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AERONAUTIC SYMBOLS 

I. FUNDAMENTAL AND DERIVED UNITS 

Metric English 

Symbol 

I Unit A.bbrevia- Unit Abbrevia-
tion t ion 

Length ______ l 
meter _____ _______ ____ __ 

m foot (or mile) ____ ____ _ ft (or mi) 
Tirne ________ t second __ ________ _______ s second (or hour) _______ sec (or hr) Force ________ F weight of 1 kilogram _____ kg weight of 1 pound _____ lb 

Power __ _____ P horsepower (metric) _____ ---------- horsepower ___ ______ __ hp 
Speed ___ __ __ V {kilometers per hour ______ kph miles per houL _______ mph 

meters per second _______ mps feet per second ________ fps 

2. GENERAL SYMBOLS 

Weight=mg 
Standard acceleration of gravity=9.80665 m/s2 

or 32.1740 ftLsec2 

Mass=W 
g 

Moment of iner tia=mk2
• (Indicate ax.is of 

radius of gyration k by proper subscript. ) 
Coefficient of viscosity 

j) Kinematic viscosity 
p Density (mass per unit volume) 
Standard density of dry air, 0.12497 kg-m- 4_s2 a t 15° C 

and 760 rom; or 0.002378 Ib-ft-4 sec2 

Specific weight of "standard" air. 1.2255 kg/ms or 
0.07651 Ib/cu ft . . - . 

3. AERO DYNAMIC SYMBOLS 

Area 
Area of wing 
Gap 
Span 
Ohord 

b' Aspect ratio, S 

True air speed 

Dynamic pressure, !p P 

Lift, absolute coefficient OL= qt 
Drag, absolute coefficient OD= q~ 

Profile drag, absolute coefficient ODO=~ 

Induced drag, absolute coefficient ODt=~ 

Parasite drag, absolute coefficient ODP= D~ qu 

Cr~-wind force, absolute coeffici.ent 0 0 = q~ 

Q 
12 

R 

a 
E 

'Y 

Angle of setting of wings (relative to thrust line) 
Angle of stabilizer setting (relative to thrust 

line) 
Resultant moment 
Resultant angular velocity 

Reynolds number, p Vl where l is a linear dimen-
fJ. 

sion (e.g., for an airfoil of 1.0 ft chord, 100 mph, 
standard pressure at 15° C, the corresponding 
Reynolds number is 935,400; or for an airfoil 
of 1.0 m chord, 100 mps, the corresponding 
Reynolds number is 6,865,000) 

Angle of attack 
Angle of downwash 
Angle of attack, infini.te aspect ratio 
Angle of attack, induced 
Angle of attack, absolute (measured from zero­

lift position) 
Flight-path angle 
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VOLTERRA'S SOLUTION OF THE WAVE EQUATION AS APPLIED TO THREE-DIMENSIONAL 
SUPERSONIC AIRFOIL PROBLEMS 

By M AX. A. H EASLET, HARVARD LOMAX , and ARTH UR L. JO NES 

SUMMAR Y 

A sUljace integral is developed which yields solutions of the 
linearized partial d~fferential equation jor supersonic flow. 
These solutions atisjy boundary conditions arising in wing 
the01Y Particular applications oj this general method are 
made, using accelemtion potential, to flat sUljaces and to 
unifol'mly loaded lifting surjaces. R ectangular and trapezoidal 
plan fonns are considered along with triangular jorms adapt­
able to swept-jorward and swept-back wings. The case oj the 
triangular planjorm in ides lip is al 0 included. Emphasis is 
placed on the systematic application oj the method to the lifting 
surjaces considered and on the po sibility oj jurther application. 

INTR ODUCTION 

The increased emphasis on extending theoretical knowledge 
in supersonic wing analy is h as led to a systematic investi­
gation of the various mathematical methods available for 
treating the basic differen tial equations. In the present 
report advantage h as been taken of the direct analogy ,,,hicb 
exi ts between the linearized partial differential equation 
for supersonic flow in three dimensions and the two-dimen-
ional wave equation of mathematical physics. As a re ul t 

of this correspondence, olutions which have been given for 
the wave equation are shown to be applicable to the type of 
boundary condi tion encountered in wing problems. The 
first ection of the report is devoted to the development of 
the solution for the po ten tial of the upersonic flow field. 
The application of this expre sion to a number of examples 
in supersonic lifting-surface theory illustrates the usefulnes 
of such a method of attack. In the first of these examples 
the loading over the given plan forms are assumed to be 
uniform. The re ults obtained for such cases appear at 
first to be somewhat academic since unde irable twist and 
camber occur over portions of tbe re ultant surface. From 
the uniformly loaded urfaces, however, it i possible to 
develop sLll'faces having arbitrary load distributions. Im­
posing the condition that the final lifting surface shall be a 
flat plate leads to the solu tion of an integral equation in 
every ca e considered. The results obtained, for some of 
the plan form con idered, have been developed elsewhere 
but not always with the unification or method attained here. 
New confio'urations arc also included among the examples 
given. The methods shown are applicable to a large class of 
un olved problem of immediate interest. 
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LIST OF IM PORTANT SYM BOLS 

local veloci ty of sound 

aspr.ct ratio (~:) 
pan of wing 

chord of wing 

lift coefficient (q~J 
load dis tribu tion function 
constan t value of discontinuity in cp over uni­

formly loaded li fting surface 
incomplete ellip t ic integral of second kind with 

argument u and modulus k 
complete elliptic in tegral of econd kind with 

modulus k and I -P, respectively 
incomplete ellip t ic integral of first kind with 

argument u and modulu k 
functions introduced in equations (89) and (90) 
complete ell ip tic in tegrals of first kind with 

mod ulu k and, I -P, respectively 
lift of wing 
free-stream "\1ach number 
d ir ec tion co ine of normal to urface S 
tatic pre m e on lower side of lifting surface 

static pres UTe on upper side of lifting surface 
point at which value of n is to be determined 

free-stream dynamic preSSlll'e (~po V02) 
urface enclosing volume V 

area of wing 
perturbation velocities in direc tion of X , Y, 

and Z axes, respectively 
volume 
fr ee-stream velocity 
Oar tesian coordinates 
transformed coord inates (ee equation (3).) 

J acobi's elliptic functions of argumen t u and 
modulus k 

angle of attack, radians 
lYf02-1 

:'1ach forecone from point P: (X, Y, Z) 
crnivertex angle of triangular wing 

1 

- - , 
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e 
8 (u ) 

.\ 

VI , 1/2 , V:I 

n(1l , 'Y ) 

