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NATIONAL ADVISCRY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO, 1092

ON LAMINAR AND TURBULENT FRICTICN?

By Th. von Karman "

The theoretical treatment of surface friction of liquids
or gases at a sclid wall encounters serious difficulties as
soon as the processes are no longer defined by the viscosity
of the fluid alone, but also involve the forces of inertia
with the probable exception of the flow phenomena in capil-—
laries and the problems of lubricant friction — as is the
case in nearly all practical problems. All the same, two
substantial advances have been achieved in this domain with—
in the last decades; namely, by Prandtl's "boundaryv layer
theory" and Blasius! confirmation of the previously sus-
pected nature of the friction loss in smooth pipes.

Unfortunatelv, the results of Prandtl's theory have
remained confined to a comparatively narrow range, first
for the more obvicus reason, that the paper work involved
for specific cases is enormous, but then also because its
physical range of validity is, like the theory of pure
friction flow in pipes, restricted to narrow limits. Just
as the pure friction flow, the so—called laminar flow in
pipes, is replaced by a "turbulent flow" at higher velocities,
so the laminar boundary layer is replaced by a "turbulent”
boundary laver.

The present report deals, first with the theory of the
laminar friction flow, where the basic concepts of Prandtl's
boundary layer theory are represented from mathematical and
physical points of view, and a method is indicated by means
of which even more complicated cases can be treated with
simple mathematical means, at least approximately. An
attempt is also made to secure a basis for the computation
of the turdbulent friction by means of formulas through which

Yviber laminare und turbulent Reidbung." Z.f.a.M.M¥.,
Vol. 1, Fo. 4, Aug. 1921, pp. 233-252,
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the empirical laws of the turdbulent pipe resistance can be
applied to other problems on friction drag.

1
MATHEMATICAL IMPORT OF THE BOUNDARY LAYER THEORY

The problem is restricted to two—dimensional flowsj the
axis y # O is chosen as fixed boundary to which the fluid
adheres.

The differential equations of two—dimensional flow with
friction can, by introduction of the stream function ¢ by
means of the formula

o d
u = ;-E, v = -—Hj-
Cy ax
(u and v velocity components in x— and y—direction)

and elimination of the pressure, be expressed by the single
equation

Aoy Oy By 9OV 9ay

e - L D = rany (1)
3t dy ox  dx ay

. 2 2

' , 3 3
where A denotes the operation A& = — + —¢, V = b
dx oy P

kinematic viscosity (pm = viscosity, p = density of fluid).
The boundary layer theory refers to flow phenomena for which
at same distance from the wall the friction shall exert no
perceptible effect on the velocity field, so that for great
values of y the stream function changes into an assumedly
known potential function VY, (x, v, t). At the wall itself

both velocity components u and v are to disappear, In
order to meet both conditions, first put

Vo=V, - ¥ iig o + q/;ﬁzgﬁ%f, X, t) (2)

It is clear that for small values of y the first two
terms cancel out, ieaving only the stream function vf5W1

(the stream function of the boundary layer flow). This is

1 , .
A list of references on boundasry layer theory is given
in reference 1.
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O 3
then so defined that at the wall ?gl = ?gl = 0, On the
y X
other hand, when v represents a small guantity, T be—
v

comes very great for all values of y differing appreciably
from zero; hence, to comply with the first condition — tran—
sition to potential flow — it is sufficient to determine Wl,

OV, oVo ¥
in such a way that /v ——— =<:—~~ for n = =@,

y ay ay y = 0 WA

Thus it is apparent that within the boundary layer (n =
finite) the first two terms, outside the boundary layer (n
very great) the last two terms annul each other. (Strictly
taken, the u component of the boundary layer becomes the

u —~ velocity of the potential flow; for the v component
the boundary layer flow gives a quantity of the order of magnitude

/o, which is not contained in the potential flow.)

Introduce formula (2) in eouation (1), arrange in powers

of v and retain only the highest terms with j%. Then
N

the introduction of n =N£E as variable instead of 'y, the
5 :
. dMWo Vo s
expansion of ?;- and of === according to the formulas
¥ X :

H

N ' =
(), L G,
: = n.J/V;
v = 0 Byg y = O !

By Moy
2
M, IRV
aX axay y = (4]
ovy
and lastly, considering that &4V, = O, <-- = 0,
. bx = 0
y =
affords
#L[?3W1 3, 3%y, oYy 3%y, 53W1q]_ 0 (3)
JUBtan® " 3n dxonz  dx on®  on® )
and, after one integration:
2%y dvy 3%y dwy 3% %y
+ - - =f (x, t)

3tdn  Am 2xan 3z An° an®
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or with éﬁi = u, N[?"Eyi = — v, the variable y = nJ/v being
on ox

introduced again,

du du ou d%y
—t U —m + TV o = b ——= = F (%, t) (4)
ot b dx v dy dy =

in agreement with the Frandtl equations.

The function f (x, t) is determined by the condition for

7 OVo
y = 0. Since u must change to wu, =<:g~> s there is
obtained ¥y =0
du Ju
—2 + g, —2 =1 (x, t) - - (4a)
dt ox
for n = o,

The fricticnless potential flow follows Bernoulli's
equation differentiated along the boundary as streamline
(p, = pressure along the wall)

6'\10 auo 1 BPO
e l B I B (4b)
dt % 3x p Ox
hence .
3 3°
.a..E + 1 _a..E + ?-P: [, -}- —E + v 2 (40)
at Ox dy p Ox oy 2

The significance of (4) and (4b) obviously is that the
assumedly known pressure distribution p, along the wall

which arises from the potential flow is to a certain extent
regarded as impressed field (of force) for the boundary layer
flow; the pressure differences perpendicular to the wall with-
in the boundary layer being disregarded, It is this very
essential hypothesis in Prandtl's theory that leads to the
reduction of the number of equations and the arrangement of
the entire problem. ‘
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THE MOMENTUM THEOREM OF THE BOUNDARY-LAYER THEORY

To bring out the physical sense of the boundary layer
theory the evidence contained in the foregoing equations is
formulated as follows:

(a) A boundary layer thickness 3§ (as a funetion of x)

is to exist such that for y =2 § there no perceptible de~
viation occurs in the flow pattern relative to the potential
flow; especially the x—component wu of the velocity can be
put egual to the wall velocity of the potential flow u,
for y = § (x).

