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- PREFACE

In making available in English the present article by
R. Becker on Impact Waves and Detonation, there is here pre-
sented with complete bibliograpiny not only an excellent crit-
lcal resume of previous experimental and theoretical inves-
tigations of the Berthelot Explosive Wave but also the most

notable recent contribution that Las been wade to the subject

’ Apong the numerous thermodynamic and kinetic problems
that have arisen in the application of the gaseous explosive
Teaction as a source of power in the internal combustion en-—
gine, the problem of the mode or way by which the transforma-

tion proceeds and the rate at which the heat energy is deliv-

e T

fed to the working fluid deceme very early in the engine's

7~ development a problem of prime importance. It was Nernst who

Considerations Concerning the Process of Combustion in Gas

Engines," given before the General Conference of German Engi-

neers held at Magdeburg in 1905, that the thermodynamnics of
the gas engine did not rest, as is assumed in the case of the
steam engine, upon the thermodynamics of a gaseous working
fluid of constant composition; but that az thermodyramic refer-
ence cycle of maximum work applicable to internal combustion
engines ngust be referred to the thermodynamic cycle of the
chemical transformation taking place within the cylinder, viz.,

A=RT1l nKX. {
{

~ JOSEPH S. AMES COLLECTION,
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At the same time he also poiunted out thnt the répid Eenergy re-—
lease within the cylinder raised other important problems be-
sides that of the thermodynamics of the chenical reaction.
These questions had to do with the hydrodynamics of the fluid,
the profound effect of impact waves and their propagation
through the burned and unburned gases. He showed how many of
the phenomena connected with the combustion of the explosive
gases observed by Berthelot, Dixon, and others found adequate
éxplanation in hydrodynamic laws of fluids. This important
phase of explosion phenomena was made the subject of extended
investigation by Jouguet and Crussard with results that have
been very generally accepted. The work of Becker here given
is a notable extension of these earlier investigations, be-
cause 1t covers the entire range of the explosive reaction in
gases - normal detonation and normal burning.

The successful practical working of the gas engine depends
upon an explosive range usually -desiznated as normal burning.
The National Advisory Committee for Aeronautics Las supported
investigations into this phase of-the reaction and would here
call attention to some of the results of this work that seem
to supplement in some measure the analysis left incomplete in
the work of Becker. Reports of this work on the kinetics of

the gaseous explosive reaction at constant pressure may be

—_
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found in the Committee's Technical Reports* Nos. 176, 280 and
305.

Of particular interest in this connection as indicating
a relation between the two known modes of explosive transfor-
mation - normal detonation and normal burring - is the experi-
mental work of Wendlandt, "Experimental Investigations of the
Limits of Detonation in Mixtures of Explosive Gases," Z. f.
physik. chem. 110, €37 (1924). Alsc, bearing directly on the
subject of combustion may be mentioned "Velocity of Reaction
and Thermodynemics," by M. E. Jouguet, Ann. de Physique 5, 5,
(1926). Also, "Thermsl Equilibrium from the Standpoint of
Chemical Kinetics and Phctochemistry," by Werner Kuhn, J. de
Chim. physique 23, 363 (1928).

NATIONAL ADVISORY COMMITTEE
FOR AZRONAUTICS.

* "A Constant Pressure Bomb," by F. W. Stevenss N.A.C.A. Tech-
nical Report ITo. 178. (1933)

"The Gaseous Explosive Reaction - The Effect of Inert Gas,"
by F. W. Stevens. ¥.A.C.A. Technical Report No. 2380. (19237)

"The Gaseous Explosive Reactjion - A Study of the Kinetics of
Composite Fuels," by F. W, Stevens. N.A.C.A. Techrnical
Report No. 305. (19239)
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TECHNICAL HEHORANDUX NO. 505.

IMPACT WAVES AID DETONATION.*

By R. Eecker.

PART I.

Introduction

As Ricimann (Uber die Fortpflanzung ebener Luftwellen von
endlicher Schwingungsweite, Gott. Ges. d. Wiss. 8 (18580), und
Riemann's ges. Werke, 2 Aufl. S. 156. Vergl. auch Riemann-
Weber, Partielle differentialgleichungen, 5 Aufl. Bd. II,

S. 507) was carrying out the integration of partial differen-
tial equations for a one;dimensional flow of an ideal gas, he
made the discovery that a state of flow marked by constant
distribution of dernsity and velocity could pass over to a state
of flow in which certain surfaces would form within the gases
at which the constant magnitudes - density and velocity - men-
tioned above would vary within finite limits. A discussion
concerning the further course of these disturbances can only
‘follow after the differential equations have been affected by
such conditions as will satisfy the equations of state for

the gas on bYoth sides of the unsitsble surface. These condi-
tions lead to the statement that the laws of the conservation
of mass and of energy as well as the impact law must not be

violated by the passage of the gas through the unstable surface.

*From Zeitschrift fur Physik, Volume 8, p.321 et seq. (1922).

L
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Riemann in his treatment of the subject made the error of con-
sidering the energy equation unnecessary and introduced in its
stead the assumption that the changes of state suffered by the
gases in passing the unstable surfoce was adiabatic. In con-
sequence, as Lord Rayleigh (Theory of Sound, vol. II, p. 41)
hae pointed out; his equations do not satisfy the energy laws.
Later, Hugoniot (Journ. de 1l'ecole polytech., Paris, 57, 58,
(1887), (18389) ) without knowledge of the work of Riemann,
gave an extended mathematical analysis of one-dimensional air
movement in which the relationship with the energy laws was
clearly brought out. His treatment of the unstable surfaces
(which hereafter will be designated "impact waves" or concen-
tration impulse) revealed the fact that by taking into account
the energy laws the changes of state suffered by the gases in
passing the surfaces of instablility did not follow the law of
(static) adiabatics but another law which he called "dynamic
adiabatics" ond which will be referred to in what follows as
the "Hugoniot=cquation.!

