as Lord Rayleigh (Theory of Sound, vol. II, p. 41)

has pointed out, his equations do not satisfy the energy laws.

Later, Hugoniot (Journ. de l'ecole polytech., Paris, 57, 58,

(1887), (1889) ) without knowledge of the work of Riemsmn,

gave an extended mathematical analysis of one-dimensional air

movement in which the relationship with the ener_Ty laws w_o

clearly brought out. His treatment of the unstable surfaces

(which hereafter will be designated "impact waves" or concen-

tration impulse) revealed the fact that by taking into account

the energy laws the changes of state suffered by the gases in

passing the surfaces of instability did not follow the law of

(static) adiabatics but another law which he called "dyno_nic

adiabatics" and which will be referred to in _Cmat follows as

the "Hugoniot=equat ion. "

Later cm extended treatment of the mathematical side of

our problem will be given, following the work of Had_nard

(Propagation des ondes. Pazis, (1903) and of Zemplen (Unste-

tege Bewegungen in Flussigkeitem, (Enzykl. d. math. Wissen.

Bd. IV, 2 Tell, I Halfte). In the mathematics_l nomenclature

we shall refer to a surface whose two sides differ in density

and velocity by finite amounts, as unstable surfaces of the
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"first order." Unstable surfaces of the second, third, etc.,

orders are those whose first, second, etc. derivatives of those

magnitudes are instable in reference to space and time. Our

impulse wave is therefore an instability of the first order.

An important deduction of the theory is the consequence

that concentration waves of finite over-pressure spontaneously

pass into steep compression impulses (sound waves) whose rate

of propagation is the normal rate of sound propagation in the

gases only for the limiting case of infinitely small compres-

sion; but with increasing intensity the velocity of propaga-

tion may increase indefinitely. The fact that sound waves

may travel with velocity greater than the ordinary speed of

sound, _'as first demonstrated by Hach (Wiener Bet. 72_ (1875)

7__55(1877) 7__7(1878), and his co-workers. He produced the sound

waves studied either by an electrical spark or by a fulminate.

Martin (Z. f. d. ges. 8chiess. u. 8prengstoffwesen, I__2, Z9

(1917)) likewise worked with a nmmber of explosives for the

production of the sound waves studied by him. He succeeded in

establishing a quantitative relation between the brisanz of

the explosive and the velocity of propagation of its sound wave.

Further, we have Wolff (Ann. d. Phys. 6__99,3_°9 (1899)) to thank

for extensive measurements of sound waves generated by heavy

explosions. All of these measurements have to do with the case

of the free, spatial propagation of sound waves whose theoret-

ical treatment has so far been unsuccessful. With the view of
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testing out the theory of one-dimensional movement in gases,

Vielle (Memorial des poudres et sa!petres, I0, 177, (1809-1000))

carried out a great n_mber of experiments. He prevented the

spatial expansion of the sound waves by producing the sound

within a steel tube. By this means he was able to observe the

increasing "steepness" of the wave front and to increase its

velocity of propagation threefold above the normal velocity of

sound.

Technical practice has presented us with two groups of

phenomena whose relationship to the theory _f compressional im-

pulses has only become known and made clear after long and

arduous experimental effort. The first group is concerned with

the flow of gases _nd vapors from openings of different forms

and is of special importance for the construction of ste_

turbines. Extended analyses of these processes and the prob-

lems they present will be found by Stodola (Die Dampfturbinen,

Berlin, 1905), Prandtl (Handworlerbuch d. Naturwissensohaften,

Bd. A_ Jene, 191Z), 8chroter and Prandtl (Enzykl. d. math.

Wissen. Bd. V_ Toil I Heft 2).

The second group of phenomena connected with the theory

of compressional impulses arises from the rapid chemical trans-

formations of explosive material. That the effect of such an

explosive transformation on the surrounding air is to produce

a disturbance of the nature of a sound wave, has already been

referred to. But the spatial propagation of the area of explo-
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sive transformation within the explosive gases (the detc,nation

wave) is in itself only a special case of a compressional im-

pulse.

The "detonation wave" WaS first nbserved and measured by

Berthelot (Sur la force des matieres explosives, Paris, (1883)

C.R. 93, 18, (1881) ). Its el_se relationship with Riemann's

theory of compressional impact was recognized by Schuster

(Philos. Trans. London (1893) p. 152); while ChaDman (Phil.

l_ag. 47, 90 (1890)) was the first to deduce from the princi-

ples enumerated by Riemann the complete fundamental equations

leading to the determination of the rate of propagation of the

"detonation wav_." An extended analysis and discussion of

these equations accompanied by numerical experimpnta! values

was later carried out by Jouguet (Jour. d. I,[ath. I, 347 (1905)

2, 5, (1906)) and by Crussard (Bull. de la soc. d l'ind, min-

erale, Saint-Etienne, 6, 109 (1907)). Their results showed

satisfactory and far-reaching agreement between the experi-

mental values obtained by Dixon (Phil. Trans. L_ndon (1893)

and (1903) ) and the values calculated by them. An investiga-

tion carried out by Taffenel and Dautrische (C.R. 155, 1221

(1912)) in which they sought to demonstrate the theory of com-

pressional impulses numerically as applied to solid explosives,

came to grief through their error in using an approximated form

of van der Waai's equation of state as an expression represent-

ing the real condition of gases at any concentration. In a

Q

i
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short coml_mnication (Becket, Z. f. Elektrochem. 23, 40 (1917),

Z. f. Physik 4, 393 (1@21) I brought to_ether a few consider-

ations which in the simplest way and without any assumptions

concerning the state of the reacting components led directly

to the equations for detonation. I was" able to show by the use

of an equation of state based on the experimental values ob-

tained by Amagat (Becket, l.c) that these equations led to

reasonable values for the rate of propagation of the detonation

wave even in the case of solid explosives.

