

NACA ARR NO. IUF? 26
NATIONAL ADVISORY COMMITTHE FOR AERONADIICS

ADVANCH•ROSTRICIED REPORT

DFISIGN OF POWER-PLANT INSTALIATIONS
PRERSURE-LOSS CHARACTERISTICS OF DUCT COMPONENTS
By John R. Henry

SUEMARY

A correlation of what are believed to be the most reliable data available on tuct components of aircraf't power-plant instaliations is presented herein. The information is given in a convenient form and is offered as an aid in designing duct oystems and, subject to certain quaifificitions, as a guide in estinating their performance.

The design and performance data include those for stralght ducts; simple bends of square, clroular, and elliptical cross section; compound bends; diverging and converging bends; vaned bends; diffusers; brunch ducts; internal inlets; ard ancular placement of heat exchaneers. Eramples are included to illustrate methods of applying these data in ana?fzine duct systems.

INTRODUCTION

The objectives in the design of an aircraft duct system are to fit the components of the aystem within the available space and to meet an air-filow demand with a minimum of energy lose. Analyses of duct systems are, In general, made for one or more of the following purposes:
(1) Estimation of pressure loss in a duct
(2) Determination of rate at which air will flow through a given duct syatera
(3) Calculation of exit area required to obtain a desired rate of air flow through a given duct system
(4) Ebrluation of airplane drag chargeable to flow through a duct system

Aircraft duct systems occur in an infinite diversity of forms but, for the purposes of design and analysis, must at present be treated as a acries of component parts such as bends, nozzles, and diffucers - for which design ard performance data are available. Analyses of duct systems are cenerally step-by-stop procedures in whish changes in the energy and the phyrical state of the ducted air are followsd progressively from the fres stream ahead of the eirpiane through the successive duct components to the point of discharge from tho alrplane. Simplified procedures for making such analyses are given in references 1 and 2, and a precise, rigorous method is given in reference 3. Thesa references are primarily concerned with analytical procediure and do not deal with loss characteristics of duct components.

A large amount of experimental data and some theoretical treatments of the flow in duct components exist, but the data often appoar to \therefore ? inconsistent and some of the theoreticel treataents c:-z contradictory. This lack of ogreement. Is principalily due to inadequate consideratlon of all veriablos arfecting tike flow characteristios a natural consequerice of the undeveloped s tate of the theory.

The purpose of this paper is to present, in simple and concise form, information useful for the enalysis and design of duct syatems for aircraft power-plant installations. Data are presented on design criterions and pressure-loss characteristios of straight ducts, duct bende of varlous eross-sectional shapes, vaned bends, branch ducts, and several types of diffuser. Several eramples are presented to show methods used in analyzing duct systems.

In the present report the most reliable data available have beon used but some of these data are recognized as questionable. In cases in which data rrom different sources are inoonsjstent, tha materiad presented is, as far as possible, a mean weighted by consideration of the conditions under wich the results were obtalned.

In cases in which data for e particular type of duct comportent have been obtainable from only one source and were therefore without adequate corroboration, these data have been presented for lack of better.:

The flow characteristics of any duct component are considerably affected by variations in the nature of the upstienolı flow; fer the data presented the tope of flow is that gemexfted by a long straight pine. beseuse of try fitixosi anil tic limitations on available data, the present. asseusion of flow coetriolent, for duct componorite jus alb list to extension and revision when mere comprisifinivo data hesome available. If the pressure find

 thurs : fie fumperpex will be greaten thin round he pres-

 gu!. ? : : denich!re duct systems and estimation vanir pearrosice; \therefore anger, for the attainment of best performandes coingleta suetsur should joe refined by tests of airplane models in wind tunnels or tests of duct systems. in witch the air flow is induced by blowers.

SylizoLs

A duct crosi-sectional area, square feet
a velocity of sound, feet per second
C_{L} lift coefficient ($\mathrm{I} / \mathrm{q} \mathrm{c}$)
c length of vane chord, feet
D hydraulic diameter, feet
$\left(\frac{L . x \text { Erace-sueti mall urea of duct }}{\text { Perfrutivr of duct }}\right)$

d diameter, fest
Fe compressibility factor $\left(1+\frac{1}{4} w^{2}+\frac{1}{40} M^{4}\right)$
f friction factor for straight ducts $\left(\frac{1}{4} \cdot \frac{A H}{q} \frac{D}{2}\right)$
s gap or vane spacing, perpendicular distance between vane chorcis, feet

H total pressure, pounds per square foot
h height of duct (in case of bend, dimension in plane perpendicular to please of bends, fest

F arbitrary constant
k_{1} bend-lose coefficient ($\frac{4}{q}$ of bend divided by $\frac{\Delta F_{i}}{q}$ of equivalent sonstant-area bend with lenticel Inlet)
k_{2} total-presaure-loss coefficient oi diffuser expressed $\left[\begin{array}{l}\text { as frescticn of loss due to sudden exp-en } \\ \left.\frac{\Delta H}{q} \text { of dirinser divided ivy }\left(1-\frac{A_{j 1}}{A d r}\right)\right]\end{array}\right.$
L lift, pounds fer root of spent
2 axial lereth of duct, feet
3
Mach number (VGa)
mass rate of riot, slurs per second
n number of vars in duct bend
P perimeter oi duct cross action, feet
p static pressure, pounds per square foot
Q volume rate of flow, cubic feet per second
q dynamic pressure, pound. per square foot ($\frac{1}{2} p v^{2}$)
$R \quad$ Reynolds number ($\rho \mathrm{VD} / \mu$)
r radius, feet
$\bar{\Gamma}$ mean radius of bid, feet $\left(\frac{r_{a}+r_{b}}{2}\right)$
T
temperature, ${ }^{\circ}$ F absolute
V velocity in duct, fest per second
∇_{0} fres-atream velocity, fest per second
w ductwidth (In case of bend; dimension in plane of bend), feet
x, y abscissa and ordinate of standard coordinate syster
a angle of attack in relation to alr-atrean direction, degress
β arigie of duct berd, degrese
λ angle of junction of duct and resistance unlt,
ρ cienafly of air, sluça per cabta foot
$\mu \quad a b z o l i k t e$ viscosity ai eir, pednci-enconds per squere foct