Later an extended treatment of the mathematical side of
our problem will be given, following the work of Hadamard
(Propagation des ondes. Paris, (1903) and of Zemplen (Unste-
tege Bewezungen in Flussigkeiten, (Enzykl. d. math. Wissen.
Bd. IV, 2 Teil, 1 Halfte). In the mathematical nomenclature
we shall refer to a surface whose two sides differ.in density

and velocity by finite amounts, as unstable surfaces of the
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"first order." Unstablc surfaces of the second, third, etc.,
orders are those whose first, second, etc. derivatives of those
magnitudes are instable in reference to space and time. Our
impulse wave is therefore an instability of the first order.

An important deduction of the theory is the consequence
that concentration waves of finite over-pressure spontaneously
pass into steep compression impulses (sound waves) whose rate
of propagation is the normal rate of sound propagation in the
gases only for the limiting case of infinitely small compres-—
sion; but with increasing intensity the velocity of propaga-
tion may increase indefinitely. The fact that sound waves
may travel with velocity greater than the ordinary speed of
sound, was first demonstrated by Mach (Wiener Ber. 72 (1875)

75 (1877) 77 (1878), and his co-woTkers. He produced the sound
waves studied either by an electrical spark or by a fulminate.
Martin (2. f. d. ges. Schiess. u. Sprengstoffwesen, 13, 39
(1917) ) likewise worked with a number of explosives for the
production of the sound waves studied by him, He succeeded in
establishing a quantitative relation between the brisanz of

the explosive and the velocity of propagation of its sound wave.
Further, we have Wolff (Ann. d. Phys. 69, 3239 (1899) ) to thank
for extensive measurements of sound waves generated by heavy
explosions. All of these measurements have to do with the case
of the free, spatial propagation of sound waves whose theoret-—

lcal treatment has so far been unsuccessful. With the view of



N.A.C.A., Technieral MKemerandum Ne. 505 4

testing out the theory of one-dimensional movement in gases,
Vielle (Memorial des poudres et salpetres, 10, 177, (1899-1900))
carried out a great rnumber cf experiments. He prevented the
spratial expansion nf the sound wgves by producing the sound
within a steel tute. By this means he was able to observe the
increasing "steepnesg" cof the wave front and fc increase its
veleoclty of propogation threefold abeve the nermal velocity of
sound. |

Technical practice has presented us with two groups of
phenomena whose relationship to the theory of cempressional im-
pulses has only become knowr and made clear after long and
arduous experimental effort. The first group is concerned with
the flow of gases and vapors from openings of different forms
and is of special impertance for the construction cf steam
turoines. Extended analyses of these processes and the prob-
lems they present will be found by Stodola (Die Dampfturtinen,
Berlin, 1905), Prandtl (Handworlerbuch d. Naturwissenschaften,
Bd. 4, Jene, 1213), 8gchroter and Prandtl (Enzykl. 4. math.
Wissen. Bd, V, Teil 1 Heft 2). .

The second group of phencmena connected with the theory
of compressional impulses arises from the rapid chemical trans-—
formations of explosive material. That the effect of such an
explosive transformation on the surrounding air is to produce
a disturbance of the nature of a sound wave, has alrecady been

referred to. But the spatial propagaticn of the area of explo—
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sive transformation within the explosive gases (the detonation
wave) is in itself only a special case of a compressinnal im-
pulse.

The "detonation wave" wgs first nbserved-and measured by
Berthelot (Sur la force des matieres explosives, Paris, (1883)
C.R. 93, 18, (1881) ). 1Its clnse relaticnship with Riemann's
theory of ~compressional impact was recognized by Schuster
(Philos. Trans. London (1833) p. 152); while Chapman (Phil.
Mag. 47, 90 (1899) ) was the first to deduce frem the princi-
ples enumerated by Riemann the complete fundamental equations
leading to the determinaticn of the rate of propagation of the
"detonation wave." An extended analysis and discussicn of
these equations accompanied by numerisal experimental values
was later narried cut by Jouguet (Jour. d. Math. 1, 347 (1905)
2, 5, (1908) ) and by Crussard (Bull. de la soc. d 1'ind. min-
erale, Saint—Etienne;VQ, 109 (1907) ). Their results shewed
satisfactory and far-reaching agreement between the experi-
Vmenta; values obtained by Dixon (Phil. Trans. Londen (1833)
and (1903) ) and the values calculated by them. An investiga-
tion carried out by Taffenel and Dautrische (C.R. 155, 133l
(1912) ) in which they sought to demonstrate the theory of com-
pressional impulses numerically as applied to solid explosives,
came to grief through their error in useing an approximated form
of van der Waal's equation of state as an expression represent-

ing the real condition cof gases at any cecncentration. In a
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short commmnication (Becker, Z. f, Elektrochem. 23, 40 {1917),
%Z. f. Physik 4, 3393 (1921) I brought together a few consider-
ations which in the simplest way and without any assumptions
concerning the state of the reacting components led directly

to the equetions for detonation. I was able to show by the use
of an equation of state based on the experimental values ob-
tained by Amagat (Becker, l.c) that these equations led to
reasonable values fof the rate of propagation of the detonation
wave even in the case of golid explosives.

The theory of compressional impulses therefore seems to
rest: upon a well establiched mathematical basis which 1s fur-
ther supported by extensive experimental results. But in spite
of this, from a purely physical standpoint, its present form is
unsatisfactory. The initial given conditions required for an
expression of bstate (density, pressure, velocity) existing on
both sidesrof the surface of instability are indeed sufficient
for a thorough macroscopic description of the phencmena; never-
theless they glve us no insight into the actual processes in-
volved in the transformation. It is for instance not made clear
why in a detonation wave the compression no longer remains
adiabatic but follows the Hugoniot equation instead. In order
to arrive at a purely physical theory some insight is required
of the m&croéoopio structure éf the wave front. In what fol-
lows I shall show in Section 1 by simple means and by figures,

in Section 2 by mathematical treatment of tne same processes
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how the surfaces of instability originate if it is assumed
that the fluid is free from friction and heat conductien.
When, however, it is recognized and taken into account (Se~-
tion 3) that no substance exists free from friction and heat
conducticn it must follow that a sharply defined surface of
instability cannot arise. The impact wave must have a finite
thickness. This statement was first made by Prandtl (7. f. d.
ges. Turbinenwesen 3, 241, (1908) ). If the differential equa-
tions for one-dimensional movement are affected with terms ex-
pressing the effect of frintion and heat conduction (Section 4),
there 1s obtained by integration without particular difficulty
not only the Riemann-Hugcniot equations for the macroscopic

the equations
characteristics of impulse waves (Section 5), but/ also lend
some insight into their microscopic structure (Section 8).
The computation of the thickness of impulse waves will be il-
lustrated by numerical examples.