(b) Within the boundary layer itself the pressure is
only dependent on x and egual to the pressure that corre-
sponds to the potential flow along the wall.,

By virtue of the two assumptions (a) and (b) the momen—
tum theorem in the x direction can be applied to a fluid
volume bounded by the wall, a short piece of the line
y = 8 (x) and two cross sections perpendicular to the wall
at x and x + dx (fig. 1.) The increase of momentum is
equated to the resultant of the outside forces, which involve
the pressure difference, and the friction R at the wall as
outside forces. Since for y = 8 the flow changes into
frictionless potential flow, the friction at the transitional
area between the boundary layer and the outer field can be
ignored.

Hence
8 6 )

3 d - d 3p

— [ pudy + = [ pu dy — uy, — [ pudy = - § —— — R (5)

2t dx dx .,/ dx

Is) 0

6
o
§?~/‘pudy is the time rate of change of the momentum con-—

A Ao
tained in the considered volume; 35 puu dy 1is the excess
o
of momentum leaving the front surface over the amount of
N 8

momentum entering at the rear; S;\j/;udv is the inflow

Q
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volume per unit length of the side area y = § (x), so that
0
U, él pudy indicates the momentum entrained with this vol-
x

&

une of fluid.

In laminar flow the frictional force R referred to

du .
unit surface is R = T4 = W §§;> (T = shearing stress
: v =

o]

in the fluid.) Later on, it is shown that equation (5) is
practical also for turbulent flow conditions, if u and p
are regarded as the average values of the velocity with
respect to time and To is expressed by a corresponding
empirical formula.

Equation (5) can, of course, be derived also by in-—
tegration with respect to v from equation (4) with due
regard to (4a) and (4b), It obviously yields, on the basis
of plausible assumptions for the velocitv profile wu (¥)
in the boundary layer (0 < vy < 5), simply a differential
equation for &, that is, for the boundary laver thickness
as a function of x and t. ILimited to stationary processes
it affords an ordinary differential eguation of the first
order for & as a function of x, so that the development
of the boundary laver can be followed by comparatively
simple calculations. The subseauent report by K. Pohlhausen
(reference 1) contains the calculations for = number of
practically important cases, so that this method need not
be gone into further. His calculations show that in all
cases computed by Prandtl's partial differential equations
the apovroximate method ensures results commensurate for all
practical purposes. In this manner a further development
of the theory is made possible even where the solution of
the partial differential equations is extremely tedious, if
not impossible,

LAMINAR AND TURBULENT BOUNDARY LAYER

The simplest and practically most important case that
the boundary laver theory deals with is the frictional re—
sistance of a plate towed in a fluid at rest parallel to
its own plane. Taking the case of two—dimensional motion
and referring the motion to the assumedly static plate, the
problem is as follows: The parallel flow with the uniform
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velocity U is given as a potential motion, the frictional
boundary is to start in the origin of the coordinates x =

y = 0 and for x =2 0 %be given by the axis y = 0, The

. boundary layer thickness and the wall friction is to be
computed as a function of x. This problem has already been
solved by Blasius (reference 2); he found that the boundary

laver thickness increases with ./ x Computing the friction
drag for a plate of lenath 1 and wiﬁth 1 yleld the frie-
tional force (for friction on both sides)

W= 1.327 JupiU® (6)

or, if put, as usual,

Ua
W= et B o— ’ (7)
2g
U
where the resistance is referred to the velocity head 5*,
&

the surface F and the specific weigrt of the fluid Y = pg,:

W= 1.327 J/E.Fr i , (8)

The coefficient of the frictional drag ¢ is a funetinon
of the Reynolds number, or "reduced velocity" "R, in ease the
nondimensional guantity: velocity X plate length divided by
coefficient of kinematic viscosity is introduced as such, so
that

1
c. = 1.327 (8a)

' JE

Blasius indicated, in a later report (reference 3) based
uvon measurements, that formlas (8) and (8a) are no longer
valid for large Reynolds numbers, that rather a sudden change
ocecurs in the natvre of the resistance and presurably in the
state of flow, similar to that occurring in vpipe flow at the
critical limit., On the other side of the sudden change the
resistance increases at more than the 3/2 power of the velocity;
hence the resistance coefficient in equation (7) decreases

slower than  —e.
V R
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Next, it is assumed that the laminar boundary layer, for
which the Prandtl—Blasius theory gives the afore—-mentioned
results, is replaced by a "turbulent boundary layver,® in
which — as for the turbulent flow in pipes — the velocity is
stbjected to continuous fluctuations in magnitude and direc—
tion. The first conseauence of the fluctuations -~ when
plotting the streamlines of the average flow — is that the
shearing stress is not caused by the sliding of the adjacent
fluid portions alonej the portion of the shearing stress
corresponding to the friction becomes small relative to the
momentum transport owing to the irregular convection of the
suprlementary velocities., Up to now, it has not succeeded
to explore in some way the nature of this momentum convection —
apparently obeying statistical laws ~ and to make the fluc—
tuation phenomena accompanying the turbulent flow amenable
to a theoretical study. In this respect the present article
contributes nothing to the solution of the puzzle. The task
undertaken here merely involves the introduction of plausibdle
assumptions for the distribution of the average values of the
velocity within the boundary layer, which are based on the
empirical law of turbulent motion in pipes and the applica—
tion of the previously derived momentum eguation to the
equilibrium of the boundary layer. It results in relations
of the turbulent friction at a towed plate which are in wvery
good agreement with experience.

TEE TURBULENT FLOW IN SMOOTH PIPES

The laws of flow resistance in pipes have been the sub-
Ject of an unusually large number of experiments. But the
empirical material has not improved much up to within recent
date because the different degrees of wall roughness had been
freguently ignored and the tests were not referred to the
physically correct parameter, that is, tke Revnolds numbder,
(The only resistance formula,so far, which allows for the
relative roughness and the Reynolds number is that by B von
Mises (reference 4.) In many instances no consideration was
given to the fact that the constant velocity profile in the
pipe is formed only after a fairly long "convection path.!
Blasius merits the credit of having found an empirical
formula by analyzing the material and comparing the best ex—
periments for smooth pipes whick very accurately reproduces
the nature of the flow resistance over a wide range. Accord—
ing to it the pressure drop for a circular pipe is referred

: =
to the velocity head of the average velocity —

2g
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1 v® v .
=N e=-, A= 0,318 j— (9)
d 2¢g vd

where ! 1is pipe length, and 4 pipe diameter.