LII totai-presulure Ioss, founda fer square foot
ΔH_{λ} tictal-Fressure loss the to angle bstioeen duct and resistance unit

ΔT ctinge in trmisointuxs, σ_{F}
ΔV tatar veatir-vulciaty chance, naet per secoril
θ one-h:if eguivalent corical arisin of expansion, degrees
(T) one-lialf ancle betwoan atraicht wsils of partially curved ilffuscr, degress
$\Delta H / G$ total-pressure-1.0ss coefficiont
\bar{r} / w radlus ratio
h/w aspsct ratio
Subscripts:
a Inside wall of bend
b outslde wall of bend

GENERAL PRINCIPIES Or DUC'I DESIGN

Skin firiction and flow separation are two fundamental ceuses of pressure loss in fully turbulert flow through any duct component. The lose in a given duct coinponeat from each of these causes is roughly proportionsl to the dynamic prossurs of air flow. Since the djremic oressure of the air flow is proportional to the squaxe of the flow velocity, the first basic principle in the design of efficient dicts is tis maintenance of a low flow velocity by the uss of ducts of adequate size. The importarce of this principle may be illustrated by noting that, ficr a given rete of air flow, halving the diaceter of a circular duct ialtiplies the valocities Dy 4 and tho losses by ?6.

Although sicin friction is the dominant causs of pressure loss in flow througt atraigit ducts of constant cross section, this pressure loss is small compared with the losses that occur when the muin ilon soparates from the duct walls and thus creates areas of reverss fion and violent turblilence between the muin flow and the duct wall. These areas require velocities in the main strearn higher than are otherwise necessary. The second basio principle In the design of efficient ducts, therefore, is the maximum reduction of flow geparation.

NACA ARR NO. LLF26

One type of flow-beparation occurs when fopees arise in the air stream in a direction opposite to the direction of flow. Such a force is the pressure rise for "adverse presture gradient") producied by a deceleration of the air flow - for exsmple, the decieleration of the air flow in a diffuser. The rate of pressure rise that may occur without producing flow separation depends on the velooity of flow near the duct wall, because the presence of thick boundary layers of alow-moving air is conducive to separation. conversely a decreasing pressure in the direction of flow (or a fiavorable pressure gradient"), such as occurs in a nozzle, tends to prevent separation.

Changes of flow direction, as in bends, also give rise to forces that tend to cause saparation of illow from the inner surface of the bend. Surface roughness or protuberances that cause local disturbances or retardation of the air near the duct wall aggravate conditions of incipient separation. Screens or resistances across the entire duct, on the other hand, tend to stabilize the flow and oppose asperation by resisting flow increases in the center of the duct at the expense of the flow near the walls of the duct.

PROPERTIES AND DESIGN OF DUET COMPONENTS

Pressure-loss characteristics and design criterions of several typical duct components are given in figures 1 to 16. The total-pressure-loss coefficient $\Delta H / q$, a retio of loss in total pressure to dynamic pressure at the entrance to the duct component, has been given directly wherever possible; in all other cases, coefficients are given from which the pressure-loss coefficient can be computed.

Straight ducts of uniform cross section. - The pressure-1oss coorifciont for straight duats of uniform crose section is given by the relation

$$
\begin{equation*}
\frac{\Delta H}{q}=4 \frac{2}{D} f \tag{1}
\end{equation*}
$$

The friction factor f varies with the character of the duat surface and the Reynolds number based on mean air

NACA ARR NO. L4F26
velocity and the hydraulic diameter of the duct. Values of f obtained from figure 51 of reference 4 are plotted againat Reynolds number in figure. 1 . Data in figure 13 of reference 5 agree closely with values in figure 1. Determination of the Reynolds number is facilitated by supplementary curves obtained by plotting the retio of mass rate of flow to duct perimeter against Reynolds number for a number of air temperatures. The kinetic viscosity of the air used in constructing the supplementary curves of figure 1 was determined by Sutherland's equation as presented in reference 6.

A typical value of $\Delta H / q$ for straight aircraft ducts is $0.02 \frac{l}{D}$, which is usually inconsequential compared with other parts of the system, and the loss in sections of straight ducts is generally neglected. Long winding ducts of small diameters, such as cabin-heater ducts, are sometimes treated as etraight ducts of higher than average pressure loss due to friction. The us? of