Po 
<J , Q 

T 

CPu 

CPI 

w 

pressure differenti al (pl - P,,) 
anglc m easured from X a>"-1 
conical flow coordina t(' (S('c equations (27) 

and (30) .) 
(3 tan 0 
Jaeobi 's Lh('La funcLion 
('ylinciN of inflllit('s im al radiu s (' nclo ing aXlS 

of for e('.one r 
surfa(' (' al whieh t!'('am (' Ilt er s indu ('.('cl field of 

wing 
a ngl(' of s id e'Slip 

Mach a ngle of the free sLrcam (M = aI'C si n l~fJ 
c1 ir ('c lion ('osin(' of cononnal v to sUJ'fac(' S 
in eomplel (' (' lJip Lic int('gral of Lhin\ kind wi th 

argum('nL U , param('tn 'Y , and modulu s Ie 
c1 (, l1 s ity in Lil (' fr ('(' s t)' ('am 
variabl ('s rep)'('s('nting (' itiJ('l" t he tH'('(' \(')"ation 

pot ('ntial , tb(' velocity potential , 01' any of 
thc UU'('e perturbation velocity compon (' nts 

mface on which bound ary condition a1'(, g l\' c'n 
velociLy potentiaL 

accelera tion potenLial 

vahl e of acceleralion potenlial on uppl'r s ic\0 
of hIti ng surface 

valu e of acceleration poten tial on lowe)' s ide of 
lifLing surface 

l-~ 
x 

THEORY 

LINEAIllZATION OF D IFFERENTIAL EQUAT IO FOR COMP R ESS IBL E FLOW 

Th e quasi-lin eal' (i. e., lin ea l' in the deri vates of high('s L 
order) difl'(' rential eq uaLion fol' th e v eloeiLy-potent ial <I> in 
the ca c of compress ible fluid fI olI' in thrce dim ens ions, is 
('xp ressible in th e form 

wb ere a represents t il (' local v('lo ity of so und in th e medium 
and ·ar L('sian coor dinates arc used. Under the assump­
Lion of sm all perturbation theory (referen ce 1 and 2). 
Lh is e(lll a tion is modifi.ed 0 that it is lineal' in form ancl 
con eq uen tly more amenable to mathematical analysis. 
D enoting by the va]'iable n either the acceleration poten t ial , 
the velocity po tenLial, 01' any of th c thrce p er t urbation 
yelocit y compon ents, th c lin arizcd expre ion for cqu ation 
(1 ) is 

(2) 

wh erc AID is th c Mach number of th e fr ee strcam and thus 
equal t o th e ratio of free-str cam velocity and tIl(' COl'l'cspond­
ing p eed of sound . 

~ . - - - . 

B y mcan or t il l' a ffin e tran formation 

./Y= x } 
y = . .J± (1_ M 02) y 

z= "/ ± (l- .Lllo2) z 

(3) 

cq uation (2) can be put into s tandard for ms. Thu , when 
l\{o< 1 the plu signs ar e chosen in the radi cals of equ a tion (3) 
and ('qufItion (2) h('comc 

(4) 

II' hilc for Mo> l til(' minus ign are u ed ancl, as a conse­
qll('n ce, 

(5) 

F or the case of sub onie flow (M o< 1) th e linearizcd equation 
is thereby reduced to th c well-known L aplace equation in 
three dimcnsion s . Similarly, in supcrsoni c £low (11110> 1) 
equation (2) is again reduced to classical Lypc " 'ith the r e­
placemenL of the space coordinate X by a timc variable T 
to give thc two-dim en sional wavc equaLion of mathcmatical 
pbysics. The linearization of the gen eral differential equa­
tion for compress ible fluid £low therci'ol'e makc availabl e, in 
both subsoni c and supersonic studies, the re ult of th e ex­
ten sive work carri eci ou t in previous r esearch on problcms 
related to equation (4) and (5) . 

APPLICAT IO ' OF GREE 'S THEOREM TO LI NEARIZED CO MPRESSIBLE 
FLOW EQUATION 

.\Iet hod of solulion 1'01' partial differ cnLial cquation of 
the type con s id ered h ere may be las iti ed into t \\-O principal 
categoric: rr: e thod which expr ess Lhc olution in Lerm of 
orthogonal fun c tion and m cthod s which arc based on thc 
u sc of 01'c('n 's th('orem. Vol tcrra's oilltion , eli eu s ions of 
whi ch may b(' found in rci'er en ces 3, 4, and 5, applic th e 
latter app roflc h to thc l wo-dimen sional wavc cquaLion and, 
as a con sequ Cl1(' (', hi s r e ult s may b c adaptcd to Lhe study of 
super onic fl ow and sp ecific olutions of eq uation (5). 

If the func tional notation 

L (n ) =nXX-oyy-Qzz 

is II cd, th(' analytic form of Green 's th eo),em for cquation (5), 
relating a volumc integral ovcr the r cgion V to a urface 
ir.t('gl'al OV(, I' th c sll1'face S enclos ing V , may be wri tten in 
the form 

wh ere <J, n arc any Lwo func tions which , Logether wi th their 
fi rst and sccond (\(' riv aLives, are finite and single valu e 1 
Lhroughout thc 1'eO' ion con sid ered, and 

wher e nl, n 2, 113 are direction cosine of inward normals to the 
smface S , 

The ('xpre sion for D "Q is, of COUl'se, a directional d eriva­
tive. The corresponding term appearing in Green 's theorem 
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for Laplace's differential equation (incompres ible fluid flow) 
is precisely the directional derivative along the normal to the 
urface S. The analogy between tb e two terms promp ts the 

introduction of the o-called conormal to S wi th direction 
cosine VI, V2, V3 defined as 

The geometrical connection between the normal and the co­
normal i indica ted in fi gm e 1; th e angles between the lines 
and the Yand Z axes remain respectively equal, while tb e 
angles between the line and the X axi s arc supplemen tary. 

z 

Con ormal - ., 
Normal t o 
surFa ce S 

/ 
/ 

/-------~~~~----~---4--_r------------x 

',- Sur Face S 

y 

VWUHK 1.- 1'tw Kl'() Jlh'tri c 1'(' laLiolls ht'L\\'l'cn lIorJlla l and cO llorilla ll o SllrrA('l' ."', 

It foll ows, in particular, lL at if the surface S i the ./Y Y plane 
the two lines arc co incid en t; if S is a cone wi th semiver tex 
angle equal to 45° and axis parallel to the X axis, the co­
norrr:al at any point li es long the surface S. 

It is now possible to write 

(6) 

and the surface-volume relation becomes 

(7) 

If nand (J arc chosen so as to sa t isfy equation (5) through­
ou t the region V , then equation (7) redu ces to th e form 

.r.r (J ~~ dS=.r.r n ~~ dS ( ) 

The form of equaLion (8) is a dired analogue to rt'slil ls ob­
tainable for functions satisfying Laplace's equation . (Sec. 
e. g., reference 6, p . 46 .) Th e use of the conorm al produces 
this ymbolic equivalence . 

VOLTERRA' S METHOD FOR TWO-DJMENSIONAL WAVE EQUATION 

Consid er now a surface T which , for the purposes of thi s 
report, may be though t of as being coinciden t wi th the XY 
plane and para.llel to the air flow which is in the direction 
of the positive X axis. Two such mfaces are repre en ted 
by the darkened areas in figures 2(a) and 2( b) . I t is desired 
to determine the value of n at the poin t P : (X, Y , Z) from a 
knowledge of the boundary condition given on T . The 
solution to such a problem is immediately suggested by 
equation ( ) since that equation requires only the knowledge 

of n and on along a smface enclosing a given volume, together 
OV 

wi th the knowledge of some particular solu t ion (J to th e wave 
equation valid everywhere wi thin th e enclosed volume. 
Fmther , it is physically eviden t that eontribu tions to the 
value of n at P can come only from poin ts within the fore cone 
wi th vertex at P and also wi thin the envelope of the after­
cones wi th ver tices at the foremost disturbance poin ts of T. 

R eferring to figure 2(a), thi s would mean the volume bounded 
by the forecone r and the wedge t. springing from the leading 
edge of T; and in fi gure 2(b), lhe volume bounded by the 
forecone r and th e aftercone t. with ver tex a t th e apex Q.f 
the sw·face T . Since for the boundary-value problems lll­

volved the sW"face T remains in the XY plane, equation (8) 
must be applied to all three surfaces t. , r , and T. 

Yo 

(a) 

:- .. _ .. _- A 

: -·· K 

r 

- - T 

XY Plane 

FIO UHE 2.-i\olach foreoone from poi nt P (X, Y. Z) intersecling surface T. (a) Rectangular 
plan form. 