The theory of compressional impulses therefore seems to

rest_ upon a well established mathematical basis which is fur-

ther supported by extensive experimental results. But in spite

of this, from a purely physical standpoint, its present form is

unsatisfactory. The initial given conditions required for an

expression of _tate (dersity, pressure, velocity) existing on

both sides of the surface of instability are indeed sufficient

for a thorough macroscopic description of the phenomena; never-

theless they give us no insight into the actual processes in-

volved in the transformation, It is for instance not made clear

why in a detonation wave the compression no longer remains

adiabatic but follows the Hugoniot equation instead. In order

to arrive at a purely physical theory some insight is required

of the m_croscopio structure of the wave front. In what fol-

lows I shall show in Section I by simple means and by figures,

in Section 2 by mathematical treatment of the same processes
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how the surfaces of instability originate if it is assumed

that the fluid is free from friction __ndheat conduction.

_hen, however, it is recognized and taken into account (Sec-

tion 3) that no substance exists free from friction and heat

c_nduction it must follow that a sharply defined surface of

instability cannot arise. The impact wave must have a finite

thickness. This statement was first madc by Prandtl (Z. f. d.

ges. Turbinenwesen 3, 241, (1906)). If the differential equa-

tions for one-dimensional movement are affected frith terms ex-

pressing the effect of friction and heat conduction (Section 4),

there is obtained by integration without particular difficulty

not only the Riemann-Hugcniot equations for the macroscopic
the equations

characteristics of impulse waves (Section 5), but/also lend

some insight into their microscopic structure (Section 6).

The computation of the thickness of impulse waves will be il-

lustrated by numerical exemples.

A knowledge of the processes taking place within the wave

front is also a necessary preliminary to a real knowledge of

the detonation wave; by carrying out the consequences of the

theory of instability one is led by compelling and unmistak-

able ways to values of detonation velocity (Section 8 - See

N.A.C.A. Technical Nemorandum No. 506, which is a continuation

of this report), and detonation pressure (Section 9 - T.M. 506);

yet it remains entirely unexplained how the initial components

against the wave front are brought to a condition of activation.
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By application of the knowledge won concerning compressional

impulses an understanding of this process is somewhat assisted

"althouGh much yet remains to be satisfactorily explained (Sec-

tion i0 - T.M. No. 506).

A. The Formation of Compression Impulses

I. A simple method of treatment.- In order to represent

in a simple way how compression impulses may be formed, imagine

the device represented in Figure I - a long tube closed at the

left by a piston a, and filled with air. A small velocity

dw, is impa2ted to the piston. This movement produces in the

gases a weak compressinn wave that travels from left to right

with the velocity of sound c = _7 RT. At a given instant

(Fig. I, b), the gas to the right of the wave front remains

unchanged and at rest, while the air between the wave front

and the piston is adiabatically compressed by an _mount d_,

and has the velocity dw. The velocity of the piston is now

increased by the omount dw whereby a second compression wave

is produced in the gas _nd is propagated along the tube behind

the first (Fig. I, c). By repeatin_ this process the velocity

_f the piston is finally brought to the velocity w. There is

thus produced within the mass of gas in the tube a terrassed

form of wave whose particles to the left move with the velocity

w. What is the further history and fate of this wave? In the

first place it is plain that the stratum of the terrass to the
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left has a greater velocity relative to the tube than the

strata to the right. Besides, the temperature and hence the

sound velocity is greater in the strata to the left than to

the right. As a consequence the strata draw together and the

wave front becomes steeper, (Figure l,e and l,f). It must not

be ever!ooked what will happen when the steepness of the wave

front becomes infinite ( a condition to be considered in Sec-

tion 2 ).

If, on the contrary, the piston is given a velocity to

the left a rarefaation wave will be produced in the tube as

may be easily realized from analogy to what has been stated.

The rare_ction wave will, contrary to the compression wave,

become ever flatter and flatter the further it advances in the
|

tube.

In conventional expositions of the subject (for exsmple,

that of Riemann-_eber, vol. _) as also in Sectinn 9 (T.Z. No.

506) of this '_rbeit," a consideration of rarefaction waves

will be excluded because they involve a loss of entropy sa_d

because from the second law of thermodynmmics they are impos-

sible of propagation. It will be shown here that from the

standpoint of pure mechanics they cannot develop. At the end

of the next paragraph, also in Section 9 (T.H. No. 506), it

will be shown that both conditions (the thermodynamic stud me-

chanic) are really identical.
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2. A mathematics_l treatment of the same processes.- An-

ticipating applications to be made later, the differential

equations describing the unidimensiona! gas movement will be

so written as to include the effect of friction and heat con-

ductivity.

represents the very small thickness of smy cross sec-

tion of the tube; x the spatial coordinate measured along

the length of the tube; t the time; u the velocity; p the

density; p the pressure.* Then, as is customary, the change

G of a material particle with time mayin a characteristic

be written

al so

d-Y = _ + Usx

: __ (la)

The mass of the cross section layer _ is O _ • The momentum

u =
O _ E + -_- P_I is the effective pressure in the direction of

the axis of the tube and perpendicular to the surface of the ,

layer _ ; k the heat conductivity;