$$
\frac{\Delta H}{\bar{q}}=0.04 \frac{2}{\mathrm{D}}
$$

is recominended in reference 7.
90° bends of constant-area rectangular cross section. - Pressure-ioss coefiliclente of 900° bends of -constant-area and rectanguler cross section given in figure 2 for three values of Reynolds number based on hydraulic diameter are derived from data appearing in references 5 and 8 to 12. The beneficial effect of large radius ratio appears throughout the range of R but the optimum aspect ratio shows a marked change with Reynolds number.
90° bends of constant-area elliptical crosis section. - Pressure-losa characteristics of 90° bends of constent-area elliptical cross section are given in figure 3 for three values of Reynolds number. The data include circular ducts as a special case and were derived from data in reference 5. The benefits of large radius ratio and the existence of an optimum aspect ratio are noted for the bends of constant-area elliptioal cross section as well as for rectangular bends. The offects of Reynolds number are much leas for bends of elliptical cross section than for bends of rectangular cross section and appear mainly for the bonds of high radius ratio.
90° bends of changing area.- Significant data (derived from reference lif concerned with the relation of area change" to the loss in 90° bends of a particular geometry are shown in figure 4. In this figure the ratio of loss in a tend with changing area to that in a bend. with identical inlet form but constant area is plotted against the ratio of entrance width to exit width of the nonuniform bend. Important reduction of loss in converging bends and serious incresses in loss in diverging bends are noted; the loes increases are particularly serious for bends of small radius.

Simpls bends other than 90°. - No satisfactory correlatioñ lias been made or áta for variation of pressureloss coefficiont with angle of bend. Pressure loss of 45° bends can apparentily vars from one-third to twothirds the loss of a similar 90° bend, according to the test conditions.

Compound bends.- Pressure-loss coefficients for three types of compcund bend (fiz. 5) derived from reference 5 are shown in figure 6. Inasmuch us dirferences in the losses between the $U_{-}, ~ Z-$, ard 70°-offset bends aypear from referonce 5 to be sceall and inconsiatent, the curves presented are avoieges of rasulta for tine three types of bend. There eppears to te 1!.ttle varirition of lous with Reyriolds number. Introduction of a 5-foot spacer ketween the tiro parts of the compound bend has lelatively littie effect on the over-all loss bilt tends to give higher values for optimum aspect ratio. i comparison of the 180°-bend (U-bend) data of figurs 6 with ing g, 0°-bend data of figure 2 shows that the reletive loss varies to a marked degree with the radius ratio and espect ratio of the bend.

Effects of surface roughness on band losses.- The affeot 0 g auriace roughress on the lossos in straight pipes has already been givan by the curves of $f 1 ; \operatorname{cice}^{2} 1$. A study of pressure-lose data for bends of aneles from 30° to 90° and radius ratios from 1 to 6 (raference 11) indicates that the influenoes of aurface roughness on the lose in bends, and fresumably of other duct coniponents in which major flow disturbances arise, is vary mach greater than can be attributad to the increase in skin friction at the mean velocity cf flow. Analysis of tive data in reference il sugisests that the ratio of losses through two bends, identical except for surface roughness,
is equal to the 1.75 power of the ratio of friction factors; that is.

$$
\begin{equation*}
\frac{\left(\frac{\Delta H}{q}\right)_{2}}{\left(\frac{\Delta H}{q}\right)_{1}}=\left(\frac{f_{2}}{f_{1}}\right)^{1.75} \tag{2}
\end{equation*}
$$

(The subscripts 1 and 2 in this equation are usad to cenote the two berds of diliferent eurface roughness.) The exponent greater than unity ear bs explained by the fact that any deviation from a uniform velocity distribution because of extensive boundary-layer separation or the existence of secondary flows would require that some of the flow be at velocitles greater than the uniform velccity. Equation (2) would not, therefore, be expected to apply for a duct component aot invoiving extensive secondary flows or separation.

Equation (2) can be used to correct the bend-loss data of tils report to values correspendire approximately to flow through duct bends with rough suri'aces. The total-pressure-loss coefficient for smooth-suriace bends can be determined from the data curves of figures 2 to 4 and ϵ. Tres curves labeled "Smooth surface" in figure 1 are used to determine the friction factor for smcothsurfacs berds. A rapresertative value of frictjon factor for rough surfeces corresponding to ducts in preduerion alrpjenes vith the usual manufacturing irregularities 1s U.Ol.

Vaned bends.- Vanes may often be advantagoously used in duct berds, espacially when an unfavorable raijus ratio or aspeot ratio must be tolerated voceuse of some limitation peruliar to the particular design. A correctly desienei rans ingtalietion wili improve the velocity distribution at the exit of the bend and rill ferersily redice the pressure lesses throligh the benc. The ratuction in rressiare loss arises from the fasc that the fiow In a good vaned-turn installation approaches that flow whith voulc occur if the pasaage woie divided into smaller prasagas of tre same depth out shorter widh and, consecuently, of more favorable aspect and radius ratios. tihen rure than three vanes are used, practical considerations usualiy require a bend with evenly spaced vanes and gqual inier and outer radil. The value that these radii
may attain is unually limited by the space requirements. Figure 7 shows an installation of thin olrcularara vanea and derines the variables concerned in the design of such a vane instaliation. The vanes are equal in radius and chord to the curved portion of the duct surfaoe. from ifgare 7 it can be seen that the chord 0 is equal to $2 x \sin \frac{\beta}{2}$

From material given in peferonce 11, the following expression for the number of vanes required can be derived;

$$
n=\frac{2}{C_{I}} \frac{\Delta V}{V_{1}} \frac{W_{1}}{0}-1
$$

The quantity ΔV is the vactor difference of the veloo1ties upatream and downstream of the bend, as illustrated In figure 7. For a given bend configuration, therefore, the number of vanes depends on the lift coefficient at which the vanes are to operate. If too high a lift coofficient is assumed in determining the number of vanes required, high losses and a poor velocity distribution downstream of the bend will result. An assumed lift coefficiont that is too low will result in too many vanes and the total-pressure loss through the bend will again be excessive. Feference 9 indicates that, for thin vanes installed in a 90° bend, use of a lift coefficient of 0.8 gives approximately minimum losses and a satisfactory velocity distribution. It is not known whether $C_{L}=0.8$ is the optimum for thin circular-aro vanea for bend angles other than 90°, but a atudy of reference 13. Indicates that use of this value in designing bends other then 90° bends should give satiafactory results. Results given in reference 9 show that for a 90° bend the angle of attack of the vanes a should be 48°, or 3°. more than half the angle of bend. For other angles of bend, thie amount by which. the angle of attack exceeds half the angle of bend might be adjusted proportionately to the angle of bend as a first approximation; that is, for a 45^{8} bend, an angle of attack of 24° would be indicated.