A knowledge of the processes taking place within the wave
'front is also a necessary preliminary to a real knowledge of
the detonation wave; by carrying out the consequences of the
theory of instability one is led by compelling and unmistak-
able ways to values of detonation velocity (Section 8 ~ See
N.A.C.A. Technical Memorandum No. 506, which is a continuation
of this report), and detonation pressure (Section 9 - T.M. 508);
vet 1t remains entirely unexplained how the initial components

against the wave front are brought to a condition of activation.
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By applicaticn of the knowledge won concerning compressional
impulses an understanding of this proncess is somewhat assisted
*although much yet remains to be satisfactorily explained (Sec-

tion 10 - T.M¥. No. 508).
A. The Formation of Compressioh Impulses

ls A simple method of treatment.-~ In order to represent

in a simple way how compression impulses-“ay be formed, imagine
the device represented in Figure 1 - a long tube closed at the
left by a pisten a, and filled with air. A small velccity
dw, 1is imparted to the pisten. This movement prcduces in the

gases a weak compression wgve that travels from left to right

with the velocity of sound ¢ = 4’7 RT. At a given instant
(Fig. 1, b), the gas to the right of the wave front remains
unchanged and at rest, while the air between the wave front
and the piston 1s adlabatically compressed by an amount dp,
and has the velocity dw. The velocity of the pisten is now
increased by the amount dw whereby a second compression wave
is produced in the gas and is prepageted along the tube behind
the first (Fig. 1, ¢). By repeating this process the velocity
2f the piston is finally brought to the velocity w. There is
thus produced within the mass of gas in the tube a terrassed
form of wave whcse particles to the left move with the velocity
w. What is the further history and fate of thnis wave? In the

first place it is plain that the stratum of the terrass to the
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left has a greater velocity relative to the tube than the
strata to the right. Besides, the tempereture and hence the
sound velocity 1s greater in the strata tovthe left than to
ghe right.  As a consequence the strata draw together and the
wgve front becomes steeper, (Figure 1,e and 1,f). It must not
be cverlooked what will happen When‘the steepness of the wave
front becomes infinite ( a condition to be considered in See-
tion 2).

If, on the contrary, the piston is given a velocity to
the left a rarefaction wave will be produced in the tube as
may be easily realized from analogy tc what has been stated.
The rarefaction wave will, contrary to the compressiorn wave,
become ever flatter and flatter the further it advances in the
tube. |

In conventional expositions of the subject (for example,
that of Riemann-Weber, vol. 2) as alsn in Sectinn 9 (T.¥. No.
506) of this "Arbeit," a consideration of rarefaction waves
will be excluded because they involve a loss of entropy and
because from the second law of thermodynamics they are impos-—

sible of propagation. It will be shown here that from the

standpoint of pure mechanics they cannot develop. At the end
of the next paragraph, also in Section 9 (T.¥. Ho. 5068), it
will be shown that both conditions (the thermodynamic and me-

chanic) are really identical.
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2. A mathematical treatment of the same processes.— An-

ticipating applications to be made later, the differential
equations describing the unidimensional gas movement will be
so written as to include the effect of friction and heat con-
ductivity.

¢ represents the very small thickness of any cross sec-
tion of the tube; x the spatial coordinate measured along
the length of the tube; 1t the time; wuw the velocity; p the
density; p the pressure.* Then, as 1s customary, the change
in a characteristic G of a material particle with time may

be written

ac  _  2& aG

d't éﬂt—-+uax (1)
also

df _, Ju

a—é "iax (1&)
The mass of the cross section layer ¢t is p € . The momentum

ot B+ ¥ P;, 1is the effective pressure in the direction of
the axis of the tube and perpendicular to the surface of the
layer £; N the heat conductivity; W a friction coefficient.

Then, from elemcntary laws,

*A1ll computations to follow refer to a column of cross section
unitye.

i J

[]
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in which

where M is related to viscosity, m =as indicated by the equa-
tion

b= g (2)
which follows from the symmetry characteristics of pressurc

tensors pjx. The three equations may then be written

4o . _ o 2u 7
du _ _ 13 TR

dt = pox <.p -y (3b)
aE _ Pu\ 1 40, 1@ AT,

dat T (p alle ax> o7 dt T 5 3% <K&xj (3c)

Introducing the entropy S, by the relation

TdS = dF - p &£

55
(3c) may be written

as _ , /2u¥ 4 2. /2N '

°T & ”(.ax/ Y O‘f“*-i/’ (3e1)

in which the change of entropy with time is given as affected
by friction and heat conductivity.
But for the present we will neglect the effect of fric-

tion and heat conduction, Equation (3c') will then read simply

8 = const.

*See Weber and Gans, Report 4. ?E;s. I, 1, p.349.
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That is, compression in the waves takes place adiabatically
and for the case of 2n ideal gas,
p = a? o (4)
o
where a2 1is a constant and k = —£ the ratio of specific

v

heats. With reference to equations (1) and (4) cnd with M =0

and A = 0,
A P 3
2u . ,ou 4 14dp 3P . 5b
5T Vsx Toax - © (5b)

The integrals u (x,t) and p (x,t) corresponding to the
simple trectment of the process carried out in Section 1, per—
mit of a much simpler derivation, with the aid of the theory

of characteristics, than that given by Riemann, Hadamard. To
this end consider a linear element (dx,dt) drawn in the plane

x,t (Fig. 2). Its direction is indicated by the equation

dx = @ dt

Any function whatever as G (x,t) changes along this line by
the value dG = %%-@ + %%) dt. From the expressions for u
and o in equatiéﬁs (5) WeAwill select as function of G,
u=f (p) where £, primarily an undetermined function of