; .. -... - r 
..... A 

.·- K 

T 

:. X Y Plone 

Yo 

(b) 

FIGURE 2.-Concluded . (b) 'l'r iangular plan form . 

J 
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Sin ce th er e is no way of dctcrmining nand ~~ along r the 

attempted olu tion will be especially difficulL unle s 
particular solution rJ and its derivat ive with respcct to 
conormal yanish everywhere on r . Bu t thi s is in fact 
essential par t of Voltcrra' s m eth od of solution . Thu 
proper choice of rJ is 

the 
th e 
th e 
the 

(This rclation , incid entally, is the indefinit e integral of t il 
fundnm ental solution rcpresenting a supersonic omce in 
three dimensions [(X - X IF-( r - Y I)2-(2 - 7,1)2J- I/2. ) TIl e 
value of rJ is cqual to zero on th e forecon c r since t he equ a­
tion of this con e i 

and fmtber, sin ce Lh e conormal is always direc ted along the 

forecone, ~~ is t he gr adi ent of rJ a long rand i also zero. 

Equat ion (8) provide nn equali ty for t he disLribu t ion of 

nand ~~ over A and 7 , prov ided nand rJ sat isfy eq uat ion (5) 

throughout t he enelo ed volum e mentioned . H owever, al­
though rJ sa t isfies equation (5) ev erywher e in th e enclosed 
volum e opposite 7 from P (under th e XY plane in fi g. 2), 
along the line (Y - YIF+ (2 - 2 1)2= 0 (abov e the .AT pla ne 
in fig 2) rJ is infinite and does not at isfy the a sumptions 
made in establishing Green 's th eo rem. If thi s line is ex­
cl ud ed , however, by m ean of a cylinder K of radius E, wi th 
a..xi s lying along the line (Y - YI )2+ (7, - 7,IF= O, th en 
equation (8) may be applied to the region outside K and y eL 
within the space bound ed by A, 7 , and r . In fact quation 
(8) call then be writ ten 

(9) 

where 71 i Lhe portion of 7 bounding the region of integration . 

If R= , lCY _ Y I )2+ (Z - Z lr and cy lindri cal coordina tes E, ..p, 
and (X-XI) are u cd , an clem en t of area on t lte cyl inder K i, 
dS=- Edy;d (X - X I), while 

OrJ OrJ (X -XI) 
~=oR= -E/(X-XI)2_ E2 

so tha t 

II 00 (X- X) lim E .", •• arc cosh ___ I df d(X - XI )= 
t --+O " U J) f 

I I -·ndf dXI- I Il,~~ ~~ (In XI -:- X) Edf d(X-XI) 

= -2;rJ
x 

n(s,Y ,Z)ds 
x. 

(10) 

If this 1'C ul t i applicd to cqua tion (9), on c gets 

21T' n(s, Y , Z)ds= n.", -rJ~ d Jx If (OrJ OQ) 
x. Tl+A V II V II 

(11 ) 

an d , afte r difrer cnt iating eq ua tion (11 ) lI' jtlt respecL to X, 

(12) 

PROC EDURE FOR LIFTI NG S RFACES A D S YMM ETR I C WI GS 

\ '\Th en the r egion con id e)'ed is th at bounded by th e surface 
7, r , and A' , the portion of A on th e opposite sid of 7 from 
the point P , then rJ is fini te th roughout the region and, as a 
direct consequence of eq ua t ion (9), 

0= _.l ~ Jf (n' OrJ -rJ on') d 
21T' aX , T,+}.' - Oil' ov' (13) 

wh ere n' is th e yalu e of the potential func tion on th e side of 
7 opposite P and v' is in th e opposite direc tion to v on T. 

Adding equations (12) and (13), 

n(x , Y Z) = - 1 a J'f (OQ + on;) rJdS+ 
, 21T' o.X TI ov OV 

1 a fJ' ( , orJ OQ') 
21T' aX . A' nov' -rJ ~II' clS 

The integration over T a rc now in a form which may b e 
in tC'J'pl'cLed directly in term of known eond it ion over bodie 
wjth given load 01' ymmetrical section. Th e in tegration 
oYer A and A' can be cl i po cd of by discussing th e two case 
shown in figur e 2. Wh en Q is identificd with th e velocity 
poten tial , its valu e can b e shown to b e zero on A and ,,' 
)'egardle of whether thc leading edge i swept ah ead of or 
behi nd Lh e M ach cone. VVb en n represents acceleration 
poten tial or any of th e p er turbation velocity components, a 
cl iscolltlnuity exists in the value of n for leading edge wept 
ahead of th e M ach cone as in figure 2 (a). Analy i of th i 
case, ho wever , r eveals tha t for all wing problems th e inte­
g ration over" just can cels the in tegration over A' . When 
th e leading edge is swept b ehind th e 1Iach cone as in figur e 
2 (b) the valuc of n i again zero . Thus in any ca e there 
resu l t th e fundamenta l equation: 

(14) 

The counterpart of equation (14) for incompre sible fluid flow 
is well known. (ee, e. g., p. 60 reference 6. ) 

UncleI' the par t icular conditions for which 

(15) 
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over the smface r eq uation (14) becomes 

O( V Y Z) -~ ~JJ ( - ') OCT dS __ -"1., , - 271"OX T, Q Q Ov (16) 

The restrictions imposed in equation (15) can be given 
physical significance after the functions Q, Q', and the sUl'face 
7 have been given specific meanings. Consider first the 
case where T is a lifting smface. Obviously the normal 
induced velocity w is a continuous function across T. If 
Q and Q' are velocity potentials associated with the lifting 
surface, 

w(X, Y , Z) = w' (X , Y, Z) = ~~ = - ~~; 

and equation (15) is satisfied. If Q denotes acceleration po­
tential or pertUl'bation velocity u, it is necessary to show that 
on the lifting surface 

This relation holds, however, for since w(X , Y, Z) =w' (X, Y, Z) 
along T, it follows that 

and from the condi tion of irrotationality it is possible to ex­
press the gradient of w in the X direction as the gradient of 
U normal to the surface, that is, in the directions of v and v'. 

Equation (16) is thus applicable directly to lifting-surface 
theory in conjunction with either velocity or acceleration 
potentials. Application can also be made to the determina­
tion of pressure distribution over th e surface of a symmetric 
airfoil at zero angle of attack. In this so-called nonlifting 
ca e the function Q is set equal to the induced velocity w, 
T is the plane of symmetry of the airfoil , and equation (16) 
can be used to establish the boundary conditions, provided 
equation (15) is satisfi ed. For this to be so ow/ov must 
equal - ow' /ov'. But conditions of symmetry give w(Z)= 
- w'( -Z) from which the equality is seen to hold. 

RETRANSFORMATION OF COORDlNATES 

Since 

direct substitution into equation (16) yields 

Q(X,Y,Z) = 

1 a fJ (Q-Q') (X-X)) CZ -ZI)dX1dYI 
271" oX, T, [(Y-Y))2+CZ- ZI?h /(X-X))2_(Y_Y))2_(Z-ZI)2 

This solution applies to equation (5) and, in order to relate 
problems to the linearized equation (2), it is necessary to 
use the transformation of equations (3). If the point XI, 
Y), Z) transforms to the point X), V), Z) , it follows that 

Q(x, V, z) = 

where 
{32=Mo2- 1 

APPLICATIONS 

GENERAL REMARKS 

Applica tions in lifting- urface theory may proceed along 
two possible line depending upon the boundary conditions 
specified. In what is u ually referred to as the direct 
problem, or problem of the first kind, the loading is given 
over the wing and the potential function of the flow field 
field is calculated. From the potential function the shape 
of the aerodynamic surface supporting this load can be 
found relatively easily. The inverse problem, or problem 
of the second kind, concern itself with the determination of 
the loading over a wing surface from a knowledge of the 
urface shape. In th e following sections both of the e cases 

will be considered. The direct problem will be discussed 
for various plan forms, the analysis proceed ing directly from 
the expression for the potential function given in equation 
(17) . The detailed discu sion of the direct problem is justi­
fied by its application to the inverse problem where the load­
ing over flat plate with rectangular, trapezoidal, and tri­
angular plan forms is determined. The mathematic of the 
inverse problem is less traightforward since the analysis 
involve the introduction of elemental lifting surfaces with 
constant loading and the solution of an integral equation 

- for each plan form. 