For a 90° bend with inlet and outiot the same in area and shape, equation (I) reduces to

$$
\begin{equation*}
n=\frac{2}{C_{L}} \frac{m}{\bar{F}}-1 \tag{3}
\end{equation*}
$$

By using the value of $C_{工}=0.8$ for thin vanes, equation (3) becomes

$$
n=\frac{2.5}{\overline{5} / n}-1
$$

Results for vanes which have two different thickness distributions applied to mean lines approaching a circular arc are given in reference 9 and show that, for the optimum vane installation, the loss coefficient $\Delta B / q$. is about 0.25 , a value relatively insensitive to vane thickness. For vane installations other tran the optimum, the losses are higher and vary considerably With the profile of the vane. The angle of attack for thick vanes is approximately the same as for the thin circular-arc vanes and small variations from the optimum angle of attack do not appreciably affect the pressure loss. Values of C_{t} from 0.9 to 1.0 may be used in detemining the optimum number of these vanes to be used.

Thin vanes of noncircular profile, which are suitable for installation in bends of oqual inlst and exit crosssectional areas, have been developed theoretically by Krober (references 9, 10, 13, and 14). Profiles for these vanes are given in table I end figure 8(a). Tests (reference 1.3) Indicated that installations using a vane of the type deveioped by Krober are very officient, as shown by the low losses given in figure $8(b)$. The required number of vanes for a given inataliation oan be determined directly from the chord langth and the gap-chord curve of figure 8(b), The break in this curve between angles of bend from 45° to 60° is apparently a result of the methods used in developing the profiles. References 9, 18, and 1 $30^{\circ}, 45^{\circ}, 60^{\circ}$, and 90°.

Diffusers.- Losses of straight-wall diffusers of circular cross section may be computed from the curve of figure 9, which was derived from figure 10 of reference 15 and figure 1 of reference 16. The loss coefficient is given by the relation

$$
\begin{equation*}
\frac{\Delta H}{q}=k_{2}\left(1-\frac{A_{d 1}}{A_{d e}}\right)^{2} \tag{4}
\end{equation*}
$$

where k_{2} is the quantity plotted in figure 9 against the equivalent conioal. angle of expansion... The loss due to an abrupt expansion is obtained from equation (4) by taking k_{2} equal to unity. To a limited extent, the losses of diféusers of nonciraular crose section; particularly those of square crose section, are approximated by the loss of an "equivalent conical diffuser inhich has a oircular cross section and of which the lengith, the inlet area, and the outlet area are equal to those of the noncirculat diffuser.

The most officient straight-wall diffusers are shown in figure 9 to be those of equivalent conical angles of expansion between 3° and 10°. Frequently, however, because of restrictions on the leneth of diffuser, it is necessary to diffuse at angles higher than 10°. Curvedwall diffusers (references 14 and 15), such as the design ahown in figure 10, have been found to have appreciably higher efficiencies than straight-wall diffusers, especially at high angles of expansion. The performance for this type of difiuser is also shown in figure 10 . At the higher angles of expansion, thas lower pressure losses are obtained by diffusing gradually in the first part of the diffuser and more abruptly in the last part in order to delay the separation point in the flow. Testa roported In reference 15 show no gain when the angle 2Φ is made greator than 40°. Other sources (unpublished; indicate thet, If the angle 2φ is rreater than 60°, large losses will oocur.

Diffusers followed by resistance units, such as intercoolers; are subject to lower pressure losses at high angles of expansion than are indicated in figure 9. An experimental investigation to determine the shapes of oiroular diffusers for highest diffuser efficiencies in diffuser-resistance combinations is reported in reforence 17. Figure 11 is a aketch of the optimum shape and a plot of the included angle between the atraight walls of the diffuser 2φ against the equivalent conical angle of expansion 20. The values of 2φ are those values that gave the highest diffuser officiency. The solid and long-dash curves of figure 12 show the pressure losses in terms of the loss due to sudden expansion for diffuseris designed according to figure 1l. The short-dash curve of figure 12, which is an extension of the curve given in figure.9, applies to straight-wail circular diffusers not followod by resistance and is shown for comperison.

Brapch dacts. - The problem of taking branches from a main alr duct resolves into division of the main air atream and diversion of one or more of the consequent subdivisions of the main stream. Division should be made as nearly as possible on a basis of relutive air flows and is best accomplished with dividers or splitters of rather blunt-nose alrfoil shape, auch as the NACA 0021 airfoil section. (Soe fig. 13.) Enlargement of cross sections immediately downstream of the point of division and in tends is to be avoidod. Entrences to branch ducts should be normal to the alr flow. Picure 13 111ustrates tios appliwation of theso jrrinciples and shows the division of the uain atream, the diversion of one atream, and the subsequent subdivision of the diverted stream.