Then, from elemcntary laws,

a friction coefficient.

d
_-_ (_) _) = o,

d (_ _) =_L_
_x

*All computations to follow refer to a Column of cross section
unity.
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d u 2 _ (p_/u)
d--Yp _ (E + _-) = [-- _x-- + _ _x_) ]

in which

P11 D - _ ,

where _ is related to viscosity,

tion

as indicated by the equa-

which follows from the symmetry characteristics of pressure

tensors Pik" The three equations may then be written

dp= _pSu
dt 8x '

du I 8 ( auh

•_ ( _h l dPd-J[= P - _ 8xl pa dt + -- --
I 8 ._Th.
P ax (A'8[_.J

(3a)

(Zb)

(Zo)

Introducing the entropy S, by the relation

(30) may be written

pT _ _ (Sx/ _x _x/ '
(Zc')

in which the change of entropy with time is given as affected

by friction and heat conductivity.

But for the present we will neglect the effect of fric-

tion and heat conduction. Equation (3c') will then read simply

S = const.

*See Weber and Gans, Report d. Phys. I, I, p.349.
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That is, compression in the waves takes place adiabatically

and for the case of _n ideal gas,

p = a_ pk

where a _ is a constant and k = cD the ratio of specific
cv

heats. With reference to equations (i) _d (4) and with _ = 0

and k = O,

;_p _p _u 0_+ u_+p ff-_=

___u+ u_U +_I _ _p = 0
_t 8x P dp _x

(4)

(5a)

(5b)

The integrals u (x,t) and p (x,t) corresponding to the

simple treatment of the process oea'ried out in Section I, per-

mit of a much simpler derivation, with the aid of the theory

of characteristics, than that given by Riemann, Hadamard. To

this end consider a linear element (dx,dt) dravm in the plane

x,t (Fig. 2). Its direction is indicated by the equation

dx= _0dt

Any function _fnatever as G (x,t) ch_uges along this line by

8G 8G'_ dt. From the expressions for uthe value dG = _ q0 + St/

and O in equations (5) we will select as function of G,

u = f (O) where f, primarily _ undetermined function of

P, gives f'. Then,

iaru + f (p)] \g_._ + f'_-q_÷_-_'+ f' _tj dt.

\
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By addition and subtraction of the expression

_u+ f, uaP
u a-_ _-_'

the expression within the parentheses becomes

{c_u + u _u + 8P f, (q_ - u)}( u + f) =[ _y ax a-_

+ u a---_ a---£ " "

From (5a) and (5b) the right side of the above equation

vanishes when

f' (_ - u) I _ _d _ - u _
=p dp' f'

P_

that is, if

or

f' = - # dp dp

But this means, in reference to the problem in hand, that the

curve

dt - u ,+

the expression

I / dp dP = const. (8a)u+f-_ dp .,

and along the curve

= u - dp

the expression

I
/-_ dp = const.

u-f F d u-_
(6b)
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The application of this result to the problem as simply

discussed in Section ! is self-evident: In the tube of infinite

length, the position of the piston at t = 0 is x = 0 and

it is at rest (Figure 2). Its position in succeeding inter-

va!s is indicated by the curve C in the x,t coordinate figure,

as its velocity constantly changes between the instant t = O

and

ity

t ---- T and from then on it proceeds at a constant veloc-

u_. If we indicate by the index s values referring to

the piston, then, for

]
_ and u s = g t s |O < ts<_ ; x s = ts

(7)

g T_ and u s g T = ufor t s >_ : x s = g T t s - _ =

Further, throughout the tube, let t = 0, then u = 0

and P = Do and the curves constructed from (6b) fill the en-

tire space between the x-axis and the curve C. Since, now,

has the same value throughout

the entire range,

u-S _j dp d p = const.

and besides, since for the curve (6a)

u + f _ d P = const.,

so must it also follow that along the (Ga) curve u and P re-

main constn_nt. On the x-axis itself u = O. Therefore, through-

out the entire range the relationship between u and p will be



N.A.C.A. Technical _,,{emorandum No. 505 35

./.P i f®
u= -_ / _--#d p

p • ,
0

At the piston _nd hence along the curve

t (7)

therefore draw through every point

) is " "glven,

(8)

C, u s (according

m_d from (8) Ps may also be known. We can

Xs, t s the straight line'

(/_ ] (9)x - xs = (t - ts) [u s + _-_,Ois

along which u and p have constant values us and Ps.

In the case of the piston motion (7) the portion of the

coordinate figure enclosed by the x-axis and the curve C will

be divided into three parts by the two lines drawn according to

(9) from the points 0 and T. For the lower portion u = O.

The middle portion u varies between u = 0 _nd u = u_ In

the upper portion u is finally constant = u_.

In _aseous media according to (4).:

k-1

-
If the velocity of sound at initial conditions be given as

k-1

co = aj-k pc-_-

Then according to (8)

or

U
k- 1

k-1 k-1

Pc/ = \pc/ = I + U__ook _ I

(I0)
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Finally the slope of the curves (6a) and (6b) is given by

/

u + / d--p- = co + u k + I
J .dp 2

(ll)

cttct. 3 - kh
u - j _-_ = -(oo - u --_--j

This solution denies that u may possess at the instant

of crossing of any two curves of the (9) group, two different

values. Thc intersection of two curves of the (9) group is

the complete analytical co_interpart of the conditions referred

to in Section I, where one wave overtakes m_other. Position X

and time T of this coincidence are given by the values of x

and t calculated from (9) together with the equation_ ob-

tained by differentiating with respect to ts:

k+l
- g ts = t_uq ---_-- - ts g (k + I) - Co,

by h Ipof (7)
a.re expressed as functions of ts. In this way there is oh-

tained

o Co

T = _--_:--y (ts k + g /

X = ½ k g ts _ + co T.