UNIFORMLY LOADED LIFTING SURFACES IN SUPERSONIC FLOW 

Infinite span wing.- In order to determine the induced 
velocities on the urface of an infini te span , uniformly loaded, 
supersonic lifting surface by means of Lhe methods derived 
in the preceding section, it is convenient to et Q equal to 
the acceleration potential cp (reference 2) . The lifting surface 
i , in this ca e, a surface of discontinuity for the function cp 

and corre ponds to the surface 7) in equation (17) . The 
discontinuity in the value of cp betw en the upper and lower 
surface is eq ual to 

where 

Po density in the free stream 
PI static pressw'e on lower surface 
pu static pre sure on upper urface 

It follows that for the uniformly loaded wing in the plane 
z) = 0 the di continuity in the acceleration po tential i a 
constant, say Co . From equation (17) 
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FICi l"HE 3.- HC'g- ions o f int('!!rlltion for infini te span 1I1l ~w (' pt wing-. 

A skeLch of LIl(' ai rfoil plan form is given in figure 3 and 
two po ible reg io ns of integrat ion arc inciicaLecl. In a ll 
ca es the in tegrat ion wiLlI respecl to V is p erformed het ween 
the limit at whie- b tbe radical 

vanishes while th e integration with resped to x drpenrl s upon 
thr manner in \\"hieh the forecone of th e point P interseC'ls 
the discontinuity surface . D en otincr th e chord leng th of th e 
airfoil by c, thr following 1"elation a rc obtainrel: 

<,0 = 0 when x =F ,6z< O 

1 
.p = ±"2 Co when O:::::x =F ,6z::::: c (J 9) 

<,0 = 0 when c< .c =F ,6z 

(,Yb e ll e10uble s igns arc 1I eel, tlJl' lIpper sig n refers ah"ays 
Lo til(' cu e lI"herc' z> O and th e 101l'er s ign ("o rTrsponel Lo 

z< O. ) 
Th e YUIlle of t br accC'lrration potential is thus ser n to be 

zrro a t all point in s pacr ('wept for those point lying lI"itll i n 
thr r gion b etwee n tb e wC'dges extrnding back fro m th e 
lrading ancl trailing edge o f th e a irfoil. 

It is now poss ible to determine th e ineluceel velocities 
assoeiatrc/ with the accelC' ration potrntial .iu . t ohlained. 
S inee in lillear perturbation t beo ry (rdeJ'('llc'r 2) , 

0<,0 = 17 OU, 0<,0 = 11 Oil, 0<,0 = 11: ow (20 ) 
o :r 0 0 x 0V 0 ox 0 z 0 0.( 

,dl('I'r ll , v, ware l'esp eC'li ,"C'ly th e .f , V, z compo nent s of th e 
pertUl'bation w loeities, it follow th at 

1 
l:= TT <,0 

1/ 0 

Of " 1 r=>. r <,0 (XI , y, z) dx I 
u1/ - 00 I 0 

o J .. r I 
11' = >. 0' 1- <,o (.7'I , V,Z) (i'J'1 

u '-' _ co () 

(21 ) 

Tb e induced w loeities for the infinite span uirfoil 1'e ult 
immediately from equations (19) and (2 1) . If the upper 

ign of a cloublr ign is again 1'efe1'1wl to the z> O case, the 
l'('srt/t ma y be lI'['iltcn in th e form 

Co ) 
~~= ± ')T1 

~ \ 0 

v= O for O::::: x =F,6z<c 
Co I ? -

W = - ') " ,, 1\ [ 0-- 1 
- \ 0 

(22) 

Since thc vertical indu ced velociLie are constant, it follow 
that the superso nic airfo il of infinite aspect ratio and uni­
form loael distribution is a flat plaLe. Th e relations betll-een 
th is loading and angle of attack will b e con iclerecllater. 

Lifting surface with rectangular plan form. - The om pIc te 
e1iscu ion of the super onic lifting surfnce with uniform 
load in g ancl J' (,ctan gular plan form i len g tb rncd con iclel'ably 
by the fact th at in caleulating the acceleration potential at 
t il e point P \\"ith coordinat es x, V, z it i ne("(' sary to distin­
g uish bet lI"een se\'(' ral reg ions in pace in which the poin t 
may be loca ted. These reg ion arise from con sideration of 
th e manner in w llich th e forecone of Lhe point P cuts th e 
s urface of di cont il1llity. The value of <,0 can be found with 
approximately e(11.1al fuc ili ty in each of these region but, 
since thi s paper i concerned primarily with efl'ects on the 
s urface of the airfoil , the solution s for pertinent r eg ion s oilly 
lI' ill be g iven here . 

Fi gure 4 shows the r ecLangular plan form LD T' T together 
lI"ith the coordinate sys tem to be u cd . The d im ensions of 
t il l' ,,"ing ar c ch osen so thal the ::,\lach eon(' cxtending back 
from the leacling ecl ge will not intrr ret within the boundarie 
of the wing . Thi s restriction, which i noL n eces ary but 
nl('rcly implines the analysi , implies that if b is the sp an . 
of thr w ing and c the chord lengt h , th rn 

1 b 
tan JJ. = - \1 2 < -2 

\ _ 0 - 1 c 
(23) 

lI"iI ('I'(' JJ. = arc Sill J~o is t il e so-ca lleel ::,\fae/t angle of the 

s trrum and equnllo t he s('mi"('rlt'x anglrs of the ::'\[ac1l cone. 
The loading 0\,('1' t iI (' rect an g ul ar plan form is to be lmiform 

so th e expression <;; ,,- <,0 1 is s('( ('qlla l to ( '0 for -~ b ~YI~~ b 

and 0< ,7'1 < c. Thc' acce lc'J'fttion potrnt ia l, expresspd as fl 

hmcti on of x, V, z, is thu s ob tainable from equat ion (17) and 
t il e limits of intrgration mllst be c/etrrminpel from the position 
of P. From r eason s of Yll1ll1pt ry , only the portion of pace 
[01' wh ich V >0 n eed be considered . Once the accel rraLion 
potenti al hu been calculated, equation (21 ) may be used 
to calculate inclu ced veloc ities. The result of uch calcula­
t ion are g iven and the sam e convention for double signs i 
lIsed . 