The internal-duct inlet is a special problem associated with branch ducts. The inlet of a duct that taps air from a chamber in wisich the air is essentially stagnant is known as un internal inlet. Fisure 14 shows several examples of such inlets with accompanying representative values of pressure-loss coefífcient taken from reference 11. The desiens subject to the least pressure losses are the Plared ertrances, particularly the deston using a lemniscate. The equation of the curve in polar coordinates is

$$
r^{2}=2 x^{2} \cos 2 \theta
$$

The part of the lamiscate used in the inlet desien extunds over a range of θ frim 16° to 45° (fig. iff).

Plow-resistance units set at angle to upstrerm duct.The meeting at an angle of the inconing air with tire lace of a resistance unit callses a total-pressure loss that depends on the anount of angle, the sfriciency of the resistance-unit core in its action as a turning vane, and the air-stream velocity. Data on these losses, from which the curves of figure 15 wore derived, were obtainedi from reference 18 and from the Wricht Aeronautical Corporition and the Naval Aincraft Factory. The data apply to intercoolers, circular oil coolsrs, ancs a viscous-impingement type or air filter. The geometry of the ducts and resistances is also shown in rieture 15. The curves indicate that the pressure loss is similar to the pres. sure loss of a duct bend in that. the aspect ratio of the resistance-unit air passages is a controling. factor.

ILLUSTRATIVE FXAAPI,SS OF DUCT ANALYSIS

Several examples illustrating the calculation of prossure lose, aif flow; exit area, and internal drag for duct systems. I and IV of figme 16 are given in tables II to IV. Each. of the hypothotical duct systemb shown in figure 16 adheres to the same general space requirements and has apyover-all inorease in the crosssectional area from Di ${ }^{2}$ square foot at station 1 to 3.0 square feet at station 6 . The selection of the A_{2}. pressure-losa coefificients is illustrated for aysitem I in table II. Step-by-step computations for aystems. I and IV are given in tables III and IV, and the prossureloss distributions of the four syetens are compared in figure 17.

Duct system ((fig. lS) was cieslgried according to the two basic principies of dust deslen set forth in the section entitled "General Principles or Duct Design. ${ }^{\text {it }}$ The hich-velocity air at atation is expaiaded in a diffiser hawing an equivalont coulcal frigle of expension of 7°, whici: is shown in fißure y to bo eubject to minirum pressure iesses. The diffuser is followed by a wellrounded 90° bend of constant cross-sestionsl area. The rest of tho cifffusion ts ascomplisked at a highar rete In a diffusal. havirs eir equivalent conical prele of 13.8°. Although tho rate of expansion is hizin in che socona diffuser, the loss is not excessive because of the low dynamic prossure at the entrence. The second 90° turn is quite sharp but does not causs a larce pressure lose Décause of the low-velocity eir. Duct syster II (fig.16) Wes deaigner so that nart of the crea expaneion 13 gocomplished in the first 90° bend. Duct systen III is an example of a compromise which enphasizus more than system I the principle of having low fiow velocities. - The low flow velocity is obtained by diffusing at a higher rate of exparsion. Duct systems III and IV represent opposite extremes in roistion to the initial expansion of the eir. In system III the expansion is accomplished rapidly in a diffuser heving an equivalent conical angle of 16° located upstream of the first bend; in aystem IV all the expansion is accomplished between the two 90° turns. With the area constant from stations I to 3 .

The duct systems were assumed to be installations In an airplane flying at boa level in Army sunmer air at
a true airspeed of 400 miles per hour. For simplicity, the total-pressure losses from the free stream to station 1 were assumed to equal the pressurn rise given the air by the propelier; therefore, the totel pressure at station 1 is equal to the free-atrean total pressure. The aciabatic tempereture rise from the friee stream to station 1 was calculated by use of the following equation from reference 2:

$$
\begin{equation*}
\Delta T_{0,1}=0.832\left[\left(\frac{V_{0}}{100}\right)^{2}-\left(\frac{V_{1}}{100}\right)^{2}\right] \tag{5}
\end{equation*}
$$

The total-pressure loss through each duct unit was calculated from the curves of this report as illustreted in table II for system I. Tha compressioility corroction to the dynamic preasire was zeglocted except at ste.tions 0 and 1 because of the lnw velocities. The following equation (from reference 79) whs used to calculate the coinpressibility factor F_{c} at stations \mathfrak{J} and 1 :

$$
F_{c}=1+\frac{1}{4}\left(\frac{V_{x}}{a}\right)^{2}+\frac{1}{\frac{1}{; 0}\left(\frac{V_{x}}{a}\right)^{4}, ~}
$$

The temperature from stations 1 to 5 was assumed constant beceuse the systems contained no heet exchangers and tine static-pressure chenges were insufficient to cause significant changes in temperature. with the foregoing conditions and assumptions, the rroperties of the ain at each station were calcujated as shown in tables Irj and IV.

The total-preasure losses for cacli system are plotted against the duct stations in figure 17, in which system I is shown to be ths most efficient. The higin losses associated with berds of increasing cross-sectional areas are verified by the curve for system II. Tise curve for system III emphasizes the importunce of efficiently difffusing the high-velocity air even at the experse of greater bend losses, providine the tend design is reasonably good. The data for system IV indlcate the Importance of offlcientis reducing the air velocity as soon as possibie aven in those cases in which the efficlency of some of the following units must be reduced.