P, gives f', Then,

Y

: - /24 . 1 Py 4 2V 1 QPN
dfu+ 1 (p)] —<fo9+f R 53 at-

Q)
Qv
)
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By addition and subtraction of the expression

au+fl uap

X ox’

the expression within the parentheses becomes

a(u+ f)=[{%%-+11§3-+§9 v (o —lﬂ}

+ f'{—% +u ap + ou Q_Z_El]dt_

From (5a) and (50) the right side of the above equation

vanishes wnhen

f* (¢ - u) = % %% . and 9—%72 = p,
that is, if —
_1 d _ d
fl_p a%a,nd ¢~u+/arg.
or Yarwe
- _1 /dp =u- /%2
ft = _ 5 A/ a0 and © u a0

But this means, in reference to the problem in hand, that the

curve
dx _ . / dp
Fout dp
the expression
u+ s v/,%% dp = const. (6a)
and along the curve o
g—}szu_ /Q'E
a - T/ dp
the expression _
u = f % %g dp = const. (6D)
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The application of this result to the problem as simply
discussed in Section 1 is self-evident: In the tube of infinite
length, the position of the piston at + =0 is x =0 and
it is at rest (Figure 2). 1Its position in succeeding Inter-
vals is indicated by the curve C in the x,t coordinate figure,
as its veloclity constantly changes between the instant t = 0O
and t = 7, and from then on it proceeds at a constant veloc-

ity u,. If we indicate by the index s values referring to

the piston, then, for

0<tg<T 5 x5 =2t and ug = g tg
for tg>1 1 xg=8g 1 t5 - % T2 and ug =g7T =u,

Further, throughout the tube, let t =0, then u =0
and 0 = P, and the curves constructed from (8b) fill the en-
tire space between the x-axis and the curve ¢. Since, now,

1 /dp

for t =0, u - f 5/ & do has the same value throughout
L] t [

s i /4 -
u Jj'pw 30 dPo = const.

and begides, since for the curve (8a)

the entire range,

L /dp -
u + f 5 5 dP = const.,

so must it also follow that along the (62) curve u and p re-
main constont. On the x-oxis itself w = 0. Therefore, through-

out the entire range the relationship between wu and p will be
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P
1 dD
u = g
At the piston and hence along the curve C, ug (according
t (7) ) is given; and from (8) Pg may also be known. We can

therefore draw through every point xg, tg . the straight linc’
X - xg = (t - tg) [us+</dp\ (9)

along which u and p have constant values ug and pPg.

In the case of the piston motion (7) the portion of the
coordinate figure enclosed by the x-axis and the curve ¢ will
be divided into three parts by the two lines drawn according to
(9) from the points O and T. For the lower portion u = O.
The middle portion wu varies between u =0 und u=u. In
the upper portion w 1is finally constant = u, .

In gaseous media according to (4):

k-1

—5 | 1"-—1
/dp _ ./ 8 1 dp _ 2 a/k

If the velocity of sound at initial conditions be given as

&:i
Co = aw pO
Then according to (8) ) h
_ 2 dp
4= g1 (/30 - o)
\
or k-1 k-1 (10)
(E__\ = ‘/E—.\‘gﬁ = 1 + u k = 1
pO'/ \po/ Co & /
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Finelly the slope of the curves (6a) and (6b) is given by

u + %% = Ccqg + u 5

dp 3~ k\

This solution denies that w may possess at the instant

(11)

o/

of crossing of any two curves of the (9) group, two different
values. The intercection of two curves of the (9) group is
the complete analytical counterpart of the conditions referred
to in Section 1, where one wave overtakes another., Position X
and time T of this coincidence are given by the values of x
and t calculated from (39) together with the equation ob-

tained by differentiating with respect to tg:

- gte=tan £L L - 45 g (k+ 1) - co,

where, by the help of (11) and (7) the magnitudes ZXs, ug, <g§g
are expressed as functions of tg. In this way there is ob-
tained

D= o (b k + 20
Tk + 1 8 g s

X=3%%kgtsf +co T

The first position of instability occurs from the coordi-
nate point of reference, tg =0 at the instant

€o 3 oy cl
To = T T+ 1 and at the point Xg = e T AT
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If the piston in one-half second is moved from rest to a
velocity of 100 m/s and then proceeds at that constant rate,
g = 200 m/s?

O = 330 m/s
L = 1.4
T = (0.5 sec

u, = 100 m/s

so that the time and place of the first surface of instability
will be
X = 452 nm

T = 1.38 sec

For this example the pressure increase calculated from (10)

p1

= 1lr_1

o °
and the increase in density

P

-3 = 1,34

o

In Figure 3 the example just given is represented graph-
ically. The course of the velocity u of the wave along the
axis of the tube x, 1s drawn for the intervals 0.2, 0.6,
1.0, and 1.4 sec. The figure plainly shcws the increasing
steepness of the wave form.

The mechanical production of a compression impulse accord-
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ing to the above, depends upon the condition that within an
adiabatic wave train those regions of greater density strive
to become more dense at the expense of the less dense regions.

That is the velocity expressed by (6a),

dx . oy s (. dpy

at dp/adiab.

must increase with increasing density. If we eubstitute for

u its value in (8) we have the condition

d 1 /dp dp
— (/= /22ar+ /B0
ap ( 0./ dp %P a0/

1 d P\
0 5— A/dp/ >0

If we substitute for p;"% we obtain

or

3d dp'> 5
dv av
or, finally, 2
(L2 >0
\NAv®7 44
adiab.

It 1s possible then to make the following generalization:

In any given medium it is mechanically possible to produce only

compression or rarefied impulses according as the value of

d . . .
<dvp> is positive or negative. Exactly thie same criterion
ad.

will be met with (Section 9 - T.M. No. 508) in discussing the

thermodynamic possibility of producing compressional impulses,
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3. The necessity of taking into account the effect of

friction and heat conductivity. The considerations set forth

in Sections 1 and 2 gave a solution of the problem only to the
instont at which instability in the gases appeared. A further
consideration of the processes is made possible if there be
added to the Riemann-Hugoniot line of analysis three equations
involving the magnitudes u, and p on both sides of the in-
stable surface. This extension of the analysis of the proc-
esses is made necessary if we are to secure the reasoning
against any possible violation of the laws of the conservation
of mass and of energy, also the impact law. These equations
are identical with equations (14). They will later on Teceive
extended consideration.