Region II: 
t railing-rdge 

Behind the leading-edge lI"edge, ahead of the 
" "rdgr , and hounded later ally hy th e y = O 
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FIGu RE ,I. - Lifting surfac with Mach cones and coordinate system for rectangular plan form 

plane and the Mach cone from the leading-edgc Lip. The 
result in this region correspond to results obtained for the 
infinite span airfoil. Thus 

1 
'P=±2' Go 

u=±Go/2Vo 

v=o 

Go w=-- {3 
2Vo 

(24) 

Region I 2 : Within the Mach cone from the leading-edge 
tip, outside the Mach cone from the Lrailing-edge tip, and 
forward of the trailing-edge wedge. D cnoting the integrand 
in equation (17) by the ymbol I, the e:.\.'pre ion for 'P, when 

y<4 b, is 

1 0 (i x
, J+b IX' JY' ) 'P(X,Y'Z)=+ -2 ~ dXI IdYl + dXI I dYl 

7r u X 0 Yl Xl Yl 

(25) 
where 

Y1 =Y-~ (X-X1)2_{32z2, X I=X-{3 ~(Y-4 by+ Z2 

1 
Y2=Y+~ (X-XI)2_{32z2, X 2=x =F{3z 

Application of equations (21), after integrating either equa­

tion (25) or its companion expre ion when Y>~ b, yields the 

results: 

831 184-49-2 

_ Go -z ~ 2 {32 [( 1 b)2+ 2J (2) v - 27r ~ ( 1)2 :r - Y - '2 z 6 
o Y-2' b +Z2 

c. 
{ 

{3 (Y_! b) 
o {37r 2 

w=27rVo - 2 +{3 arc tan ~ [ ( 1)2 J+ 
x2_{32 Y- - b +Z2 

2 

As a partial check of the expression for rp in eq uations (26), 
it can be seen that in the limi t as z approaches zero the value 
of rp agrees with the result given in equation (24) on the 
wing while the value is zero off the wing. 

The values of vertical induced velocity in the plane Z= 0 
are of particular interest since from a knowledge of the 
distribution of w the surface shape and local angle of attack 
corre ponding to the imposed load distribution can be 
determined. The expression for w for uniform loading 
will be particularly useful later when the load distribution is 
modilied in order to obtain airfoils with specified induced 
velocities. Introducing the notation 

(27) 

the following re ults are obtained for the area covered by 
the tip cone: 

(28) 

After integration of these two expressions, the explicit value 
of vertical induced velocity throughout the entire region is 
found to be 

(29) 

Equations (2 ) and (29) indicate that the flow over the 
tip portion of the airfoil i of the type referred to as "conical 
flow." For Lhis type of flow the values of induced downwash, 
aerodynamic loading, etc., are fun ction merely of the angle 11. 

J 
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Busemann (reference 7), ' te\nut (reference ) , anci Lager­
strom (reference 9) hayc cl eYCloped fina ly PS [01' cp rta in plan 
fo rms \'hi ch are postulated on tl le' ex istence' of thi type of 
solu t ion. In all cases for \rhich th e fioll' field i coni cal the 
problem i effectively t\\"o-dimen lonal. Such a simplifi ca­
t ion reJuces the ana lysis in thi s r eporL to a con id era tion of 
a single integral eq uation while in Lhe references jusL men­
tioned complex yaria ble theory ca n be applied direc tly. 

Tip of swept -forward lifting surface.- Consider th tip of 
a s\\'ept-fOlwarcl SUpCl" onic lifting sllJ"face \\-it It uniform 
loading (fig. 5), the angle 00 beL \\-een tbe leadin g edge and the 
x axis and the angle 01 bet \\-een th e trailing edge and th e x 
axi both being Ie s than the fn'e-stream ::\1ach angle }1. 

o -------- --------y --

/ '-----

/------ --
Region --_ 
~ /-

Leadin g ___ 
t ip Mach cone -- ' 

/-----
Re g ion --_ 

I " 
Z " 

Tr ailing " 
tip Mach cane-- ' 

:r: 

FIr. UR E 5.- T ip of sw ept. (ofw fl rcllifLin g surface Wi Lh traces of ~ I aeh CO ll rs , ('oo rd inatl' s ~'st('m, 

and regions defined for equal ions (32) and (34). 

In carryino- out the int eoTation iL is neces ary to eli tingui h 
bet\\-ecn the type in \\-hi ch the tip boundaries are behind 
the Ia<'h cones ancl the Lype in whi eh the tip boundaries are 
ahead . Th e analyses of Lhese Lwo ca es arc of equivalen t 
comple.· ity, however , and can be h andled \\-ith equal facili ty 
by the methods ou Uined . F or all smfaces who e leading 
edges forl1l an apex, only the case where the \\-in o- bound ari es 
are behind the ::\ Iach cono \\-ill be consid ered. A Cart es ian 
coordinn te sy tern is chosen as ho\\-n so that Lhe on gm 

li e aL th e apex, the po iLive x axis ex tending downsLream, 
the y axis eXLending la terally , and Lhe z axis being directed 
normal Lo th.e plane of Lhe plan form and to the free- tream 
direction. The equations of the ide of th e lifting surface 
are 

and 

y = O 

00 y=-x tan 00= - - x 
{3 

01 ( y =-(x-c) tan 01 = -7:J x-c) 

The caJeulation of cp (:r , y , z) again must be divided into 
cases depending upon tho loca tion of lhe point P: (x, y, z) . 
In the results listed below aro included the explicit expJ'es ions 
for cp (x, y , z); the induced velocitie , however , a rc given 
only in the plano z= O, as the integraLion Lo obtain a general 
expression is diffi cult. The velocilie in the z= o plane, 
which are sufI1cient for the purpose of this inve Ligation, 
can be obtained from a simpler integraLion sin('p. . fOT th " 

in tegral involved, 

lim f f Z~O I (Y,y,z)dx= I (x,y,O) dx 

Thi s simpl ific a t ion was used in the analysis of most of the 
lifting smfaees investigated. As before, i t i a sum ed that 
the di con t inuity in cp is equal to o. }'Ioreovel', the ex­
pressions for Wz ~o are g iven in terms of the variables 11 

and w whore 

{3y c 
11 = and w= l - -x x 

(30) 

1 n this mannpr the soluti on is ho\\'n to be coni cal in the 
)'egion ahead of tho trailing-tip 1\ lach cone (fig. 5) . For 
point beh ind this l\Iach cone the flow i not conical hut a 
function of both 11 and w. 

R egion I I : Insid e the leading-tip lIa('h cone and ahead of 
th e trailing-tip Mach cone. Integration of equation (17) 
yield s tb e resull 

and, after further calculation, 

(32) 
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H,egiol1 12 : In ide boLh tip Mach (;011e . Th ' oluLion ill 
this region is implified through use of the fact that for linear 
differen tial equations any algebraic sum of solutions will bo 
another solution of the equation. ince the differential 
equa tion for the acceleration poten tial is linear , this property 
can be applied to obtain a solution for the region 12 by sub­
tracting from the expre ions given for region 11 corre pond­
ing expre sions in ,,,hich the variable 01 r eplaces 00 and (x- c) 
r eplaces x. Thus 

and for - 1< 7]<1 

_ Cof3 [ ...)1- 7]2 1 . h 1 + 
Wz _o- 271" V o --7] - - 00 ar c cos r;;T 

,/~ arc cosh ,(1+ 807] ) - ,/~ + 1:. arc cosh I ~ I -
80 ,(80 + 7]) I 7] 81 7] I 

(34) 

Lifting surface with trapezoidal plan form.- The linear 
property of the differential equation may be used to advan­
tage in determining the flow about a trapezoidal lifting ur­
face with uniform lift distribution , since the boundary 
conditions within the plan form of the airfoil are obviously 
sati fied when the acceleration potential for a triangular 
tip is subtracted from the potential for the rectangular 
surface. 

Suppose (fig. 6) the angle of rake of the trapezoid is 00 and 
that 00 i less than the M ach angle p.. The acceleration 
poten tial will be identical , over the cen tral portion of the 
urface, to tha t for the lifting surface of infinite aspect ratio . 

Over the parts of the urface which arc blanketed by the tip 
:Maeh cones the flow will , however , be modified. Because 
of symmetry the determination of this modification need 
only be carried out on one sid e of th e figure. 