The first position of instability occurs from the coordi-

nate point of reference, t s = 0 at the ins%ant

Co 2 Co2 2

To - g k + _ and at the point Xo = g k + I "

\
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If the piston in one-half second is moved from rest to a

velocity of lO0 m/s and then proceeds at that constant rate,

g = 200 m/s_

Pc = 330 m/s

k = 1.4

= O. 5 seo

u I = I00 m/s

so that the time and place of the first surface of instabilQty

will be

= 453 m

T = I. 38 sec

For this example the pressure increase calculated from (I0)

Pl

I. 51
Pc

and the increase in density

P
.___z_ = 1.34
Pc

In Fixate 3 the exsm_ple just given is represented graph-

ically. The course of the velocity u of the wave along the

axis of the tube x, is drawn for the intervals 0.2, 0.6,

1.O, and 1.4 sec. The figure plainly shows the increasing

steepness of the wave form.

The mechanical production of a compression impulse accord-
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ing to the above, depends upon the condition that v_ithin an

adiabatic wave train those regions of greater density strive

to become more dense at the expense of the less dense regions.

That is the velocity expressed by'(6a),

dx u L : /_Ph

dt _' d-P/adi ab.

must increase with increasing density. If we substitute for

u its value in (8) we have _the condition

or

d-Y _ dp+ > 0J _p:

1 d /_h
pdp<P >0ddp/

If w_ substitute for • I we obtainP' V

Zd/_ dpv_v _V >0

or, finally,

( d_ph > 0

\dV%_di ab.

It is possible then to make the following generalization:

In any given medium it is mechanically__possible to produce only

compression or rarefied impulses according as the value of

(d_ph
_m-_o d is p_oositive or negative. Exactly this s_me criterion

will be met with (Section 9 - T.M. No. 506) in discussing the

thermodynamic possibility of producing compressional impulses.
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3. The necessity of takin__ into account the effect of

friction and heat conductivity_. The considerations set forth

in Sections 1 and 2 gave a solution of the problem only to the

instcnt at which instability in the gases appeazed. A further

consideration of the processes is made possible if there be

added to the Riemann-Hugoniot line of analysis three equations

involving the magnitudes u, and p on both sides of the in-

stable surface. This extension of the analysis of the proc-

esses is made necessary if we are to secure the reasoning

against any possible violation of the laws of the conservation

of mass and of energy, also the impact law. These equations

are identical with equations (14). They will later on receive

extended consideration.

This procedure is free from objection- indeed, it seems

the only possible one - in so far as equations (5) are axio-

matically accepted as describing _rhat actually takes place.

But from the standpoint of physics, this objection may be made:

Equations (5) hold only so long as friction and heat conduc-

tivity may be considered negligible. But since no substances

are known to exist free from these characteristics, these equa-

tions must give results that are in error as soon as the tem-

perature decrease or the rate of chang'e of volume exceeds a

certain limit. These values according to the above considera-

tions would appear to be toe significant to be neglected. The

application of equations (5) are not admissible at this point.
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If we refer for a moment to the simple exposition of the

process as given in Sectfon l, we will be led to expect the

follo_ing: _.en the wave front has reached a certain steepness,

the counter forces of friction and heat conduction oppose the

tendency to further compression. A condition will be reached

where these two tendencies compensate each other _d from this

point on a quasi-stationary wave form will be propagated along

the tube.

Before seeking in this sense sm integration of the general

equation (3) we shall attempt to show in a wholly qualitative

way how the course of temperature cha_ge is influenced by heat

conduction. Let the line ABCD represent the course of tem-

perature change in the neighborhood of a compression wave.(Fig.

4). Assume the increase of pressure to be such that due to

adiabatic compression, the absolute temperature is increased

threefold; for example, from 300 ° to 900 ° absolute. The role

of heat conductivity will be the most significant scmong the

gas molecules at B and C - the positions of greatest change

in the temperature gradient. The gases flowing from D may

gain in temperature &bout _00 ° and at B be cooled by a like

amount. At 500 ° they are affected by adiabatic compression

that increases the temperature threefold, that is, to 1500 ° .

By conduction they lose at B _00 °, thus proceeding toward A

at a temperature of 1300 ° . At first sight the paradoxical re-

sult would seem to be that in consequence of heat conduction
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an initial temperature difference of 600 ° has been increased

to lO00°! But in truth_ with the change in temperature dif-

ference there has followed a change in pressure _nd density

difference which sxe in themselves a source of wave formation

thrown back from the original wave front toward the piston.*

In this way the actual processes in the formation of compres-

sion impulses are seen to be so complicated that at present a

complete theoretical treatment of their formation seems out of

the question. Only citer the impulse wave has become quasi-

station_ry do we again find conditions more satisfactory for

theoretical analysis.

From a consideration of the above roughly qualitative dis-

cussion it is not to be wondered at if we meet with surprising

temperature differences in impact waves of high compression.

B. The Stationary Compression Impulse

4. Differential equations.- In this paragraph we shall

investigate the characteristics of compression_l impulses af-

ter they have assumed the form of a quasi-stationary wave.