By this formula, which represents the experiments ex—
tremely well over a2 wide velocity range the pressure drop is
proportional to the 7/4 power of the average velocity as
against the previousgsly held conception that the resistance
law above the critical velocity would approach the square
law fairly soon. BR. von Mises incidentally conjectured that
contemporarily with increasing velocity, the velocity dis—
tribution over the section becomes consistently more uniform
so that the measured parabolic velocity profiles merely
form a transitional phenomenon and that the profile varies
continuously with increasing velocity (reference 4.) In
the technical literature a parabolic distribuation independ—
ent of the velocity is for the most part tacitly assumed.
The writer concurs with Von Mises to the extent of assuming
a distribution varying with the Rewynolds number but with the
difference of assuming a well defined distribution function
as asymptotic form rather than the uniform distribution,
which the velocity distridbution approaches a2t larece Rewvnolds
numbers and on perfectly smooth walls, Hence, the assump—
tion that in the turbulent as in the laminar zone, 2t least,
for large Revnolds numbers for which the resistance law (a)
holds true, a2 similar remaining velocity distribution over
the cross section exigsts, so that for inereasing throuechflow
volume 211 velocities increase in proportion. Prandtl raised
the guestion whether conclusions could be drawn from the em—
pirical law (9) regarding this velocity distribution, He
found on the basis of = dimensional ansalysis that, under
certain plausible agssumptions, the resistance law definitely
defines the digtribution of the velocity in the direct
vicinity of the wall. The suggestion for the following anal-
ysis goes back to a conversation with Prandtl in the fall
of 1920, The publication is with his consent, though the
process of derivation is somewhat different from his,.

Consider a pipe of circular cross section, If the

velocity in the pipe axis (¥ = 0) is indicated by wup, ..,

the assumption of a velocity profile independent of the
throughflow volume and increasing similarly implies that the

. U . .. . r
ratio g 1is a definite function of Py only (r = distance
max ; :

from pipe axis, a = pipe radius),
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Hence, tre first assumption reads: the velocity at dis—
tance r from the pipe axis can be put

U= Upae :p<§> (10)

P g) being independent of wup,y. On doudbling the velocity
in the center all velocities are doubled.

The second assumption states: the velocity distribution

in vicinity of the wall, that is, near r = a, is to depend,
aside from the physical constants u and op, only on the
distance from the wall 7 = a — r, and further, on the

shearing stress (frictional force) T, transferred to the

wall. Hence, for small values of n

u=f(u, p, Too n) (11)

Specifically, the quantity u is to be independent of
the pipe dimensions, that is, of a, for small values of
Nn. This assumption is based upon the plausible concept
that the velocity distribution next to the wall is inde—
prerdent of the other boundaries of the flow, so that a
definite relation exists between the friction on a wall ele-
ment and the immediately adjacent velocity distribution.
Visualize equation (11) developed by increasing powers of s
the first term of the development to read

i

u = f3(u, p, To)n% (112)

x to be defined later.

The third assumption contains the empirical resistance
law: on doubling the velocity the pressure drop and the
shearing stress at the wall T, is to be increased as
1:27/7%,

The dimensional equality of the left and right side
of (11a) can obviously be maintained only when f contains
the quantities u, p, T, also only in powers; for, on

iO v
bearing in mind that M/”“' and ~— have the dimensions of
p Lig
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velocities, it is readily apparent that the only possible
dimensionally correct combination is

u = B(:IE> : ::x ({}}x (12)
o}

where B is a nondimensional constant.

Cn the other hand, since u increases according to (10)
in proportion to the throughflow volume; whereas, Tg 2 c—

cording to the resistance law increases with the 7 /4 power
of the throughflow volume, the relation

1+ x

i T 4/

2

7, ox = 1/7 (13)

nust apply.

The first term of a development of the velocity is thus
obtained as a fupction of the wall distance

SHCRECN

or, with wu (n) denoting the velocity distribution in prox—
imity of the wall, the shearing stress

7/4
L

To = —% ST < (120)
ow;‘{?—;p :mO 7}1/4/ i

B is a universazl constant valid for smooth walls the
magnitude of which is obviously contingent upon the statisti-
cal law of the turbulent fluctuszstion eocuilibrium.

It is somewhat surprising at first to find the differ—
ential ouotient at the wall to be infinitely great. Since
no momentum convection can occur on a smooth wall because
bothk velocity components disappear, the shearing force must

dn
n
should be infinite according to eguation (12a). The matter

be equal to the frictional force u This expression

is explained, however, by the fact that the equations (12)
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and (12a) must be regarded as an asymptotic expression for
the velocity distribution at infinitely large Reynolds num—
bers just as the power law for the flow resistance represents
an asymptotic law for absolutely smooth walls and for very
large Reynolds numbers., The true velocity distribution is

obtained by drawing a tangent with finite slope, say, to

the velocity curve, so that T = %%. (Compare, for ex—

ample, the interesting measurements in reference 5.) It is
readilyv apparent that the point of contact of this tangent

is shifted to the point n = 0 with increasing Reynolds
number. But it appears that equation (12) itself represents
the velocity distribution with sufficient accuracy for moder—
ate Reynolds numbers.