If the coordina te axe arc chosen as hown in figure 6, the 
lateral boundary of the lifting surface is 

80x 
y = -x tan 00= - 73 

IL ha been shown Lhat both the rectangular plan form and the 
triangular plan form experience conical-type flow over the 
r egion \vi thin the tip Mach cones. Thu , th e variable 7] 
defined in equation (30) may b u cd. 

H,egion 11 : Inside the Mach cone originating at the leading­
edg tip , out ide the Mach cone from the trailing-edge tip, 
forward of th e trai ling-edge wedge, and to the left of the 
y= O plane. 

Cof3 [ 71" 7] + 1 ] =- v:- - - + arc tan --= - arceosh -- -
271" 0 2 ,/1- 7]2 80 hi 

(35) 

Mo 

1 
.//V-,!T,'lTTTi'ITT77ITTT7ITTT7-rTTT7,-,.;----'----- y 

P/", 

"', , 
" , ' 

"'<,- ~MOch 
, . 

cones~; .... " 

x 

FwUlu; u.-'r rapczoidal li ftiJ1g surfaCf' with traces of l\! ach cones, coo rdinate system, and 
regions defin ed for equat ion (35) . 

Swept-back lifting surface .- As another example of the 
way in whi ch the lineari ty of the differen tial equation may be 
utilized to ob tain furt her solu tions, the induced vertical 
vclociLi for a swept-back wing will be de termined for the 
case in which Lhe leading and trailing edges lie behind their 
l'espee Live M ach cones (fig. 7) . The boundaries of the plan 
form are given by Lhe equa tions 

8 
y=~x 

f3 

81 ( y= - x-c) 
f3 

The flow will be conical ahead of the trailing-edge Mach 
cone where the induced velocities can be expressed in terms 
of the variable 7]. Behind the trailing-edge Mach cone the 
flow will not be conical but will be expre ible in terms of the 

variables 7] and w= 1- c. 
x 

Consider fi r t the region of conical flow. In order to 
determin e W.~ o for a given value of 7] it is pos ible to con­
sider separately the indu ced effects produced by each half of 
the surface . But in Lho region ahead of the trailing-edge 
::-1ach cone, th induced velocities arising from one half of 
the surface arc ginn by the formula for a imilar region on 
the swep t-forward surface . F or reasons of symmetry the 
r e ul t for the entire swep t-back lifting surface need only be 
given for values of 7] within the limits - 1< 7] < 0. 
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FIOURE 7.- Swept- back lifting surface with traces of Ivl ach cones, coordinate system, and 
regions defin ed for equations (36) and (3i). 

In the region where the flow is not conical the solution will 
be built up of a combination of solu tions obtained from the 
regions of conical flow. 

R egion II: Inside the leading-edge M ach cone, out id e the 
trailing-edge Mach cone, and to the left of the Y= 0 plane. 
For - 1< 71 < 0 

(36) 

R egion 12 : Inside both Mach cones and to the left of the 
y= 0 plane. The solution in this region can be produced by 
subtracting from thc value of Wz~o given for region I I the 
value of Wt -o given for the same region except that in the 
latter case 50 is replaced by 01 and x by (x - c) . Thus, 

Although the uniformly loaded lifting surface was the only 
prescribed loading analyzed, it hould be noted that the 
basic i tegration leading to a olution of thi s type of prob­
lem (equation (17» is in no way restricted to a uniform load . 
Arbitmry loading that mayor may no t be analytic functions 
of x and y can be specified and the problem therefore becomes 

one of Lechniq ue in inLegration. The solu tions for the uni­
formly loaded smface , however , are particularly useful By 
meLhods of superposition these solutions can be used to ob­
tain the surface loading for specified plan forms (the inverse 
problem) as will be illustrated in the following section. 

LOAD DISTRI BUT IONS ON FLAT-PLATE LI FTING URFACES IN SU P E RS O NIC 
FLO W 

Infinite span wing.- Since the vertical induced velocity is 
constant for the supersonic airfoil of infinite aspect ratio 
(equation (22» and uniform load, it follows that the airfoil 
is a flat plate . This property distinguishes the infinite aspect 
ratio problem from all other plan forms considered, for the 
load distribution must be modified in the latter cases 0 that 
twist and camber are removed from the wing to obtain a flat 
plaLe. 

Deno ting the angle of attack of the airfoil by a , 

1101-eover , 

and, setting 

it follows that 

a = - wio° = 2~02 ..,fM02-1 

C1p 2Go -q=V
0

2 

Eliminating Go between equation (38) and (39), 

C1p 4a 
q -JlvJoZ- 1 

(38) 

(39) 

(40) 

The resul t given in eq uation (40) is the well-known Ackeret 
exp ression developed in reference 10. The derivation here 
follows the approach of Prand tl (reference 2). 

Rectangular plan farm.- Since the vertical ind uced veloci ty 
for Lhe uniformly loaded supersonic airfoil of rectangular 
plan form is no t constan t over the portion of the wing 
covered by Lhe tip :\Iach cones, it is necessary to modify the 
load di tribu tion wi thin th is region in order to ge t a flat plate. 
The delermination of Lhe required load distribution will be 
shown to depend on the solu tion of an in tegral equation and 

LI bseq uent problems dealing with other plan forms will , 
from a maLhematical standpoin t, be similar in form. 

The rectangular plan form will be thought of as being built 
of superimposed trapezoid al lifting surfaces with variable 
angles of r ake (fig. 8), each trapezoidal surface having a uni­
form load distribution bu t wi th load ing allowed to vary with 
the variable rake angle o. 

[nce the flow over the part of the airfoil ,vithin the Mach 
cone is conical, i t is possible to express Wz~o as a function of 
71 where 

Sett ing 
f3 tan 0= 8 
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and using equation (35) 

where O'(O)= rp U-rp l for the sinO'le trapezoidal smface with 
rake angle o. 

Mo 

J 

' . 

F IGURE S.- R ectan gular pla n form buil t of su perimposed trapezoidal liftin g su rfaces with 
variable rak(l , 

The solu tion of the problem depends on the determination 
of a function 0' (0) which, when substitu ted in equa tion (41 ), 
will yield a constant value of w z=o(1] ) ; that i , a value of Wz=o 
independent of the variable 1]. Imposing the condition that 

the problem is re olved into on e of solvin g the equation 

O= .!!:... j'O= 1 O' (O) dOJ'.J~ ~ 
d1] 0= 0 -1 1]1 1]1+ 0 

By means of the notation 

the integral equation is written in the form 

where the singularity in the inteO'rand necessitates the usc 
of the infinitesimal e. The evaluation of the deriva t ive' 
thus leads to the expl'e sion 

O= lim [ (-~-< 0' (0) ~Gl dO+ J l 0' (O) ooGI do-
<-,;0 J o U1] -.+< 1] 

O ' (-1]-e) G1(1], - 1] - e) +O' (- 1] + e) G1(1],- 1] + e) J 

8 

--~~~~~~~----~~------------------· ~1 .,., 

F IGURE g.- R egion of integration showin g line of Singular ity for equation (44) . 