We shall imagine that the coordinate system of reference moves

synchronously with the compression wave. In this way the wave

may be treated as actually stationary. We shall therefore in-

tegrate equations (3) for the case that the parti_l derivs--

tives vcmish with the time. Accordingly, we substitute for

*These waves find their _malogue in detonation in the "retona-
tion Waves" of Dixon and le Chatelier.



N.A.C.A. Technical Memorandum No. 505 22

d _ and wr_ted--_'u_

u_+p =0
_x _x

ou _u + _ (_ - _uh= o
_x 8x - 8x/

= _u h u_P _ (k _Th
$x _xj p _x _x _xJ

The first equation may be integrated at once and by that the

second. If we substitute from the solution of the first and

8u in the third equation, itsecond equations pu and p - _-_

may also be integrated. By the aid of the three integration

constants M, J, and F a_d by the substitution of the density

1
p, the reciproc_1 specific volume _, there is obtained the

differentio1 equations for the stationary compression imoulse.

u= _[v

dv
},f_v + p - J = _ M _-_

k dT
E + Jv - ½ M_ v2 - F -

M dx

From these equations energy E and temperature T are seen

to be given functions of pressure and volume. A second inte-

gration of these equations gives the desired continuous trans-

fer of the magnitudes IA, v_, u_ in front of the concentra-

tion impulse, to their magnitudes P2, v2, u2 behind it. The

relations that prevsil between these six mag_.itudes are at

once manifest by observing that only within the wave front

dv dT
itself do the expressions _ and --dx differ appreciably

(12c)
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from O.

write

For any point outside the wave front we may therefore

u_ + p = j (13)
V

U _

E + _-- + pv = F

If we compare any two such positions with each other, we must

h ave

Ul U 2- (i4a)
Vl V 2

UI2 Ue2
+ p- + p_ (i4b)

VI V2

UI_ U22

El + --Z- + Pi _ = E_ + --2-- + P2 v2 (14c)

These fund_nental equations expressing the macroscopic chs_-

acteristics of impulse waves are, as given, independent of

the magnitude of friction _, and of heat conductivity k.

They are identical with the stipulations made in the intro-

ductory treatment for the conditions on both sides of the

layer of instability, _ud could, in fact, be directly written
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there if it is also specified that for the case of a station-

ary wave the _r_sport per second of mass, impulse and energy

through any two cross sections of the tube are the ssme.

5. The macroscopic ch_acteristics of compressional im-
z

pulses.- Before carrying out the integration of equations (12)

we will gather some conception of the significca_ce of equa-

tions (14). To this end we solve (14a) and (14b) for u I rmd

u 2 and substitute the values in (14c). We then have

: - (15a)
V I -- V_

u _ = v _ P_ - Pl (15b)
V I -- V 2

Equation (15c) is the Hugoniot equation v-hich in the case of

impact waves - detonation- takes the place of the adiabatic

relation, dS = O.

For small differences E_ -E_ end V_ - v2, (15c) be-

comes dE - p d v = O, - an expression identical with the

adiabatic.
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The velocity of propagation D, of the impact (detonation)

wave in a medium at rest and the flow velocity
\

the medium behind the detonation wave are expressed by

/P_ - Plw = u_ - u_=(v_ - v_) v_ - v_

W set up in

(16)

The impulse (detonation) wave is determined by the initial con-

dition of the mcdium (Pl and vl) as well as the pressure p_,

within the wave. Further, it is desired to find the factors

(D, W, T_, etc.).

First, we shall carry Out the calculation for a perfect

gas where

pv = RT

E m - E I = c-V (T2 - TI) ,

(i7a)

(17b)

where c-V is the average specific heat between T I and T2°

absolute. Let

and

Then

hence

2cv+l
_i = R

P2

Pl

T= n + [

:

v_ = p__ _ {_+I
v_ Pl n + _

19 = Pl vl w [_ + 1

(18)

(19a)

(19b)

(19c)
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(_ - i)_
w_ = p_ v_ ([_- i) _ {_+-i " (19d)

If the dependence of temperature on cv be neglected then

k+l
_ = _k----T = (for diatonic gases) 6. Hence, as soon as the

value of w becomes large as compared to @, temperature T

becomes proportional to pressure p. It is therefore necessa-

ry that [_ be taken as a function of T.* According to the

results of Pier (Z f Elektroehem. 15, _o6 (1909), also 18

897 (1910)) and Siegel (Z. f. physik. Chem. 87 , 641, (1914))

the specific heat of oxygen and nitrogen carried out experi-

mentally to 5000 ° abs. is

--_3, T cal
Cv = 4.78 + 0.45 x 10 -3 T "

mol. grad.'

from which we find

_l = 5.8_ + 0.46 x 10 -3 T2.

Since the values given in the following table are carried out

for temperatures much above ZOO0 ° abs., the results given can

be taken as representing only the order of the magnitudes to

be expected. With the value given above for _ (19a) becomes

a quadratic equation for T. Using this calculated value the

other equations under (19) give the numerical results sought

for the fluid air.