This procedure is free from objection - indeed, 1t seems
the only possible one - in so far as equations (5) are axio-
matically accepted as describing what actually takes place.
But from the standpoint of physics, this objection may be made:
Equations (5) hold only so long as friction and heat conduc-
tivity may be considered negligible. But since no substances
are known to exist free from these characteristics, these equa-
tions must give results that are in error as soon as the tem-
perature decrease or the rate of change of volume exceeds a
certain limit., These values according to the above considera-
tions would appear to be toc significant to te neglected. The

application of equations (5) are not admissible at this point.
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If we refer for a moment to the simple exposition of the
process as given in Section 1, we will be led to expect the
following: When the wave front has reached a certain steepness,
the counter forces of friction and heat conduction oppose the
tendency to furfher compression. A condition will be reached
where these two tendencies compeﬁsate each other and from this
point on a quasi-stationary wave form will “e propagated along
the tuve.

Before seeking in this sense an integration of the general
equation (3) we shall attempt to show in a wholly qualitative
way how the course of temperature change is influenced by heat
conduction. Let the line ABCD represent the course of tem-
perature change in the neighborhood of a compression wave.(Fig.
4). Assume the increase of pressure to be such that due to
adlabatic compression, the absolute temperature is increased
threefold; for example, from 300° to 900° absolute. The role
of heat conductivity will be the most significant among the
gas molecules at B and C - the positions of greatest change
in the temperature gradient. The gases flowing from D may
gain in temperature about 200° and at B be cooled by a like
amount. At 500° they are affected by adiabatic compression
that increases the temperature threefold, that is, to 1500°.

By conduction they lose at B 200°, thus proceeding toward A
at a temperature of 1300°. At first sight the paradoxical re-

sult would seem to be that in consequence of heat conduction
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an initial temperature difference of 600° has been increased
to 1000°!  But in truth, with the change in temperature dif-
ference there has followed a change in pressure and density
difference which are in themselves a source of wave formation
thrown back from the original wave front toward the piston.*
In fhis way the actual processes in the formation of compres-
sion impulseés are seen to be so complicated that at present a
complete theoretical treatment of their formation seems out of
the question. Only ofter the impulse wave has become quasi-
stationary do we again find conditions more satisfactory for
theoretical analysis.

From a consideration of the above roughly qualitative dis-
cussion it is not to be wondered at if we meet with surprising

temperature differences in impact waves of high compression.
B. The Stationary Compression Impulse

4. Differential equations.~ In this paragraph we shall

investigate the characteristics of compressional impulses af-

ter they have assumed the form of a quasi-stationary wave.

We shall imagine that the coordinate system of reference noves
synchronously with the‘compression wave., In this way the wave
may be treated as actually stationary. We shall therefore in-
tegrate equations (3) for the case that the partial derive-

tives vanish with the time. Accordingly, we substitute for

*These waves find their ocnalogue in detonation in the "retona-
tion waves" of Dixon and le Chatelier.
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éf, u 5% anc write

oL au _
u oF + P =0

X

QU ., D aw\

cufy *sx (p-usx)
2E _ i_\.E-i_ Ral AT
pusi=(p-r53)55% a:c()‘mg

The first equation may be integrated at once and by that the
second. If we substitute from the solution of the first and
second equations pPpu and p ~ %% in the third equation, it
may also e integrated. By the aid of the three integration
constants M, J, and F and by the substitution of the density

1
p, the reciprocal specific volume =, there is obtained the

differentinl equations for the stationary compression impulse.

u = Mv (12a)
Wovep-J=nug (120)
E+Jv-3%M v _F-= % %% (12¢)

From these equations enerzy E and temperature T are seen
to be glven functions of pressure and volume. A second inte—
gration of these equations gives the desired continuous trans-

fer of the magnitudes p, v,, U, 1In front of the concentra-

19 i

tion impulse, to thelr magnitudes p,, V,, U, behind it. The
relations that prevell between these six magnitudes are at
once manifest by obscrving thet only within the wave front

itself do the expressions %% and %% differ appreciably
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from 0. For any point outside the wave front we may thercfore

write

<le
I

%—i +p=4J (13)
u? _

If we compare any two such positions with each other, we must

have

YUy u2
_'\-f-; = ;T: (l-’.‘:&.)
2 u 2
T tRT TR (140)
1 2
u, =2 u.=2
Ey + o+ Dy ¥ = B + 5~ + D2 Vo (14c)

These fundamental equations expressing the macroscopic char-
acteristics of impulse waves are, as given, independent of
the magnitude of friction i, and of heat conductivity A.
They are identical with the stipulations made in the intro-
ductory treatmeﬁt for the conditions on both sides of the

layer of instability, and could, in fact, be directly written
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there if it is also specified that for the case of a station-
ary wave the transport per second of mass, impulse and energy

through any two cross cections of the tube are the same.

5. The macroscopic characteristics of compressional im-

s

pulscs.— Before carrying out the integration of equations (13)
we will gather some conception of the significance of equa-
tions (14). To this end we solve (1l4a) ond (14b) for wu, ond

u, and substitute the values in (l4c). We then have

1 1 vl _ V2
P, ~ P
w2 = VR o (15D)
E. - B, =% (p, #p;) (v, = V) (15¢)

Equation (15c) is thae Hugoniot equation which in the case of
impact waves - detonation — takes the place of the adiabatic
relation, dS = O.

For smaoll differences E, — E, end ¥, - Vv,, (15c) be-
comes dE - p & v =0, - on expression 1dentical with the

adiabatic,
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The velocity of propagation D, of the impact (detonation)
wave in a medium at rest and the flow velocity W %Ft up in

the medium behind the detonation wave are expressed by

-

D = = Vv p2 B pL
ul 1 vl v, \ (16)
P, - P
W=1u - us=(v, - vs) 7‘:“7‘?;:‘

-

The impulse (detonation) wave is determined by the initial con-
dition of the medium (p1 and v, ) as well as the pressure Ds
within the wave. Further, it ig desired to find the factors
(D, W, T,, etc.).