The best experimente on the velocity distribution in a
¢circular pipe were undoubtedly those made by T. E. Stanton
(reference 6), first, because he originated the use of very
fine pitot tubes in velocity measurements, and second, he
employed a very long straight entrance section ahead of the
test section, thus ensuring that the measurements fell in
the zone where the velocity profile no longer varied per—
ceptibly. Figure 2 shows Stanton's velocity values (ratio
of local velocity to pipe axis velocity) against the wall
distance, both on a logarithmic scale. It is seen that -
apart from the first test point, 0.25 millimeter from the
wall, so that the indication of the pitot tube of 0.33 milli-
meter in diameter no longer seems reliable - that the test
points lie very accurately on a straight line of 1/7 slope.1

For the further applications quantity B in (12a) and
(12b), which according to the assumptions for smooth sur—
faces signifies a universal constant of the turbulent flow
regime, must be determined next. For this purpose it is
really necessary to know the total velocity distribution from
the wall vicinity to the center of the pipe, whereas the for—
mulas (12a) and (12b) are valid, for the present, only in wall
prorimity. The chosen method of calculation included the use
of several appropriste interpolation formulas which satis—
factorily reproduce the velocity distribution, as measured
bv various experimenters, and change to equation (12a) at the
wall.

It is to be noted that Christen proposed a velocity
distribution formula according to which the velocity is pro—
portional to the 1/8 rather than 1/7 power of the distance
from the wall (reference 7). A detailed presentation of the
various distribution formulas is found in Forchheimer's work
(reference 8) as well as in Gimbel's report (reference 9).
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(a) An extreme case occurs when the formulas which in—
dicate the velocity is proportional to the 1/7 power of the
distance from the wall are continued to the pipe center.
Therefore

1/7 1/7
u = 1u (_-.----.-._ = 3 (l—-—) (13)
max \ T, ) max a

Considering the relation

dp e N
EL wa = 2naT, and To = Y s-a
X

existing between the pressure drop and the wall stress, the
calculation of the flow resistance by Blasius's formuls gives

o 477
A ) 1 Umax

B Y o177 o177

The ratio of average velocity v, occurring in Blasius's
formula, to maximum velocity is, by (12),:

Y = 0.816

Unax

1/4
v
Thus with A = 0.318 <-> the value for the constant
B is vd

& /7
=g/ __8 ) 0.816 = 8.57
\0.316

(b) & better approximation to the measurements is
afforded in the case where the velocity profile at the pipe
center is "rounded off" a little, This is best obtained by
the formula
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177
rn
U= Upay (1 - <§> > (13a)

where the exponent n can be chosen arbitrarily; & = 1
obviously leads back to (183). Figure 3 cont=2ins a number
of measurements of different experimenters along with the

three curves for rn = 1, 1.25, and 2. The test points 1lie
almost without exception between curves =n = 1 and n = 2,
Repeating the above calculating process with =n = 1.25 and

n = 2, the constant B amounts to

B = 8.62 with n = 1.25
B = 8.82 with =n = 2.C0
average velocity
The values of the ratio - are 0.838
maximum velocity
for n=1.25 and 0.875 for n = 2. The most reliable

measurements give 0.84,% From this it is concluded that (13)
with n = 1.25 to 2 represents the conditions fairly accu—
rately, so that hereinafter B = 8.7 1is generally used.

Thus eocuation (12a) must be written

T N2/7 ;N\ /"
u = 8,7(59-> (E) (14a)

If the shearing stress T, is expressed as function of
the velocity, equation (12b) reads

1/4
1 . v
e fur ()7

With the values of B obtained on the basis of the
three interpolation formulas, the eguation would read

*also worthy of mention are the measurements by G. J.
Williams (reference 10) and Gumbel (reference 9), where
the proportionality factor decreases a little with increas—
ing Reynolds numbers and then approaches the limiting value
0.,811. This would favor the simple interpolation formula
under (a), But substantially higher values (up to 0.87) also
occur, where the effect of entrance length and roughness have
not yet been fully explained.



NACA TM No., 1092 : 15

_ 1/4
T = 0.,0226 p lim -(u‘ <li\ 1 (14b)
n =0\ un,

as the general expression for the wall friction in case the
velocity distribution wu (m) is known in the vicinity of

the wall. The constant in equation (14b) amounts to 0.0233
for the velocity distribution in the pipe by (14), as against
0.0231 and 0.0221 with =0 = 1.25 and n = 2, by (14a).

APPLICATION TC HEAT TRANSFER

For comparing these formulas with the representations
expressing the turbulent friction by an apparent incresse
in friction coefficient (reference 11) the shearing stress
transmitted in a layer distant n from thg wall is

T = gln, u, o, u) é% (up) (15)

If u as a function of n and the pressure gradient
in the pipe are known, the function g can be explicitly
calculated, DNear the wall T must become T

0o -
. . , . . du
Considering (142) and especially the relation: 7 n E~ =
v
i, yields for g:
ToN3/7 1/7 /7
= 0.805 ( ——\ v T
g (n, w, p) o 5,
r
and putting T = Ty = as follows from the condition of
equilibrium for the circular pipe, gives
/7
To 2 1/7 _B8/%
g (n, u, p) = 0.805 p(-;;) v ¥ (152)

Y Dbeing solely a function of 7 which becomes n for small
n. The relation (15a) is applicable to any cross section if

it is assumed that the ratio of shearing stresses %% is
indepeﬁdent of the velocity and is only a function of the
location.
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Quantity g is a kind of "turbulent friction coeffi-
cient" or better expressed a "turbulence factor."

The portion of true friction at larger Reynolds numbers,
up to an extremely thin layer at the wall, is vanishingly
small, hence the shearing stress is to be regarded almost
exclusively as an average value of the momentum convection,
This identification is of interest because it makes it
possible to develop further the analogy between frictional
resistance and heat transfer in turbulent flow, discovered
by Reynolds (reference 12) and Prandtl (reference 13),
Agsuming that the momentum transport and the heat transfer
is accomplished by the same mechanism of the irregular molar
fluctuating motion, evidently results in two analogous formu—
las for the shearing force transmitted perpendicular to the
flow by "turbulent momentum conduction® per unit of surface
and for the heat volume transferred by “turbulent heat con—
duction:"