*Rudenberg, Artill. Monatshefte (1916), p.?_57, has carried

through a computation assuming Ov constant.
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2

5

I0

50
100
500

I000
2000

3000

Compression Impulse in Air

T
_9_

TI

1.23

1.76

2.58

8.28

14.15

44.80

70.00

106.20
134.40

v I_/_

v_ absolute

i._3 I 3362.84 482

3.88 705
I

6.04 I 2260

7.66 f 38601],15 12200

19100
29000

36700

14,30

18o_80
2[-,,30

D W

m/s m/s

452 175
698 4521

978 725

2150 1'795E
3020 2590

6570 5980 I
i

9210 85601
12900 12210i

15750 15050!

i V
-- = (TT-I)!
Pl v2

1.63

11.14

T° abs.

adia-

batic

33O
426

34.9

296
699

5560

14300

37600
63900

515

794

950
1433

1710
2070

2180

Concerning the values given in the above table, it should

be stated that sound waves have been produced in air having a

rate of propagation around 13000 m/s. These waves were produced

in air by detonating substances. By enclosure in a tube the

one-dimensional movement of the wave was observed.* A wave of

this velocity should, according to the above table, heat the air

within it to around 30,000 °, that is, to a temperature of the

or'der attributed to fixed stars. In the last column of the ta-

ble there is given the temperature that should result from adia-

batic compression alone and corresponding to a given pressure.

These values are seen to be only about 10/% of the temperature

of the impact wave. The next to the last column in the table

is of interest in estimating the effect of an impact wave as

it strikes an obstacle (Rudenberg, l.c.p.254). This force

*A report of these experiments will shortly appear in Z. f.

techn. Physik. _, 152 (1922), also _, 249 (1922)).
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(tot_iimpulse i) is made up of the static pressure difference

P2 - P_, and the weight of the flow of the mass of gas behind

1 and the value of W from
the wave front P_ W_ With P_ = v--_

V l
(16) i = (p_ _ Pl) + % w_ = (% - & ) v-V

The effect of the impact of the detonation wave is therefore

greater than the pressure difference by the value of the concen-

V I

tration factor _.

A similar calculation may be carried out for the case of

liquids. For this case the equation of state for exceedingly

high pressures as stated by Tammann (Ann. d. Physik. 37, 975,

(1912)) is applied:

C T K,
P-v-b

where C, b, and K are constants.

The energy expression from the general equation is

dE = cv d T + (p _P - p) dv
8T

E = cv T + K v

writing

(2Oa)

p' = p + K and v' = v - b (21)

then with (20a) and the Hugoniot equation (15c)

o-V(L - T_)= ½ (p'_+ p,_) (v,_- v,_)

and from (20)

p' v' = CT

These equations are in form identical with the gas equations

above and their solution the same as given in (19), Hence if
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2 cv 2 cp I
_i = C + I - C -

u' = p_ +K

pI+K

T_ v 17' +
- 17 i__

Tl _' [I + i

v -b w' + [i

v_ -b w' {i + i (2_)

p +K _'
D _ = v _ --_.... _I + I

l v I - b _I - I

Using the following values: R. Becket (Z. f. Elektroohemie

__ cal. b = 0.94 _,_23, 304 (1917)) K = 2792 atm. C, 0.I001 g. grad.'

v_ = 1.36 cm3 cal.
g Cp = 0.564 g. gra-d.' the temperature increase

shown in the following table was obtained for the case of ethyl

ether.

P2 I T2 - T I T_ - T I D m/s

atmospheres adiabatic impact velocity
I00

I000

I0000
20000

80000

i00000

1.6
15.6
85

12_
201
245

1.6
15.6

llZ
211
594
975

1260
1445
2680
3000
5010
6430

In this case it is to be seen that the increase of temperature

due to the impulse wave is, up tca pressure of some thousand

atmospheres, not markedly different from what would be indicated

by adiabatic compression. Only when very high pressures are

reached does the difference become marked.
q

.

The structure of the compression impulse.. In order to

gain some knowledge of the structure of the wave front it is

necessary to carry through the integration of equations (12).

Conceive first that the gas in the tube is such that its spe-
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cific heat is independent of temperature. We introduce the crn-

stants

R k-I
= k (= 1.4); 6 = 2_v 2

CV

k +I I+6

(= 0.2); _= k-1 - 8 =_=6)

The values given in p_entheses refer to diatomie gases.

Further,

E = _v T and p v = R T.

Te make the notation of the equations ms simple as possible (12b)

I R E_

is multiplied by _ and (12o) by ev j_-. In place of the un-

known factors v, p, and T, we substitute for them proportional,

dimensionless magnitudes,

M_ p e = R T _ (24)
= v T, _ = _ js

and further, let

' M Cv M

Then equations (12b) and (12c) take the form

@ 1 = _' d_ (26a)re+Y- d-_'

e -6[(l -_)_ + m] = k' de
_-_

O = U) q)

With the exception of the physical constants 6, _', k', the

entire process is represented by the use of only one constant, a.

The magnitudes _z, el, q0_ and _, @_, qo= which at both

sides of the wave front, are obtained by solving the quadratic

equations, which by placing the left side of equations (26a)

snd (26b) equal to O, gives
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031 =

81 -

q01 -
2

2 (5+i) , ' ........

p {1+ 2 (_+ l)__ J_- 4 6 (6+ 1)_}(27b)2(6+l . . ........ "

l _{ -

The relationship between the evident magnitudes

and the constant _ is, according to (27c)

I T/

5 (5 + f)' (7+ 17_

The values (27) are easily represented on a 03, e-plane (Fig. 5),

as intersection points of the two parabolas,

)2 1e = -(½-03 +Z (28a)

and

__ )2 }e =6 (I _ +a (28b)

(28a) is a parabola independent of 6 and a. With opening below

and with maximum, 03 = { (8 = {). (28b), on the other hand, has

its opening above, its minimum, 03 = I. The pazabola (28b) is

displaced downward (without change of form) with decreasing

values of a. It is easy to recognize the following special

cases: points of contact of the two pal&bolas for "
I

1 = P_9.= 1 (limit of infinitely weak
= 4:8"-(8 +_i_) = 1.04; _ P_

sound waves). (28b) intersects the peak of (28a) for

I - 6 P2 = 1.5. (The limit of infinitely intense
_- 4--6-I.