The calculations for system I have been extended to illustrate the method of obtaining alr flow, exit
area, and internal drag. Because the oflculation of pressure" arops "across heat exchangers is.a-probiom outaide the scope of this report, tie heat-exchanger pressure drop is not considered in the suosequent discussion. The nature of the calculation is in no way affected by this simplifilcatior, bitt the reauitant drag, internal-drag porer, and exit area will consequently be much too amall to be ropresentative. A well-designed oxit duct was assumed to sxtend from station 6 to station 7, the exit, and the total-pressure losses in this contracting section ware assumed to be negligiblo. Several mass. air flows through the system were assuned and the estimated totalpressure losses, oxit velocity, exit area, and internaldrag ho isepover were eva?uated for each air flow. The static pressure at the exit was assumed to equal the static prossune of the free stream; the temperature drop asscciuted with tha drop in static preasure from station 6 to tre exit at staticn 7 was assuad do be adiabatic. The folloving equation ezprosses this adiabetic roletion:

$$
\begin{aligned}
T_{6}-T_{7} & =\Delta T_{0} \\
& =T_{6} \times\left[1-\left(\frac{F_{7}}{Q_{6}}\right)^{0.2 \hat{~} 6}\right]
\end{aligned}
$$

The ex!t velocity Fre was calculateci b, substitutlen $\Delta^{T}{ }_{c}$ and V_{5} in ecustion (5). Tho calcinletians ior a mass air flo:y of 0.109 glug ieip siccond Ale sixmarized In teble III. Th3 Intarnal-drag horespowfr zatised by the momentum defisiency of the dischenged aiz and tre exit aress rociuirad to sutain certain mars finws through the syatem arc plotted against mass air flcw in ficure 28. From tivese curves the exit erea requirud for a given nase flow or, conversely, the mase rlow corcesponding to a given exit area, may be determined. If a heat exchanger had been incluced in the foregoing arranfeinent, the pressure droj acruss it, the rise in cooling-air temperature through it, and the resultsnt dcusity changes. would have had to be taicen into account.

CONCLUDING PEMARYS

The pressure loss through a duct component is.affected bf the nature of the entoriaz flow and, when unsyumstrical velocitJ distrioutiors oscur, tine
pressure-loss coefficients are higher than those given herein for conditions of uniform flow. This consicierition raises the question of the acouracy with which the over-all losses for a duct systinn can be prodicted by sumation of component losses obtained from the material in this report. As yet. no satisicctory answer to this question exists, but this lack of data in no wey inpaire the usorulness of the material contained heroin for designing duct systoms for a ininimum of loss.

Although the pressure losses in a well-designed duct systam should be small compared with the unavoidable heatmaxchanger pressure drop, the margin of pressure available over prossure required is varg small, partic:llarly for fuil-powor climb; and alimination of unnecessary duct losses often makes the difference betwaen an accsptable and an unacceptable installation.

Langley Memorial Aeronautical Lajoretory National Advisory Comittee for Acronautics Langley pield, Va.is Kay 13, lglif

1. Rogallo, F. K.: Intornal-Flow Systems for Aircraft. NACA Rep: No. 713, 1941.
2. Rubert, Kannedy F.; and Knopf, George S.: A Method for the Desisn of Cooline Systems for Aircraft Power-Plant Installations. NACA ARR, March 1942.
3. Boelter, L. M. K., Morxin, E. H., Martinslli, R. C., and Poppendiek, H. F.: An Inveatigation of Aircraft Heaters. XIV - An Air and Heat Fllow Analysis of a Rara-Operated Heater and Duct System. NACA AFR No. $4 \mathrm{COL}, 19 / 4$.
4. Mcidams, MiJ.1iam H.: Heat Tranomission. Sosond ed., McGraw-Hill Book Cc., Inc., 1'sly, p. 118.
5. Weske, John R.: Fressure Loss in Ducts with Compound Glbows. Naci ARR, Feb. 1943.
6. Ghapmar, Sycuey, and Cowling, i. G.: The hiathonstiaal Thecry of Non-Uniform Grise 3. Cambrlege Unlv. prosa, 1935.
7. Smith, F., s.rd Stott, J. R.i. Theses in Jabin Heating Dracts: Pep. MC. R.A. $16[3$, F.A.s., Jung lolit, and Addendun, Rep. No. B.A.I633a, Aug. 19'4.
8. Wirt, LorinE: New Data for tins Nesim of Elbows in Tret Systems. Gen. elec. livv., vol. 30 , no. 6, June 1927, pp. 286-296.
9. Patterson, G. N.: Note on the Desizn of Corners in Duct Systems. R. \& M. No. 1773, British A.R.C., 1937.
10. Patterson, G. N.: Corner Lessea in Ducts Alreraft Engineering, vol. IX, no. 102, Aug. 1937, ps. 20「-200.
11. Abramovich, G.: Fiuld Kotion in Curved Channels. From Colleotions of Reports on Industriel Aerodynamics and Fan-Construction, Rep. No. 211 (text in Russian), Trans. Central Aero-Hydrodyn. Inst. (Moscow), 1935, pp. 97-151.
12. Mctellan, Charlea H., and Bartlett, Nalter A., Ir.: Investigetion of Air Flow in Right-Angle Eibows In a Rectangular Dict. NACA AR?, Oct. 1941.
13. Kröber', G.: fulde Vanes for Defleoting Fluid Gurrents with 3msil Loss of Eneiey. NAOA iki N. . 7:2, 1.333.

L'f. Pbtterson; G. N.: The Desigen of Aeroplane Ducti. Aircrai't Enziriee.ing, vol. Kis, no. 1.25, Thly 1539, pp. 25j-268.
15. Fatterson, G. $\mathrm{N} .:$ fodern Diffuser Dosign. Airerait Arginearing, vol. X, no. 11:, sept. 1738, pp. 2ó7-27き.
16. Eibsor, A. $\mathrm{F} .:$ on the FIow of inster tikcouch pipes and Pa:sazes Eaving Gonverfiris on Ifiverglaj bounciurios.