1/7 /7
T = 0.805 (--“} o7 27 alem)
dy
(152)
\ 27 /7 _6/7 dlcpd)
¢ = 0.305 <- SAAAE SR i
iy
where ¢ = specific heat, © = temperature, hence <¢® = heat

content per unit mass. Formula (152) mav be continued up to
the wall with gcod approximation if the same proportionality,
agssumed for the mechanism of the "turbulent momentum and heat
transfer," exists for the transfer of molecular momentum and
heat, that is, for the laminar internal friction and for the
true heat conduction. As previously pointed out by Prandtl,
this is evidenced by the fact that for the respective fluid,

the relation %? # 1 exists between heat conduction A

friction coefficient n, and specific heat c¢. This condition is

approximately complied with, in gases. If %% differs very

much from unity, as, for example, for water, the formulz may
be extended only to the boundary of the lamipar laver next
to the wall; while the effect of this layer — as will be

explained elsewhere — can be expressed by a limiting con—
dition,. '
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The formula (15a) enables the heat transfer to be com—
puted in all cases, where the "velocity field" of the turbu—
lent flow is applicable to the average values in time, and
hence g is known. With this formula, H., Latzko (reference
14) worked out a number of technically important cases of
heat transfer to turbulent flows. It succeeded, in particu~
lar, in showing, that it is incorrect to speak of a "heat
transfer factor," as is customary in engineering, that the
heat transfer is rather conditional upon the total arrange—
ment. It also succeeded In explaining the effect of the
individual factors and so to organize the occasionally con—
tradictory experimental material. In this respect the calcu~
lating possibilities of heat transfer processes appear sub—
stant ially extended beyond the Prandtl analogy conclusions,
since for the latter a esomplete agreement in velocity and
temperature field had %to be assumned, while the formula of the
present report makes the differences between both also amena—
ble to caleulation.

TURBULENT BOUNDARY LAYER ON THE FLAT PLATE

The subsecuent calculations are based on the previously
derived equations (14a) and (14b) according to which the
velocity distribution as a function of the wall distance is

1/7

u =a.7<%§§/7 (%) (14a)

if Ty, the shearing stress transferred to the wall is
given, while the shearing stress To is

v \1/4
T, = 0.0225 pu® (...->
o 5 pu” (- (141v)

u(n) being the velocity distribution in the neighborhood
of the wall. To apply these relations to the "turbulent
boundary layer" requires a corresponding formula for the
velocity distribution. With &8 = boundary layer thickness,

U = velocity in undisturbed flow, and y = distance from the
wall, the elementary formula reads

u=U<-§~>1/7 (18)
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Equating (16) to (1l4a) obviously gives

To a/7 ] _ U
8"7(“*) 177 = T1/77
o) v 8

that is, the shearing stress

5/ 1/4 ( )
T, = 0.0225 oU (»-) 17
0 P Ts

Equation (17) yields the formula that must be used in
the momentum equation of the boundary layer as the frictional
force in order to obtain a theory of the turbulent boundary
layer which is to replace the Prandtl-Blasius theory for
the laminar boundary layer. .

Placing, in fact, equation (17) in equation (5) gives

5

6 ’ 1/4
SL . puady - U 4 pudy = 0.0225 pU2 (JL> o
dx dx Us

.

(6] o

Determination of the integrals J/qudy and U/nuzd,v by
% o

means of {(1€) gives the differential equation of the boundary
layer thickness

7 a8 v 1/4
—— = 00,0225 (—*>
72 dx Us

The solution of this equation reads
90+ 475 a/5 ,oN\1"5 a/s ,
§ = (.._> (0.0225) (—) x (18)
4 U
or, for the length 1

o037 1 v 1/5 ( )
Bl - . I_J:—i 18a
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The laminar boundary layer grows proportional to W .

the turbulent layer proportional to x4/5, according to eauna~

tion (18).

Now the frictional resistance of a plate of length 1
can be calculated, either by integration of the frictional
forces along the plate or by applying the momentum theorem
to the end section for x = !, The resistance (both sides)
follows as

» v 2 : 2 v\ 1/5 )

Referring the resistance through the formula

U* .
W = cyfy EE

to the velocity head, gives the resistance coefficient c¢

1
c, = 0.072 —F— (19a)
0.
f R 2
Ul 1
the Peynolds number R Dbeing put at & = - -

Figure 4 contains the test data by Gibbons and Wieselsberger
(reference 15) on comparatively smooth plates, the line for
Ce according to (192), the Reynolds number and the resist-—

ance coefficient are given on a logarithmic scale., The agree—
ment is exceptionsally good. Gebers (reference 16) obtained

a slightly higher exponent. It is suspected that towine of
very long plates is accompanied by irnevitadble vibrations

which permit the resistance to increase rapidly.

lpccording to a communication by letter, Prandtl pos—
sesced formula (19a) before the writer did. He indicates
(cf. Ergebnisse, vol. I) a similar formula with a supple~-
mentary term which allows for the possible existence of
laminar flow at the front edge of a suitably sharp plate.

After determination of the numerical factors from older tests
by Gebers, he gives the formula cg = 0.073 QéEE - lifo,

where the numerical factor in the second term generally de-
pends upon the degree of sharpening, and should be practically

vanishingly small for a rounded—off leading edge.
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An equally good confirmation is afforded bv the velocity
measurements in the vicinity of a towed board. Thus the
points in figure 5 represent the measured velocity distri-
bution perpendicular to a becard towed in water as a function
of the wall distance and specifically in a section 8,56 meters
behind the front edze (referencei1?). The solid line gives
the velocity distribution according to equation (18), the
boundary laver thickness was computed by equation (18).

A comparison of the test data with the curve according to
equation (16) discloses, above all, that it is in no way
necessary to assume a velocity jump at the wall, as com-
monly reported in the technical literature, The present
formulas rather represent the rapid decrease in velocity
next to the wall by the variation of the power curve with
the exponent 1/7 correctly and unrestrictedly.

LAMINAR FLOW ON A ROTATING DISK

As a further illustrative example of applying the meth—
ods obtained for the calculation of laminar and turbulent
fricticnal resistances, the case of a uniformly rotating
disk is to be analyzed. The laminar state of flow caused
by a rotating flat disk is of special interest for the rea-
son that 1t represents one of the rare cases in which the
differential equations of the viscous fluids can be inte—
grated without ommissions. It offers an immediate check
on the accuracy with which Prandtl's boundary layer egus—
tions yield an approximation.

The problem is posed as follows:

The half space x > 0 shall be filled with liouid.
The boundary plane x = 0O rotates about the x—aris with
the uniform rotational speed w. ¥What is the state of
motion in the half space x > 0 with consideration to the
lJuid friction?