It can be shown from equation (3 5) that, if 0 ' (0) is a con­
tinuous fUD ction, 

H ence 
0 = ~ ( 1 0' (o)do 

1]1 J o 1] 1+ 0 
(42) 

and the solu tion of this equation is 

0' (0) - 0 1 

- .J0(1-0) 
(43) 

'where 0 1 is a constant to be determined later, Substitu ting 
from equation (43) into equation (41 ) 

( I -rrdo 

- J o .J0(1- 0) 

The r egion of integration in the 1]10 plane for the double 
inteO'ral of equation (44) is shown as the eros -hatched area 
of fig ure 9, a singularity in the integrand OCCUlTing along the 
line 0= - 1]1' R ewriting the equation and reversing the 
order of integration in the double integral, 

- 2-rr arc sin -"leJ l- lim j" .J~ d1]1 
o <--70 - I 1]1 

The bracketed expression in this equation can be shown to 
vanish for all values of 1]1 between zero and -] so that, 
finally , 

OJI = - Od3-rr 
o 2Vo 

(45) 

ince the trapezoidal lifting surface are superimposed, 
the loading 0(0) over the re ultan t rec tangular plan form 
satisfies the relation 

d~~O) = 0 ' (0) 
.J0(1- 0) 

J 
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Imposing Lbe condiLion Lhn t ('(0) =0 aL 0= 0, it follows thaL 

0(0) = 20t arc sin .J8 (46 ) 

This equation gives the incremental change of acceleration 
potential between the upper and lower lifting surface of the 
rectangular wing. A a re ul t the increment in pressure is 

Expressing the pl'eSSUl'e difference in non dimensional terms, 

(47) 

The c nstanL Ct may be eliminated bet"ween equations (45) 
and (4'7) and as a consequ ence 

6.. p Wz _o 8 . ,­
-= - -- - arc sm 'yO 
q V o (37r 

Sill ce the angle of attack ex of the airfo il 1S by definition 

equal to - ~V:..il , the final expression for the loading, in coeffi­

cient form, over the outer portioll s of the rectangular win g is 

(48) 

The general approach used to ob tain this resul t is similar Lo 
Lhat used by Schli chting (reference 11 ) . The error in 
SchlichLing's final result has been noted by Busemann and 
others. 

Lift coeffi cient OL fol' an arbi trary wing is defined by the 
relation 

wh ere 
L = total lift of the wing 
dS= element of area on the wing 
So= to tal area of wing 

(49) 

For the rectangular wing the value of 6..p /q over the tip 
and cen ter ections are given by equations (4 ) and (40). 
As a re ul t of this integration 

wh ere A is the aspect ra tio and by definition equal 
rat io f the square of the span and the wing area. 
final conclusion the lift-curve slope of the wing is 

(50) 

to the 
As a 

(51 ) 

Trapezoidal plan form.- The result gi \'en in equa tions 
(48) and (5 1) arc capable of generalization to the case of the 
flat plate having trapezoidal plan fo rm alld wi th rake angle 
00 less than th Mach angle of the stream . For such a 
configuration the airfoil is again blanketed in part by the 
t ip Ylach cones and the loading in this ou ter section of the 

airfo il must be adjusted properly to give constant induced 
ver tical velocity. uperposi tion of trapezoidal lif ting sur­
faces ,vith load ings varying with rake angl e 0 can again be 
u ed and the conical nature of the flow employed . Setting 

YI = (3y /x 

0= (3 tan 0 

00= (3 tan 00 

eq ua tion (3 5) leads to the expression 

where O'(O) = 'Pu - 'Pz for the single trapezoidal surface with 
ral,;:e angle o. 

The analys is in this case follows along lines directly analo­
gous to that used for the rectangular surface. For the 
presen t configuration the loading function for the uperim­
posed trapezoids is given by the relation 

0'(0) 
.,j (0- 00) (1- 0) 

(53) 

and the integration to obtain Wz~o can be simplified to 
give, as a final result, 

(54) 

The loading 0(0) over Lhe resul tant trap ezoidal plan form 
can be found from the relation 

dO(O) Ot 
~= , / (0- 00) (1- 0) 

From the boundary condition that 0(0) = 0 at 0= 00 it 
follows that 

and 

/ 0-00 
0(0) = 20t are sin -y 1- 0

0 

(55) 

Elimination of Ot between equatioll (54) and (55) and 
introduction of angle of attack ex for -wz~ o/ Vo gives as 
aerodynamic loading over the por t ion of the airfoil within 
the tip Mach cones the expression 

(56) 

Figure 10 indicates the vari ation of the load ing over the tip 
section of the trapezo id. Th e variable ((3 /ex) (D. p/q) is 
plo t ted against (3 tan 0 for (3 Lan 00 equal to 0, 0. 3, and 0.6. 
T he curv e for (3 tan 00= 0 corresponds Lo the ca e of the 
rectangular wing and shows resul ts in agreement with equa­
tion (4 ). 
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FIG HE IO,-Load distribution ovcr tip for various trapcdzoidal plan forms, 

By means of equation (49) together with equations (56) 
and (40) the lift coefficient of the trapezoidal wing is expres­
sible in the form 

_ 40' (1-;b tan oO-;b tan J.l ) 
CL - -

{3 1 -~ tan 00 
b 

Introducing the aspect ratio A of the wing where 

A b 

c (1-~ tan (0) 

one gets for lift coefficient the relation 

C = 20' [ l+AC (l --'£JJ 
L {3 b {3b 

From equation (57), 

dCL= 'i ( l-;b tan oO-;b tan J.l ) 
dO' {3 c 1--5 tan 00 

(57) 

(58) 

(59) 

In figme 11, (3 dEL is plotted as a function of A{3 for 00 = 0, ~, 

and 1. The curve for 00= 0 agree,s with results given by 
equation (51) for the rectangular wing. All curves are 

5 

f3 f~n 6 ~: 1-_ 

4 

.5, I---::: r:=:::: ,...;-

3 1/ VO 

2 

o 2 4 6 8 /0 
f3A 

I'Ir.URE 11.- \'"riatioll of redu ced lift,curve slopc fJ dde;:' with reduced as pect ralio fJA for 

variolls lraprzoidnl plan [orllls. 

terminated at value of A{3 for which the Lip Mach cones 
inter ec t on the trailing edge of the wing. 

Triangular plan form , type I.- The pressure distribution 
over triangular lifting surfaces with constant indueed vertieal 
velocitie will be developed in the following three sections. 
These plan form are indicated in figures 12(a), 12 (b), and 
J 2(c) and hall be denoted, respectively, as types 1, 2, and 3. 
Type 1 and 2 are actually special cases of type 3; namely, 
the cases where one leading edge i parallel to the free stream, 
and where both leading edge make equal angles with the 
stream direc tion. Type 3 includes any plan form whieh ha 
leading edges swrpL behind the Mach cone buL on oppo ite 
sides of an axis drawn through the vertex of the triangle 
and parallel to the free stream; and , further, has a trailing 
edge such that the Mach cones from ei ther tip do not cros 
the mface of the wing. The principal reason for considering 
the three types separately is to show the manner in which 
the spanwise loading appears in the olution of the problem. 
In types 1 and 2 the proper load distribution is found rea lily 
while the final type requires a more careful treatment. 

In order to determine the load disLribu tion over the airfoil 
i will be convcnient to use a diffcrential element over which 
the loading is uniform. The elements may then bEnlUmIiled 
and the distribution of 10adil1g adjusted so that the induced 
vertical velocity at any point on the total lifting surface is 
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FIGURE 12.- Triangular fl a i platr lifting surfaces. (a) Type I. (b) Type 2. (c) Type 3. 

constant. For the triangular plan forms it i pos ible to 
assume that conical How exists and the analysis may be 
carried out using the angul ar coordinates that have already 
been introduced. 