17. McLeilan, inerles E., ard Nitchoje, Mark R.: An Investigation of Diffuzar-izoietance fursimutlens in Duct Systens. NAJA ARA, HeJ. 19!
 Intcresoler Sot at veriona Amples te the Suppl: Duct. NuCA ARス̃, April lyt.
19. Glaveirt, H.: The Eloments of Aerofoil thi sifaciev Thocry. Camorldys Lniv. Press, 193', ev. 15 .

NACA ARE NO. L 4 F26
TABLE I.- ORDINATES FOR KRÖBRR VANE PROFILES

x / c	$y / 0$			
	90° bend	60° bend	45° bend	30° bend
0.09	0.000	0.000	0.000	0.000
. 05	. 087	.041	---0.0	--
. 10	.154	.074	. 014	. 031
. 15	. 200	. 100	---*	----1
. 20	. 236	.124	. 075	.051
. 25	. 262	-110	---	---
- 30	. 277	.153	. 094	. 067
. 35	. 284	.151	--0.-	-----
- 40	. 284	. 166	. 105	. 071
.15 .50	. 283	. 168	--7-3	--7
. 55	. 260	.157	-	----
. 60	. 242	. 151	. 094	. 057
. 65	. 219	.142	---7	---
. 70	.192	. 1.29	. 078	. 055
. 75	. 167	. 111	--7	---3
. 85	.137	. 096	. 056	. 043
. 85	.104	.072	-230	. 0.24
. 95	.037	. 026	-	-024
1.00	. 000	. 000	.000	. 000

NáTICNAL ADVISCEY COMDITHEE FOR AEAONAUTICS

TABLE II.- ESTIMATION OF TOTAL-PRESSURE-LOSS COEFFIGIENTS FOR DUCT SYSTM I
[Mass flow $=0.109$ slug/aec; temporaturs $=584.4^{\circ} \mathrm{Fabs}$]

Initial station	$\left\lvert\, \begin{aligned} & \text { Final } \\ & \text { station } \end{aligned}\right.$	Controiling parametors			Calculated values	
Duct componont, rectangular diffusers						
		Eiffuser equivalent conical angle cf expansion, 28 (deg)	Initialstation cross sectiona? area, $\hat{A}_{\left.\mathrm{s}_{1} 1_{r t}\right)}$	rinal- stailion cross- scctional area: (sien st	$\begin{aligned} & \text { Diffuser } \\ & \text { coufflcient, } \\ & k_{2} \\ & \text { (f1g. 8) } \end{aligned}$	Diffuser total-pressureloss coeffificient, $\Delta \mathrm{H} / \mathrm{q}$ (1)
$\frac{1}{3}$	2	7.0 13.8	0.250 .515	$\begin{aligned} & 0.515 \\ & 3.300 \end{aligned}$	$\begin{array}{r} 0.130 \\ .267 \end{array}$	$\begin{gathered} 0.034 \\ .163 \end{gathered}$
Duct comporient, 90^{2} rectangulsr bends						
		Send aspect ratio, h/w	$\begin{aligned} & 3 \mathrm{zin} \\ & \text { racius } \\ & \text { ratio, } \\ & \overrightarrow{\mathrm{r}} / \mathrm{y} \end{aligned}$	$\begin{aligned} & \text { Pess floweter } \\ & \text { m/P } \\ & \left(\frac{\text { slug } / \mathrm{sec}}{\mathrm{ft}}\right) \end{aligned}$	```Repnnlds number, R (fig. l(b))```	Bend total-pressure-losa coofficient, $\Delta H / q$ (ing. 2)
2	3 5	1.0 1.0	3.00 .78	$\begin{array}{r} 0.0330 \\ .0158 \end{array}$	$\begin{aligned} & 37:, 000 \\ & 155,000 \end{aligned}$	$\begin{array}{r} 0.069 \\ .500 \end{array}$

$I_{\text {Diffuser }}$ totsil-preosume-loss coefficient $\frac{\Delta H}{q}=k_{2}\left(1-\frac{A_{d i}}{A_{d e}}\right)^{2}$.

(a) Reynolds number, 1,000 to 100,000 .

Figure 1.-Friction-factor and Reynolds number determination for straight ducts.

Ti.

(a) Reynolds number, 100,000.
Figure 2.-Total-pressure-foss coefficients for rectangular 90° bends.
NACA ARR No. L4F26
Fig. 2t

(b) Reynolds number, 300,000 .

Figure 3 .- Continued.

Figure 3.-Concluded.

Fig. 6a

la/ Bends without spacers; Reynolds number, 309000.
Figure 6.-Total-pressure-loss coefficients for compound rectangulor $U: Z=$, and 90° offset bends.

(b) Bends without spacers; Reynold's number, 600,000 . Figure 6. - Continued.

(c) Bends with 5-foot spacer; Fieynolds number, 600,000. Figure 6.- Concluded.

Figure 7．－Bend with thin circular－arc vanes．

(a) Vane profiles (x and y, coordinates of points on vane profile).

Figure 8.- Design data for Kröber thin vanes. (Data for $\beta=30 ; 45$. 60; and 90° taken from reference 9 .)

Figure 8.-Concluded.

Equation of curved-section profile:

$$
y\left[1+\frac{x}{l_{d}}\left(\sqrt{\frac{A_{d i}}{A_{d e}}}-1\right)\right]=\frac{h_{d i}}{2}
$$

Equivalent conical angle of expansion,26, deg Figure 10.-Total-pressure-foss coefficient factor k_{z} for curved-wall conical diffusers.