Introducing eylindrical coordinates r,- 9, x and de—
neting with en, ¢4, ¢y the velocity components in radisl,

tangential and axial direction, and with p the hydro—
static pressure, the differential equaticn of the flcw in
cylindrical coordinates — when, as follecws from reasons of
symmetry, all velocities are independent of ¢ — read:
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N
3 3 ® 12 3% 3 ren 8%
c. cr-+cx-—3£ S T { T+ — (—2 + r
or dx r p Or dr® dr 'r Ax®
dey dey  leser | [ 3%y L2 Ct> . 3%y ?(20)
e, — + o3 = v Yoot — \—
T ar ¥ dx T \~5r2 3r M T bxe.j
de, dcy 1 dp [3%cy 1 dey aacxl
e, —— +cy T - = =+ V) e - + 5 J
T 3r ox p Ox or r dr dx J
and the equation of continuity
de c dc
.:....I;..p...}:q—,_-..}_z ¢} (20a)
or r ox

The construction of the eguations shows that the sys—
tem (20) and (26a) can be satisfied by the formula

c, = rf(x), ¢, = re(x), ¢, = n(x), p = p(x) (21)

thus yielding for the three funections f, g, h the or-
dinary simultaneous differential equations

. . af a=f a a< dh
f® - g* + h — = v , 2fg + h 2g _ v g’ 242 =0 (22)

ax ax® ax ax® ax

while the egquation

n 22 = -2 22 4y 22 (23)
dx p dx dx=®

arising from the third equation of the svstenm (20) defines
the pressure distribution pl(x).

Since the fluid is to possess no rotation at infinity,
but is to adhere to the rotating wall for x = O, the sys~—
tem 0of the boundary conditions reads

£(0) = 0 f(x) = 0
g(O) = w () = O
h(O) = 0
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The function h{x) has a finite limiting value for
x = ®, This means that there is a gsteady inflow againet
the rotating wall as is to be expected for reasons of
continuityv., Owing to the adherence of the fluid, the ro—
tating wall acts like a kind of centrifugal fan, Next to
the wall the fluid is continuously carried to the oufside,
to be replaced by axial inflow.

For nondimensional representation

¢ =x./2 (24)

is introduced as independent variable and in place of
f, ¢, b the functions f, g, h
3 h . :
£==,g=%5 hn=-" (24a)

B

so that (22) becomes

. . ar “f dg 4%z dn
£f* - g7+ h — = —r, 2fg + h = & ——, — + 2f = 0 (22a)
< - 2
at  dt ¢ 4t af

with the boundary conditions

4
i

0, g=1,h=0 for £t =0

il
o
s}
o
-

e

]
8

f=20, ¢

so that the equations are independent of all special data
of the problem, The gimilarity laws of the prodblem are
readily apparent. Since g(f{) indicates the proportion—

ality factor of the rotative speed at distance x = o

from the wall to speed of rotation w, it is clear that
with increasing velocity only one layver at the wall mani-
fests perceptible rotational speeds, which decrease with

S tausd

s . : : . 1Y
incereasing velocity and decreasing viscosity as B

On the other hand, it follows from the last of equation
(24a) that the axial inflow velocity increases at infinity

as Jow.
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The equation system (22) can be solved by any numeri-—
cal method or by series expansion, However, it is pre—
ferred to apply Pehlhausen's method described in reference
l, for a first approximation,

It is assumed that the function £ 2and g 3t a
distance 5 from the wall are already very little differ—
ent from zero. From (21) it follows that the "boundary
layer thickness" in the present case is constant along
the wall, hence & is independent of ¢£.

Integration of the first two eouations of (22a) be-
tween £ = 0 amd x = 6, that is, £ = 5,/2 = fo, eives

to to ¢
/n(f5~£2)dg+ hiidg=£]o
/ = 0 F /‘“ at at lo
0 : )
£o T ‘ 1(25)
dg dg [5© i
/‘?.’f_gdgﬁ-//wﬂ—d—.—g:-apg‘!o
o o% J

Partial intecration of the second integral, while
bearing in mind that according to the last eouation of the

dh
svstem {22a) E% can be replaced by — 2f, finally affords

o \
s [ t2at Eci =1 J t-- [ 21 e
— = e — f = e e
J— /\Ed Lat e 4/*"*‘(1 Lak o °°
¢ ¢ o
Put

J+

G G k) ) G- )
P (27)

¢ 4
-1z (2 ) (0 - g5) J‘

as approximate expressions for f and g, where a sig-
nifies a constant that is to be determined,

It was borne in mind that

{m



NACA TM No, 1092 24

£=0, g=1 for ¢ =0
¢ = 22 = E = 5
= ==, g = —= or =

and also, as is readily seen from (22a), that

a*f d®g
— = -1, ——5 =0 for tE =0
at at

Numerical calculation of the integrals contained in
(26) gives

fe
£%4¢ = to [0.0301a® — 0,00326a + Q.00159] )

é ¢

&

’} -
// g dt = to 0,2357 b (28)
0 gc
/P fgdt = o [0,0607a — 0.00587) }

Q

which, entered in (26), gives two ordinary equations for
a and fo

- a
0.,0903a" — 0,00978a — 0.23093 = — <=3 )
ko (29)
3
00,2428 — 0.02328 = —
2to
The numerical solution gives
a = 1,026, fo = 2,58 (z0)

Cn the basis of these data the boundary layer thick—
ness & and the axilal inflow veloecity c, at infinity
can then be computed. Obviously
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(o
5 = to V/E = 2,58 J/g, — Oy = w_/PzidE = 0,708,/ vw (31)
v w
. O\

lAssume, for example, air as fluid with v = 0.14 square

centimeter per second and an rpm = 600 per minute, that is,
w = gg% = 62.8 per second; then the boundary layer thickness,

according to (31), would be
§ = 0,122 cubic centimeter

and the axial inflow velocity

Cp = — 7.6 centimeters per second

The most important problem is the calculation of the
frictional resistance. Assuming the wall bounded by r = a,
the case is obviously that of a rotating disk with radius a.
However, the fact that the outer parts of the plane x = 0
are missing, cannot be without some effect on the motion of
the fluid, although it is to be presumed that this effect
remains insignificant, when the thickness of the boundary layer
relative to disk radive is very =mall, ag is aliost slwayethe case in practice.
On these assumptions, the moment of the shearing forces act—
ing on the disk is gimply integrated frem r = 0 to v = a,
or what amounts teo the same thing, the angular momentum leav—
ing in unit time with the fluid at the cylindrical surface
r.= a 1s computed and equated to the moment of the frictional
forces. The latter process is preferred. The angular momen—
tum of the fluid leaving at the cylindrical surface in unit
time is