First, we sghall carry out the calculation for a perfect

gas where
R T (17a)

& (Ta - Ty), (170)

o]
o
1]

3
.Y
1
=1
-
l

where cy 1s the average specific heat between T, and Tao

absolute. Let i
2 Cy
£, = Rv+1
and s (18)
‘n’:gz_
b, |
Then T, _ ™+ ¢
LAl NS (192)
v e meE, + 1
v, o, T+ (19b)
hence

¥ o= p v, Lht2 (190)
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- 1)°
(m “‘lT : (194)

2 _
W =p, v, (gl-l)nca

If the dependence of temperature on c¢y be neglected then

L, = %né—% = (for diatomic gases) 6. Hence, as soon as the
value of m becomes large as compared‘to §, temperature T
becomes proportional to pressure p. It is therefore necessa-
Ty that ¢, bve taken as a function of T.* According to the
results of Pier (2. f. Elektrochem. 15, 5368 (1909), also 16,
897 (1910) ) and Siegel (Z. f. physik. Chem. 87, 641, (1914) )
the specific heat of oxygen and nitrogen carried out experi-

mentally to 3000° abs. is

—273 T

oy = 4,78 + 0,45 x 107 1 —.c&al.

from which we find

¢, = 5.82 + 0.46 x 1070 T,.

Since the values given in the following table are carried out
for temperatures much above 3000° abs., the results given can

be taken as representing only the order of the magnitudes to

be expected. With the value given above for ¢, (19a) bvecomes
a quadratic equation for T. Using this calculated value the
other equations under (19) give the numerical results sought

for the fluid air.

*Rudenberg, Artill. Monatshefte (1916), p.237, has carried
through a computation assuming ¢y constant.
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Compression Impulse in Ailr

' o}

. T™ abs.
n=Pa E& Y T2 D Ll X m-1) XL adia-
b, Ty Va absolute| m/s| m/s{P, v, | batic
3 1.23 1.63 3386 453 175 1.83 330
) 1.76 2.84 482 698 4523 11.14 426
10 2.58 3.88 705 978 785 34.9 515
50 8.28 6.04 2260 2150 | 1795 296 794
100 14.15 7.66 3860 2030 | 8590 699 950
500 44,80 111.15 12200 6570 | 53880 5560 1433
1000 70.00 ;14,30 ; 19100 9310 | 8560, 14300 1710
2000 }106.230 }18.80 29000 18900 |12310 37600 2070
3000 |134.40 {25.30 36700 15780 (15050 83900 2180

Concerning the values given in the above table, it should
be stated that sound waves have been produced in air having a
rate of propagation around 13000 m/s. These waves were produced
in air by detonating substances. By enclosure in a tube the
one-dimensional movenent of the wave was observed.* A wave of
this velocity should, according to the above table, heat the air
within it to around 30,000°, that is, to a temperature of the
order attributed to fixed stars. In the last column of the ta-
ble there is given the temperature that should result from adia-
batic compression alone and corresponding to a given pressure.
These values are seen to be only about 10% of the temperature
of the impact wave. The next to the last column in the table
1s of interest in estimating the effect of an impact wave as

it strikes an obstacle (Rudenberg, l.c. p.2354). This force

*A report of these experiments will shortly appear in Z. f.
techn. Physik. 3, 1523 (1923), also 3, 249 (19223) ).
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(totrl impulse i) is made up of the static pressure difference

P2 — p,;, and the weight of the flow of the mass of gas behind

the wave front @, W2 With @, = o~ and the value of W from
2

(18) _ 2 A
t=(g -p)+tp W=1I(p -p) 3

1 1
The effect of the impact of the detonation wave is therefore

greater than the pressure difference by the value of the concen-

tration factor

1-
Vo
A similar calculation may be carried cut for the case of
liquids. For this case the eduation of state for exceedingly
high pressures as stated by Tammann (Ann. d. Physik. 37, 975,
(1913) ) is applied:

_cT
P= 30 K,

where C, b, and K are constants.

The energy expression from the general equation is

dE = cy 4 T + (p 22 — p) dv
3T
cy T+ KV (20a)

E

writing

then with (20a) and the Hugoniot equation (15c)
oy (T, - T,) = 3 (p!, + ') (v, - v!})

and from (20)
pt vt = (T

These equations are in form identical with the gas equations

above and their solution the same as given in (19), Hence if
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2 cy 2 ¢
¢, = °v i1 =22%

C C
TT':B_E_._-*:_E
p1+K
’ T, o T+t
—_ = T pe—_—21 _
T, r’gl + 1
v, - b '+
1 = T 9 (23)
v, - b mw ¢, + 1
Dg=v2p1+Kﬂ'§1+1

1 v, - D ¢, - 1
Using the following values: R. Becker (z. f. Elektrochemie

23, 304 (1917) ) K = 3793 atm. O, 0.1001 ——C&Li: b = 0,94 287

g. grad.’ g
_ cms _ cal. . )
v, = 1.36 5 op = 0.564 ErpTady the temperature increase
shown in the following table was obtained for the case of ethyl
ether.
Ps T, - T, T, - T, D /s
atmospheres adiabatic impact velocity
100 1.6 1.6 1260
1000 15.6 15.6 1445
10000 85 113 2680
20000 128 211 3000
60000 301 594 5010
100000 245 975 6420

In this case it is to be seen that the increase of temperature

due to the impulse wave ig, up to a pressure of some thousand

atmospheres, not markedly different from what wculd be indicated

by adiabatic coupression.

reached does the difference become marked.

8. The structure of the compression impulse.-

Only when very high pressures are

In order to

gain some knowledge of the structure of the wave front 1t 1s

necessary to carry through the integration of equations (12).

Conceive first that the gas in the tube is such that its spe-
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cific heat is independent cf temperature. We introduce the cen-

stants
cp _ _ ) _ R _ E:i _ ) . k +1 - 1+8 =-='
CV = k (-— 1.4), 6 = znv 2 < 0'2)) gl k __1 5 ( 6)

The values given in parentheses Trefer to diatomic gases.