Figure II. - Design of conical diffusers followed by resistance units.
 conical diffusers illustrated in figure 11 .

Figure 13:- Breineh-ovet dasioni divider motha,

Figure 14.- Internal-duct-inlet designs and total-pressure-loss coefficients.

Figure 15. - Totat-pressure-loss coefficients for resistance units set at an angle to the upstream duct (average $V_{\text {fr }}, 16.5$ feet per second).

Figure 17.- Comparison of total-pressure lasses through sample duct systems.

June 1944

Pages 8 and 9 and figures 2, 3, and 6 have been corrected to include a calculated friction loss in the over-all loss coefficient for the bend. The corrected pages are attached to replace the corresponding pages and figures in the original version of this paper.
velocity and the hydraulic diameter of the duct: Values of f obtained from figure 51 of reference 4 are plotted against Reynolds number in figure 1. Data in figure 13 of reference 5 agree closely with values in - figure 2. Determination of the Reynolds number is facilitated by supplementary curves obtained by plotting the ratio of mass rate of flow to duct perimeter against Reynolds number for a number of air temperatures. The kenetic viscosity of the air used in constructing the supplementary curves of figure 1 was determined by Sutherland's equation as presented in reference 6.

A typical value of $\Delta H / q$ for straight aircraft ducts is $0.02 \frac{l}{D}$, which is usually inconsequential compared with other parts of the system, and the loss in sections of straight ducts is generally neglected. Long winding ducts of small diameters, such as cabin-heater ducts, are sometimes treated as straight ducts of higher than average pressure loss due to friction. The use of

$$
\frac{\Delta H}{q}=0.04 \frac{2}{D}
$$

is recommended in reference 7 .
90° bends of constant-area rectangular cross section. - Pressure-loss coefficients of 90° bends of constant-area and rectangular cross section given in figure 2 for three values of Reynolds number based on hydraulic diameter are derived from data appearing in references 5 and 8 to 12. The data of reference 5 are presented as a loss coefficient chargeable to turning which was obtained by subtracting from the measured over-all loss of the combined approach duct, bend, and tail pipe a calculated friction loss for the approach duct, bend, and tail pipe. All the bend data presented herein have been reduced to an over-all loss coefficient for the bend proper, or the data of reference 5 restored to an over-all loss by adding in the calculated friction loss of the bend. Figure 2 indicates that increasing the radius ratio beyond a value of about 2.00 yields no further reduction in loss, and that the optimum aspect ratio varies markedly with Reynolds number.
90° bends of constant-area elliptical cross section.- Pressure-loss characteristics of 90° bends of constant-area elliptical cross section are given in figure 3 for three values of Reynolds number. The data include circular ducts as a special case. The same general effects of radius ratio and the existence of an optimum aspect ratio are noted for the bends of constant-area elliptical cross section as well as for rectangular bends. The effects of Reynolds number are much less for bends of elliptical cross section than for bends of rectangular cross section.
90° bends of changing area.- Significant data (derived from reference 11) concerned with the relation of area change to the loss in 90° bends of a particular geometry are shown in figure 4 . In this figure the ratio of loss in a bend with changing area to that in a bend with identical inlet form but constant area is plotted against the ratio of entrance width to exit width of the nonuniform bend. Important reduction of loss in converging bends and serious increases in loss in diverging bends are noted; the loss increases are particularly serious for bends of small radius.

Simple bends other than 900.- No satisfactory correlation has been made of data for variation of pressure-loss coefficient with angle of bend. Pressure loss of 45° bends can apparently vary from one-third to two-thirds the loss of a similar 90° bend, according to the test conditions.

Compound bends.- Pressure-lose coefficients for three types of compound bend (fig. 5) derived from reference 5 are shown in figure 6. Inasmuch as differences in the losses between the U-bends, Z-bends, and 90° offset bends appears from reference 5 to be small and inconsistent, the curves presented are averages of results for the three types of bend. There appears to be little variation of loss with Reynolds number. Introduction of a 5 -foot spacer between the two parts of the compound bend increases the over-all loss appreclably due to the added friction loss. A comparison of the 180° bend (U-bend) data of figure 6 with the 90° bend data of figure 2 shows that the relative loss varies to a marked degree with the radius ratio and aspect ratio of the bend.

Effects of surface roughness on bend losses.- The effect of surface roughness on the losses in straight pipes has already been given by the curves of figure 1. A study of pressure-loss data for bends of angles from 30° to 90° and radius ratios from 1 to 6 (reference 11) indicates that the influence of surface roughness on the loss in bends, and presumably of other duct components in which major flow disturbances arise, is very much greater than can be attributed to the increase in skin friction at the mean velocity of flow. Analysis of the data in reference 11 suggests that the retio of losses through two bends, identical except for surface roughness,

(a) Reynolds number, 100,000.

Figure 2.- Total-pressure-loss coetficients for rectangular 90° bends.

NACA-Langley - 11-24-52-350

ERRATA No. I
Fig. 3c

Fig. 6a

(Q) Bends without spacers; Reynolds number, 300000.

Figure 6.-Total-pressure-loss coefficients for compound rectangular U, Z - and 90° offset bends.

NACA ARR L4F26
$\operatorname{ER} \mathrm{R}^{\prime} \mathrm{A} T \mathrm{~A}$ No. 1
Fig. Gb

(b) Bends without spacers; Reynolds number, 000,000 . Figure 6. - Continued.

(c) Bends with 5-foot spacer; Aeynolds number, 600,000 . Figure 6. - Concluded.