Pl

sound waves: a = O; p = _.)
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The course of a single particle across the wave front as indi-

cated by the _, e coordinate figure, would correspond to a

curve whose differential equation as drawn from (26a) and (26b)

would be

x.' de . e 5{(1 _o)_ + a]-- -- = - - , (29)

The curve of the integrsl of (29) should pass through the

points of intersection of the parabolas, that is, through the

common points of differential equation.

For three special cases the value of -_ the integration

is easily followed through: In the first place, we see that

for the extreme values S' = 0 or k' = O, the curve of the

integral of (29) will be identical with the parabola (28a) or

(28b).

The first of these cases, namely, p' = O, is the case

where the effect of friction is neglected. It gives in general

no continuous course of co through the wave front; from (26a)

e = - ¢o_ + _o; and hence from (26b),

_,de_ (I + _)(_- ,_)(_- _)
d_J

de
_-_ is therefore positive for all values of _ between _i

and _2. But when the gas particle moves along the curve (28a)

from I to II, the value of e, as we saw, at first increases

with increasing compression impulses _P___2> 1.5h and then again
\Pl 7

decreases. The only way to escape this apparent contradiction

seems to be (following the suggestion of Professor Prandtl) to
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assume a continuous course from I only to that point II' of the

parabola (28a) at which the temperature 82 is just attained

(at _ = 1 - _) and then that the volume from value 1 - _2

jumps to _o= (without change of temperature).

The second case (k' = O) offel_s no such difficulty; for

from (@@b)

8 = 6[_) 2 - 2 _ + 1 + a]

and hence from (28a)

(_ - _) (_ - _) (30)_= _-i= (I+8) _o

and hence, after integration,

x _ 1 u)I In (o0_ - 00) - 00_ In (o0 - ¢_ (30a)
7 I+ 6 ¢I -_

The third case presents itself when we make the assumption

by way of trial and write the integral of (29)

8 = A _2 + B _ + (_ (31)

The curve shall pass through the points I and II. If we intro-

duce the value of e in (31) into (29), tile right side of the

equation will consist of a polynomial of the second order in

_, which for o_I and _o2 vanishes.

therefore up to one factor the value

this factor is identical with that of

Both polynomials have

('_ - _I) (_o - (o_). Since

_ it is clear to see

that (29) by substitution of (31) becomes

7 (2A_ + B)=_o
A- 5

A+I
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which can only be so if

k' A- 6
-_--,-2A- A + i

on the other side, the points

(31) which also requires B = 0.

@l -- @2
A= C

_o_ _ _o2_; =

With the values (27),

and B= 0

el, _01 and @2, (02

Then

2 (D 2(D 1

(32)

must lie on

i + _ (33)
A- 6 + i; C = 8 28 + 1

If this value of A is introduced in (32) the statement may be

made: Equation (31) gives a solution of the problem only when

k' 28

--fir 28+i

2-_g+-y+ 8

I- 6
28+1

that is when

k'

7=1+2_8

This is the third special v_lue for

tion offers small difficulty:

(34)

k'
-_ for which the integra-

From(31)and (33)

6 (1 + a- _);
8= 28+ !

from (S6a)

_, d___= (02 + e - _o
dx

becomes, since the numerator is to the right of the zero posi-

tion of _ and _2,
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_,d__ 8 + I
dx 28 + I (0

(35)

or, by integration

x 28 + 1 _o; In (_ - _o) - _% In (_o - _%) (35a)

This result differs from (30), where k' = 0 was introduced,

only by the factor 2 8 + I.

The physical application of this solution depends on how

nearly equation (34) describes the process for real gases.

From (25) and (23) we have the relations

al so

k c_2- 4
cv = cv or k = _ _ Cp

Cp

c-7: 1.4 x = 1.s6 _ Cv (34a)

D. E. Meyer in his gas theory gives the value of

k= 1.6 _] cv

For air the observed values are (k = 0.58 x 10 -4

k
_] = 1.7 x lO -_ and cv = 0,17), - 1.94. The value ob-

_Cv

tained by (34) is lo8G. It lies between the gas theory value

and the observed values for air, 1.94. The solution given by

(35) may be taken as satisfactory.

7. The thickness of the impulse wave.- We shall consider

the value of _ as obtained by (35a) u function of x (Fig.