&
D = ZWaBpJ/QcXcrdx = M (32)
‘ o
or, by (21), (24), and (24a)
£o x
M = 2na4pw3/a vl/gv/pfgdﬁ (32a)
43 o

The integral fegdf has already been computed. Enter—

0

o
ing its value from (28) gives
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M o= 0.92a%pv?/2 372 (33)
or
3 Ua 1
¥ = 1.842° - —— (32a)
2g /R
where U = aw is the circumferential velocity and R = E%
v

ijs the Revnolds number, Bquation (33) must, of course, be
used twice, to obtain the resistance of the disk exposed to
flow from both sides.

FRICTIONAL RESISTANCE OF ROTATING DISK IN TURBULENT FLUID MOTION

The relation governing (33): =& frictional moment propor—
tional to the 3/2 power of the rotational speed at higher rota—
tional velocities is not borne out in practice. On the con-—
trary, a substantially quicker increase in frictional moment
is recorded with the rotational velocity. So the assumption
igs made again as for the towed flat plate that a turbulent
boundary layer is involved, and an attempt is made to secure
an approximate value for the boundary layer thickness and the
frictional resistance by applying the momentum equation.

For the rotating disk two egquilibrium conditions are re—
quired, one in the radial, the other in the tangentiasl direc—
tion.

Employing the same notation as in the preceedineg section

and adding T and T, (fig., €) for the frictional forces

per unit surface at the wall, the momentum guantities in the
radial direction are:

(a) Excess of outgoing momentum ouantity at the cvlin-
drical surface (r + dr)s (for an arc element of opening
angle 1) over to the incoming momentum quantity at area r§

o)
a 2
ir {rpfcr dx}dr
0?
(b) The radial component of a respectivelv ingoing and

outgoing momentum quantity at the front surface (equal to
the centrifugal force of the rotating fluid volume)
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)
Nz
-<p/ cy dx> dr
X

These momentum guantities must be in eguilibrium with

the shearing force Trrdr; hence
) 8
! A 2
° 47 {r / Cp dx}-—g) /Et dx = — TpT (34)
- uJ I3
6 4]

In tangential direction the difference of the turning
moment of the momentum leaving at the cylindrical surface
2n(r + dr)s and entering at the surface 2nrd can be com—
puted and equated to the turning moment of the frictional
forces acting on the circular surface. .

dr

5
2 ji-{rzl/ﬁcrctd‘}= —Ty 2mr® (35)
o

The formulas for the velocity distribution are‘according
to the results of the section Turbulent Flow in Smooth Pipes.

_ x\177 x _ { x 1/7
c. = ¢, (E) (1 ~~g> y oy =T |1~ <§> (38)

L

with due consideration that

for x =0 ¢, = 0, c, = Tw; for x =68 ¢_ = ey = 0
Now the integrals in (34) and (35) can be evaluated:
) 8 8
/cradx = 0.207 cozsl : fcrct&x = 0.0681 rweys, jﬁctzdx = 0.0278 rw°6

o ¢

(37)
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Further, put, in conformity with the assumptions on the
measure of turbulent friction equation (14b),

007/4v1/4r /rw o .3/8
Tp = 0.0225 p — o L1+\-—-— J
8 Co
/4% v1/4 Co\& z/8
T, = 0.0225 o(rw) !'1 + (-—~
81/4 L rw

by combining the velocity components at the wall and applying
the friction formula to the resultant,

With this equations (34) and (35) give the two differential
equations

a 1 ) 1/4 T 3]3/F
¢ 0.207 ¢2r8 | - 0.0278 w3 = - 0,0225 ¢ 2r (-> 1'1 + (-w\ i
ar \ ° J Cob L cn’ .

. 1/4 e 2.3/8
d 1 n/ D r /0
— 1— 0.0681 rswcoé | = 0.0225 r4w~(—— Ll + (= ‘
dr L i N SyTTA

The equations are satisfied if the relationship between
boundary layer thiclness and axial distance r is put as

c = arw 7
o) ; (=8)
5 = ﬁrS/SJ

and which gives two ordinary equations for o and B sanalo—
gous to the equation system (29).

The equations

i
|
(o]
(@]
[AV)
NV}
&)l
&

[
N
|
N
[

+
e
Nl
«
~
[44]

0,7456 o B — 0.0278 @

1/4 .
‘> (1 . me)s/a (29)

@]
&
|—J
[
(&)
R
™
[}
o]
o
)
o
m
7N
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given after division

1,0589 a2 — 0,0278 = O

The numerical solution gives

‘1/5
v
a = 0,162 and hence B = 0,462<a;> (40)

With these figures the boundary layver thickness Dbecomes
v \1/5
§ = 0,462 r (—:~>
rcw

The section modulus can be computed by-the method given
in the preceding chapter or else based on equation (35):

1)
e 5 2 v \1/5
¥ o= Znaap / cpcgdx = 0.0364 a2 @ p ~5~> (41)
/ =
0
and the friction for both sides of the disk
v 1/5
M = 0,0728 a‘w’p ( ) (41a)
a®w

In accord with the calculations on the towing resistance
of plates all frictional resistances are then referred to the
veloecity square and velocity head, respectively. With U =
circumferential speed of the disk, the moment is

u® v 1/5
N o= 0,146 Y — a° (~~\ (42)
2g \Ua’/

or the resistance coefficient cy as a funetion of the

Revnolds number of the disk R = %?
1
cp = 0.146 —— (43)
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Figure 7 shows c¢y plotted against the Reyndlds numbers

R — both on a logarithmic scale. The plot also contains the
resistance coefficient

]

.68
of =T (44)

-

gecured from the calculation of the laminar boundary layer
by equation (33a).