Further,

Te make the netation of the equations as simple as possible (12b)

]
is multiplied by % and (12¢) by ;3-§3. In place of the un-
v

known factors v, p, and T, we .substitute for them propertional,

dimensionless magnitudes,

M P _RTIW
w = v -—J-—’ Cp = '3 9 = "_J2 - (84)
and further, let '
QO+ 1 = g“EEMT ut o= By o A (235)
J M oy M /

Then equations (12b) and (13c) take the form

R aw
w+z-1=yp Ix (26a)
6 -~ 8[(1-~0wf +a] = £ (26D)
X
B = w o (2g6¢c)

With the exception of the physical constants 5, u', A', the
entire proceés is represented by the use of only one constant, a.
The magnitudes w,, 6,, ¢, and w,, 0,, @, which at toth
sides of the wave front, are obtained by solving the quadratic
equaticns, which by placing the left side of equations (26a)

and (28b) equal to 0, gives
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_ 1
T Gy R G R S W N T IS R U (37a)

2

6, = §_T§§1—I7’ {1 T2 (8 +1)aF /148 (8+ 1)@} (270)

2

<\01=2—(“63:_1—5-{1:,\/1—-45(5+1)(1'1 (2?0)

The relationship between the evident magnitudes T = %i =2

and the constant a is, according to (27¢)

aQ =

1 n
§ (6 +1I) (m+ 1)*

The values (387) are easily represented on a w, B-plane (Fig. 5),
as intersection points of the two parabolas,

8= -(F-w) +2 (28a)

and

D
i

5 {(1 - w)? ‘+ a} (28b)

(38a) is a parabola independent of & and a. With opening below
and with maximum, ® = % (6 = %). (288b), on the other hand, has
its opening above, its minimum, © = 1, The parabola (38b) is
displaced downward (without change of form) with decreasing

values of a. It is easy to recognize the following special

cases: points of contact of the two parabolas for

1 _ . _ P, .
25 (5 F 1y~ 1.04; m = -% = 1 (limit of infinitely weak
sound waves). (238D) intersects the peak of (28a) for

a =

1 -5 )
= i i = . o i i i i i i
a —I5 1. D 1.5 (The limit of infinitely intense

sound Wwaves: a = 0; p = ®,)
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The course of a single particle across the wave front as indi-
cated by the w, 6 coordinate figure, would correspond to a
curve whose differential equation as drawn from (26a) and (26b)

would bDe
(
AdB_ 8 - 8(1 ~ w)® + a}
n' dw w2 w4+ 6

(29)

The curve of the integral of (39) should pass through the
points of intersection of the parabolas, that is, through the
common points of differential egquation.

For three special cases the value of %% the integration
is easily followed tiarough:  In the first place, we see that
for the extreme values p'=0 or A' =0, the curve of the
integral of (29) will be identical with the parabola (28a) or
(28D).

The first of these cases, namely, P' = 0, 1is the case
where the effect of friction is neglected. It gives in general

no continuous course of W through the wave front; from (26a)

6 = - w® + w; and hence from (26b),
M= (14 6) (0 —w) (0~ ).

%% is therefore positive for all values of w Dbetween o,

and wp. But when the gas particle moves along the curve (28a)
from I to II, the value of 6, as we saw, at first increases
with increasing compression impulses (gf > 1.5> and then again
decreases. The only way to escape this apparent contradiction

seems to be (following the suggestion of Professor Prandtl) to
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assume a continuous course from I only to that point II' of the
parabola (28a) at which the temperature 6, is just attained
(at © =1~ w,) and then that the volume from value 1 - W,
jumps to w, (without change of temperature).
The second case (A' = 0) offers no such difficulty; for
from (26D)
6 =08[w2 -2w + 1+ a]

and hence from (26a)

. dw _ (w - w]_) ((D - we)
o= o = (1 +6) = (30)
and hence, after integration,
X _ 1 W In (@0, - ®) —w; 1In (W -~ W)
pT 7 IT+73 W, S, (30a)

The third case presents itself when we make the assumption

by way of trial and write the integral of (29)
8= Aw +Buw+0 (31)

The curve shall pass through the points I and II. If we intro-
duce the value of 6 in (31) into (239), the right side of the
equation will consist of a polynomial of the second order in

w, which for w, and w, vanighes. Both polynomials have

1
therefore up to one factor the value (w - w,) (w - w,). Since
this factor is identical with that of w, 1it is clear to see

that (29) by substitution of (31) becomes

Al . A-8
m (A w + B) = w AT
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which can only be so if

A’ _A-5 _
G- 34 =459 and B=0 (32)

on the other side, the points 6,, w, and 6, w, must lie on

(31) which also requires B = 0. Then

6. _ 8 6, w.2 - 6, w2
A= N 5 : o = 2 W 1 Ve
w12 -— wz? w12 e 0)22
With the values (27),
P C = 5_1.__§- (33)

6+ 1° S +

If this value of A 1is introduced in (32) the statement may be

made: Equation (31) gives a solution of the problem only when

A 28 =__26+1f+ °

BT ] 1. _05
2060 + 1
that 1s when
]
Ir=1+36 (34)

This is the third special value for %& for which the integra-

tion offers small difficulty, From (31) and (33)

6= gpay (1+ o= o)
from (36a)
Hué@:‘wz""e"(o
dx w

becomes, since the numerator is to the right of the zero posi-

tion of w and W

1 273
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vdw _ & +1 (0= w) (0 - w)
uﬁ—26+l ) (35)

or, by integration
86+ 1 w, In (0, - ©) - w, 1In (0 - w;)

X
x
v § ¥ 1 s, - o,

(35a)

This result differs from (30), where X' = O was introduced,
only by the factor 2 & + 1.

The physical application of this sclution depends on how
nearly equation (34) describes the process for real gases.

From (25) and (23) we have the relations

A Co

) -2
a‘a"——cv or )\.—z'l"lcp
also
°p
Ty = 154 A = 1.861 cy (34a)

D. E. Meyer in his gas theory gives the value of

>\-= 1.6ncv

For alr the observed values are (A = 0.58 x 10~ °,

N = 1.7 x 107* and oy = 0,17), o 1.94. The value ob-

v

tained by (34) is 1.86. It lies between the gas theory value
and the obgsexrved values for air, 1.94. The solution given by

(35) may be taken as satisfactory.

7o The thickness of the impulse wave.-~ We shall consilder

the value of W as obtained by (35a) u function of x (Fig.