6), and draw a tangent at the point of steepest inclination to
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x. The length _ between the intersection of this tangent with

the horizontal, _i and _ we define with Prandtl, the thick-

ness _ of the wave front. Then

According to (35),

with a value

f dmh .

dm
has its maximum for (Dma x = _ (D_

Hence

_,/d_0h
\E_/max 26+ I

_= p 26+1
M 6+I

If the increase in pressure

(19)

_i_ vl_ w _I + I and

% v_ _+ _

hence the wave thickness

_=_

_°°i + I

(36)
/ _0._2 _(o2 1

rr- P2 given then according to
Pi

M= = u.,.____ p_. rr _ + 1
V1_ V I _ - I "

u _,+,I
v_ _ - I _ + _

_+ _.-1

For air at atmospheric pressure and O°C

(36a)

_---@_ =2.3x IO-"

_ 22400 cm S

v_ Z_J g

= 1.O13 × l0 sPl

_i =6
I,
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so that

+ 1
/ _I = 74 x 10 -7 cm

37

also the impulse pressure I_,

For various values of P2, the value of

Impulse pressure p_, in atm. 2 5 i0

Wave thickness, _ x lO -7 447 ll7 66 16.5 5.2 3.6 2.9

The value of _ is so small that it approaches molecular dimen-

sions. According to the gas theory the average free path is
....... Clef'

90 x lO-V/ and the average distance between two molecules is

y 22400 em6.2 × lO _3 = 3.3 × 10-7/. From these it is seen that the

width of the wave front is for p_ = 8 atm. already less than

the average free path; and at something over 2000 atm. less

than the average distance between two molecules.

The above consideration would indicate that the fundamen-

tal equations under (3) do not describe the actual processes

taking place within the wave front. These equations, based on

a physical continutun, have a real physical meaning _nly so long

as the separate gas particles during a measurable change in T

and v still represent a great number of impacts. As the re-

sults just given show such a condition cannot exist within

an intense impact wave. The heating and compression is in re-

ality much more the effect of single extremely small molecul_

impacts. A description of the compressional impact wave that

shall tally with the actual process is only possible when based

is expressed in atmospheres.

from (36a) is

100 1000 2000 3000
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on

upon a consideration of these individual imphcts instead of/the

concepts p, v, and T. These magnitudes within the area of the

w_ve front can have little signific_-mce.

Under these circumstances a solution of the problem might

be sought from the standpoint of the kinetic theory of gases,

and as follows: A distribution function is defined

as having the meaning that at the point x of the tube the

number of molecules (per Unit vol-_ae) with velocities between

and _ + d _, _ and _ + d_, _ snd _ + d e is given

by

d_ = F d _ d _ d _ = F d _.

F must be so specified that for x =- c. or

into the Y,axwell function

..... 3

= 3

x = + _ it passes

m o_h_m[(_,% +_+_]=_

1 p

in which m n = p = density; _-h_ = RT = _. And further, the

tre_sport of mass, momentum omd energy in the x-direction_, as

well as the integrals

+co +co 4_
m

+ V= + _) F_

must be independent of x.
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\

And, finally, the distribution, given by F, must be

stationary as is the case according to Maxwell-Boltzmann

(Boltzmann, Vorlesungen Bd. I, equation i14) if

_x

in Boltzmannts notation.

The solution of the oroblem stated in this form would be,

however,, a very incomplete substitute for the treatment of

single impacts _vhich for intense concentrations would not main-

tain a constant distribution function.

The structure of the ' _ _Imp_co wave in liquids may be deduced

exactly as in the case of gases (Section 5), for their macro-

scopic characteristics. By the use of To_Imann ts equation of

state, the values (20, 20a, and 21) give the fundamental equa-

tions (12b) and (12c) for the stationary impact wave,

and

¢v T + v I

Let

CT dv I
M 2 v' + VT - (J + K - Me b) = _ _ dx--

(j + _ - M_b)- _v '_ - F - b(J + K - Z- = E _-_

J + K - E_b = J' }_ b) = F'and F - b (J + K - It-

Multiply the first equation by I the second by CM=
_' 0v J'_

and, as in the case of gases, let

"_. e' - CT}_
_' = v' _V, j,_--; _ -

p+K

J

and for the constants,
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k
7r

Then we will have

e'
co' +-_w- I = _' do_'

de'
e' - 8'[(i +

e' = _' 0_'. I

(37)

These equations are in fact wholly analogous with (36) which

have already been discussed. In order to determine wl_ich inte-

gral (30) or (35) is to be selected, we have the observed volue

k'

of -_r which may be compo_ed with the values in (34). For the

"third case" we have

k 4

Cp9 - _ = 1.33.

For the case of ethyl ether it has been observed,

k = 0.00035 cal Cp 0 564 cal .cm s deg.' = " g de------g--_'_ = 0.0038 _s;cm

hence

k k

Op_ 0.22. _ is therefore about six times small-

er them the value indicated in (34). We would come nearer the

truth if we select the "second case," (k' = 01, which according

to (30) $ives

_' d_o' i - OO2dx - (1 + 8') (_' - _' )_,(_' ' )

and the wave front thickness
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= (s8)1+5'
,,/ _7 -1

From equation (22) we obtain, as in the case of gases,

__ /._.' __,+.1
_f_ = _ _-z /v' - b /-_-_--I. _ "'+_ (30)

,/ p_ + g,/w'[ + 1 / TT' __+ I'TI'_ +

wherein, as in (23)

+ 1

1

1+6' p_ +K
- 6' and w' = "

p; +K

By substituting the values given above, we obtain the values

for the thickness of the impact wave as follows:

Impact pressure p_ , atm. I00 i000 I0000 I00000

Wave thickness _ x !0-_om 52 5.3 0.65 0.14

The thickness of the wave front for the case where the

fluid is a liquid is seen to be of the same order as that of

gases. There is met with again in this case calculated values

for the thickness of impact waves of intense concentration,

magnitudes that are smaller than the averas"e distance between

two molecules which for ether is calculated to be 0.55 × 10-Vcm.

Continuum physics is in this case, as in gases, inadequate to

describe processes occurring within impact waves.

(To be followed by Technical Nemorandum No. 506, containing

Part II of this article.)
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