The experimental data were taken from a recently pub-
lished report on frictional resistance of smooth disks in water
by W, Schmidt (reference 18)., The agreement is good, Of par—
ticular interest is the fact that the measurements at smaller
Reynolds numbers fall exactly in the transitional zone be—
tween laminar to turbulent flow,?

NOTES ON ROUGHNESS

While for perfectly smooth pipes the Blasius resistance
law is apparently applicable over a wide range of velocities,
so that it seems more than an interpolation formula, pipes
with rough sides soon exhidit after exceeding the critical
point an approximately square relationship between gradient
and velocity. For this state the pressure gradient may be
put at

2
€ v 1 '
i) 532 1 (45)

1The exper iments by Odell (Engineering, vol. 77, 1904,
3% and by A, Stodola (steam turbines, 4th ed., Berlin 1910,
pp. 120-~129) on the friction of rotating disks in air give 20
to 30 percent higher values and a more rapid increase in friec—

2 + ¢
tion with the circumferential velocity. Odell shows ~w

with ¢ a small positive digit, Stodola w? % instead of
w'"%). Odell's tests are certainly doubtful, because the
paper disks which he used, flutter and thus simulate greater
frictional resistance. In Stodola's report the higher ex—
ponent appears to c¢orrespond to the roughness of the disk,
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€
E; ¢ denotes a
guantity with the dimension of a length, which, to a certain
extent measures the average increase in the wall roughness.
The ratio of this guantity to the pipe diameter is termed
the "relative roughness" (reference 4).

A is a function of the relative roughness

The square law for rough walls is plausible for the
reason that the frictional resistance is visualized as being
built up from the individual resistances of the wall pro—
tuberances, which singly obey the square law. The mechanism
of frictional resistance is in these cases obviously caused
by uniform shedding of vortices of well-defined intensity
and dimensions, as is the case for flows on resistance bodies.

The flow resistance in perfectly smooth pipes might be
visualized such that in this instance vortices of dissimilar
magnitude are separated and float at random in the turbulent
flow, the freguency of the vortices of different intensity
and size being controlled by some unknown, statistical law.

By this concept the frictional resistance in smooth
Pipes can be regarded as a fictitious combination of resist—
ances that correspond to the individual kinds of vortices.
Assuming that a relationship exists between size of vortices
and roughness, it may be sald that the frictional resistance
in smooth pipes can be odbtained by superposition of the in—
dividual resistances observed on rough pipes and increasing
with the square of the velocity, if the individual squared

resistances are entered with correct weights in the caleula—
tion.

It is not without interest that conclusions can be drawn

€
about the form of the function h(E) on the basis of this

conception, and specifically, without knowing the law of

freaquency and the weight function of the individual resist—
ances.

In particular, it can be shown that, if the Blasius law

for smooth pipes holds true, the function A (%{) muet have
eNa/7 €
the formula KO(:E> at least for small values of -

k]

Ao denoting a constant.
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On superposing the squared resistances by (45) on assump—

tion of a weight function @(e), the resistance law for smooth
pipes reads?t:

L/fh(%) o€ )de

h

L (46)
f@( € )de

Next, it is assumed that the function o(¢) for small
values of € compared to pipe diameter is dependent only on
the physical constants and the velececity distribution in the
immediate proximity of the wall elements. Specifically,

@(e) is to be independent of the pipe diameter. On the other
hand, the velocity distribution directly adjacent to the wall
is according to earlier assumptions entirely contingent upon

the shearing stress at the particular wall element. There-
fore, put

CP(€) = C‘p(ei Ihe 2} To)

From the four guantities only one dimensionless com—
bination can bve formed: namely,

To 1/2 ¢
Z=<-p*> ‘_E (47)
Hence, write: oo
€ Ty €
(e (/2 ) ae
- 2 N d D v
e To 1 v
oe) =g [L /e net i
v Yoo ] d 2¢g o0

1 . :

Trhe evtent of the integration to ® 1is merely & matter
of form, #(g) decreases very substantially with increasing
€, and from a certain value of € on equals zero.
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which, with 2z introduced as variable gives

/A ( >¢P(Z)dz

g
d/p p(z)dz

€ {
and with A = A/ (*:3 gives
a”’

=T IR
ml d

2]

./fzn¢(z)dz

1 v? ! vnpm/2 1 v vmpm/B
ho= o~ —— Ag , = K = o 2
a 2g - @ B/ E a e &7 P/%
/"cpu)az |
K
o0
,f)
! n
[ oz oe(z)dz
)/
K = \OO — is a pure number.
&)
/ .
/ o z)dx
K

Considering the relation

4 41

existing between h and T, there is obtained

ym/adm/e ) 2 LB n/=

33

(a8)
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which, solved for h leaves

an

2 it e qupm .
(.IE a2+ m _‘..‘i..(.,lia+m (49)
2 d 2g dv

This law corresponds exactlr to the Blasius resistance
law for smooth pipes provided

2m
2+ m

= 1/4

or
m = 2/7‘

By introducing a specific formula for the weight function ¢ - cay,
after the tvpe of the law of error — the relationship between
the constants of Blasius' law for smooth pipes and the con—
stants of the law of roughness can be ascertained, The writer

hopes to be able to return te the further develnpment of
these arguments,

a/7
If, on the other hand, the law A = A, (é) is in-

voarl7
troduced in (45) the result with A e = is

1 p®

v e sotp——

?
ds/ 2e

fo 2
]
e

or

<
we
,,x\w;

N
W
~N
~

#

h\@+5 0.64
(7)) e

According to the analogzy between pipes and channels the
velocity in a channel with gradient J and hydraulic radius
P would be ‘

.64
¥ = constant g0t p0-®

1-Mr, Frandtl states trat he has arrived 2t the same
result byan entirely difflerent procees,
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Incidentally, according to R, Manning, the empirical

formula v = constant J0¢5% P0e86 according to Forchheimer,
the formula v = constant J©+% PO+7, and according to
Hermanek, the formula v = constant J%*% PC+8 ogives a good

represengation of the test data in rough channels (reference
8, p. 70),

Translation by J. Vanier,
F¥ational Advisory Committee
for Aeronautios.
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NACA TM No. 1092 4 Figs. 4,5
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NACA TM No. 1092 Figs. 6,7
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