8), and draw a tangent at the point of steepest inclination to
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X. The length 1 %between the intersection of this tangent with
the horizontal, w, and @, Wwe define with Prandtl, the thick-

ness 1 of the wave front. Then

According to (35), g% has its maximum for wp.yx =,w0; W,

with a value e

174w -8 + 1 () a - oy
“E’i}max 25+1( 0y /W)
Hence
Pt |
1 - ¥ 36+ 1 2
M 5+ 1 v/wl (38)
== ~ 1
2
If the increase in pressure 1 = gi given then according to
1
(19) ]
R i KA P UL
w, v, n+c1 vla v, C—-l,
hence the wave thickness .
mgy .t 1
f—i — + 1
§+1 mt+ ¢
3
L C ngl+1 . (36a)
I
1l

For air at atmospheric pressure and 0°¢

=4, -4
b==M=2.3 %10 onTs
v. = 22400 cm?

1 29 g

— 6
p, = 1.013 x 10 5%755

b, =6

]
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so that e
+ 1 v
u—g-l——— /—-l=74x10"’cm
N P, )
T, also the impulse pressure p,, 1is expressed in atmospheres.

For various values of p,, the value of 1 from (36a) is
Impulse pressure p,, in atm. 2 510 100 1000 2000 3000
Wave thickness, 1 x 1077 447 117 66 16.5 5.3 3.6 2.9

The value of 1 1is so small that it approaches molecular dimen-

sions. According to the gas theory the average free path is

s cm
J/ 22400 o = 3.3 X 10"7. From these it is seen that the
6.2 X 10

width of the wave front is for p, = 8 atm. already less than
the average free path; and at something over 3000 atm. less
than the average distance between two molecules.

The above consideration would indicate that the fundamen-
tal equations under (3) do not describe the. actual processes
taking place within the wave front. These equations, based on
a physical continuum, have a real éhysical meaning »anly so long
as the separate gas particles during a measurable change in T
and v still represent a great number of impacts. As the re-
sults just given show such a condition cannot exist within
an intense impact wave. The heating and compression is in re-
ality much more the effect of single extremely small molecular
impacts. A description of the compressional impact wave that

shall tally with the actual process is only possible when based
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on
upon a consideration of these individual imphcts instead of/the

concepts p, v, and T. These magnitudes within the area of the
wgve front can have 1little significance.

Under these circumgtances a solution of the problem might
be sought from the stanépoint of the kinetic theory of gases,

and as follows: A distribution function is defined

F(x, & n, ),

as having the meaning that at the point x of the tube the
number of molecules (per unit volume) with velocities between
¢ and E+df, M and m+dn, ¢ and ¢t + df is given

by : o
AN =Fdftdndt=7F4dw.

F must be so specified that for x= -0 o0r x =+ oo 1t passes

into the Maxwell function
R -
‘hTrm e~h1m[(i——ulf2 +n2+¢2 ]

I , .
£ =1, fM ’e"hem[(t -u, )2+ﬂ2+C‘°‘] ’

™

f; = n,

in which m n = p = density; ?%ﬁ = RT = §. And further, the
transport of maecs, momentum and energy in the x-direction, as
well as the integrals

+oo 4o

oo ‘ - '
m/ tFde  m/ EFRe g/ E(€ +n° + ) Fa

-

must be independent of x.
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And, finelly, the distribution, given by F, must be
stationary as 1s the case according to Maxwell-Boltzmann

(Boltzmann, Vorlesungen Bd. I, equation 114) if

¢ gg =/ /J(FVF' -FF)gbdo, dbde

in Boltzmann's notation.

The solution of the problem stated in this form would be,
however, a very incomplete substitute for the treatment of
single impacts which for intense concentrations would not main-
tain a constant distribution function.

The structure of the impact wave in liquids may be deduced
exactly as in the case of gases (Section 5), for their macro-
scopic characteristics. By the use of Tormann'!s equation of
state, the values (20, 20a, and 21) give the fundamental equa-

tions (13b) and (13c) for the stationary impact wave,

CT av!
M v+ 2 - (J+ K- M D) = Mg
ond
GyT + v (3 + K - ¥b)- 3 WPv!® ~(r - o5+ ¥ - M ) = % =
Let e
J+K~-¥Db=J'" and F-Db(J+X-35 D)=F
. \ . . 1 - oM
Multiply the first equation by 1 the second by P
v
cnd, as in the case of gases, let
Mz CTM=, + K
w' = v sy 6' = iz 9' =2 =

and for the constents,
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Then we will have ~
w' + é; - 1=y %%l
' - 8'[(1L - 0" + a']J= A %%L s (37)
8' = @' w' |
J

These equations are in fact wholly analogous with (238) which

have already been discussed. In order to determine which inte-

gral (30) or (35) is to be selected, we have the observed volue
1

of %& which may be compared with the valucs in (34). For the

"third case" we have

-—-=%= 1.33.

For the case of ethyl ether it has been observed,

A = 0.00035 ——2&L____. o - 0,564 222 . q = 0,0028 5—;

cm 5 deg.’ P g deg.’ cn s
hence

—A— = 0.,33. L is therefore about six times small-

_GpN n

er than the value indicated in (34). We would come nearer the
truth if we select the "second case," (A' = 0), which according

to (30) gives

do' '
1 -~ 1
W3 (1L + 8")

and the wave front thickness
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1 61_2-- tl 7
£l T+ 56 /-w'fl (38)
o~ 1
2

From equation (33) we cbtain, as in the case.of gases,

o~
|
=l

s g .} e,

SRS <%
Ifz=uc—l/ /‘5“1 SRS (39)
p t K/ L+ 1 Qi;}_u 1
o+ ¢
wherein, as in (23)
1+ & , b, +K
(= —gr— and T o= 2o

By substituting the values given above, we obtain the values
for the thickness of the impact wave as follcws:
Impact pressure p,, atm. 100 10C0 10000 100000
Wave thickness 1 x 1077em 52 5.3 0.65 0.14
The thickness of the wave front for the case where the
fluid is a liquid is seen to be of the same order as that of
gases, There is met with again in this case calculated values
for the thickness of impact waves of intense concentration,
magnitudes that are smaller than the average distance between
two molecules which for ether is calculated to be 0.55 x 107~ cm
Continuum physics is in this case, as in gases, inadequate to
describe processes occurring within impact waves.
(To ve followed by Technical Memorandum Ko. 508, éontaining
Part II of this article.)
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