Figure 13 shows the elemen tal lifting surface to be used. 
The sides of the clement extend back from the tip of the 
l1ach cone; making angles 0 and o+M with the positive 
x axis or free-stream direction. Corresponding to previous 
notation, the relations 0= {3 tan 0 and O+ tlB = {3 tan (o + f.o ) 
are used. T he vertical velocity indu ced by the element of 
surfac may be denoted by f. w and it follows that 

~~---------. y 

F,GUH E 1:1. - EIC'mental lifting su rface or co nsta nt load . 

where w(O, 7]) and w(O+ tlB , 7] ) a rc the velocitie induced by the 
triangular-tip urfaces with uniform loading and with t ip 
angles equal to 0 and o+ f.o , respectively. Applying a 
limiting process, 

lim 6W = lim w(O + tlB, 7]) -w(O, 7]) = ow (60) 
AO-tO f.0 A9-tO 60 00 

I t follows that Wz =o for th resultant lifting surface witi be 
evaluated by an integration with respect Lo O. If owz=%O 
can b e expressed in the form of an integral with r e pect to 
7] , the relation for wz=o will then be similar to those given 
in equations (41 ) and (52) for the previous plan forms and 
(he expecta tion ,,-ill b e tha l the function (l(0) can be deter­
mined to g ive constant induced vertical velocity. 

The method of attack just outlined i postulated on th e 
ex istence of an integral expression for owz=% O. \ uch an 
('xpre sion is, h o,,-ewr, oblainable directly from th integral 
in equation (32) . Integrating these relat ions by part. 
after fir t clifl'erentiating by 0, leads one to the [ormulaR: 

and for 0<7]<1 

(62) 

If the elements are ummed over the type 1 triangular 
wing, induced vertical velocity i 

o 
where C(O)='Pu-'P1 for the clement at o= arc tan~· If 

Wz=o is constant, then 

and from this eriterion the function C(O) will be determined. 
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Thus, usinO" methods s imilar to tho e introduced in tbe 
clevelopm n t of equation (42), 

(64) 

The general solu tion of th is eq uation is 

where O[ and O2 are con tanLs . ince, however , the KuLLa­
Joukow ki condition requires that loading vanish along the 
edge 8= 0, it fo11o\,s that O2= 0 and the required loading 
take the form 

(65) 

If equation (65) is substituted into equaLion (63), vertical 
indu ced velocity can be calculated from Lhe expre sion 

(66) 

The region of integration in the 7][, 8 plane for the double 
integral of equation (66) is shown in figure 14 for the case in 
which - 80< 7] < 0. A singularity in the integrand of the 
double integral exi t along the line 8+7][=0. Reversing 
Lhe order of integration, eqmltion (66) may be r ewritLen a 

T 1lC single in Legral in equation (67) ha a si ogulari ty at 
8= - 7] ince - 80 < 77 < 0 ancl 7] therefore lies inside the region 

e 

~' I GUHE 14. R~gion of int~gration sho wing line of singularity for eq uations (C,6) and (i ) . 

of integration. A correspond ing singulariLy occur in Lhe 
econel of the double integrals at 8= -77[. Consider, there­

fore, Lhe in Legral 

The ind efiniLe integral is 

o that Lhe definite integral i 

lim 1 {In ~+ 
dO , / -7]80 -772 -80 

The value of thi s expression is 0 and equation (67) therefore 
becomes 

Since, in this region of integrat ion, - 1< 77 < - 80 it fo ll ow 
that 

and 

The integral of cq uation (70) can be tran form ed by mean 
of purely algebraic substituLion into a form that integrates 
immediately into complete elliptic integrals of the fir t and 
econd kind. However , in the consideration of the type 3 

plan form it will be necessary to resort to other methods of 
transformation, 0 that a more uniform approach, employing 
Jacobian elliptic functions , ,,-ill be u cd throughout. (. ee 
reference 12.) 

The quartic under the radical in equat ion (70) is fir t re­
duced to an expre ion of the type appearing in elliptic in­
tegrals of canonical form. This i accomplished by succe -
ive applica hon of the transformation 

where k and l arc ehosen 0 as to de troy the odd power of 
the variable. By means of the e transform ation , induced 
velocity becomes 
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where 
k = _1-_'.:..,/_1-_ 0-,-02 

00 

The in tegration of equ ation (71 ) will be performed after 
first considering two par ts such that Wz~O= WI +W2 where 

and 

This separation is promp ted by the fact that the in tegral for 
WI i expressible in terms of elementary functions after the 
simple transformation t2= z. The results of such an in tegra­
t ion Ie d to a value that is zero at the lower limit and infinit 
aL the upper limi t. However, an inspection of the or iginal 
in tegral in equation (70) shows that Wz~o is finite so Lhe 
infinity obtained for WI must he canceled by a co rresponding 
infinity of equal magnitude in W2. The acLual proof of this 
statem nt necessitate, of course, treating the combined 
expressions as an indeterminate form where the upper limi ts 

of the integrals for WI and W2 arc replaced by t+ E and the 

limit is taken as E approach es zero. 
In trodu ce now in the integration of W2 Jacobian elliptic 

functions and set 

t=sn(u, k) =snu 
so that 

dt=cnu dnu du 

The ex ress ion for W2 becomes 

where K and K' arc the complete ellipti c in tegral of the 
first kind with respective moduLi k and le' = ,II -lc2. In te­
grating and combining with WI, one has 

where E(u) is the incomplete ell ip tic integral of the second 
kind. After substitution of the limits, indu ced ver tical 
velocity is 

(301 ( l - 1c2)E' 
W =- - -

z~o 2Vo , lle (Oo- le )( l -1c2) 
(72) 

where E' is the complete elliptic integral of the second kind 
with modulus le' = ,II - P. Equation (72 ) can be further 
simplified by writing le in terms of 00 so that 

(73) 

,-- 1--/1-002 

where the modulus of E' is "Y 1-1c2 andle = (J~ 

For the loading in question 

PI-Pu = PO(rp,,-rpl)= POOI -Je
o 
e 0 

and 

PI-Pu= flp=20; / 0 
1 11: 2 q Vo -V 00 - e 
"2 Po 0 

By means of equa tion (73) the constant 0 1 may be eliminated 
and 

(74) 

~MO 
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FIGURE 1.5. - Load distribution over triangular plan forms of type 1. 
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Figure 15 shows the variation of fi i:1 p' with (3 tan 0 for values 
et q 

of (3 tan 00 equal to 0. 3, 0.6 , and 0.9. 
From equations (74) and (49) the lift coefficient of the right 

triangle wing with trailing edge normal to the free-stream 
direction can be determin ed. It follows that 

(75) 

Since the aspect ratio A is given by the equation A = 200/ (3, 
equation (75) can b e us d to find the lift-curve slope as a 

dOL 
function of A. In figure 16 a plot of (3 det as a function of 

(3A is given. 

JMO 
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F IGt; RE l6.- Varia tion of reduced lift-curve slope fJ dd~L with redu ced aspect ratio fJA fo r 

plan forms of type I. 

Triangular plan form , type 2. - Figure 12 (b ) shows th e 
symmetrical type of triangular plan form considered in this 
section. The semivertex angle is 00 and 00 is defined by the 
rela tion 

00 =(3 tan 00 

The loading element used in the previou ection can be used 
again and equations (61 ) and (62) are applicable directly. 
Because of the symmetry of the figure, i t is necessary merely 
to insure the constancy of wz~ o over the left half of the wing 
in order that the entire wing be a flat plate. 

Summing the elemen ts over the type 2 triangular wing, 
induced vertical velocity over the port ion of the wing for 
which -1 < 1) < 0 is 

(3 [ 00 [.Jl - 1)2 f~ d1)1 ] 
w(1)) z~ 0= 2 T7 ( + 0) + 2( + 0) /1 2 O(O)do 

7r I' 0 • - 00 1) 1) -11)1 1)1 , - 1)1 

or, ince 0(0) = 0(-0), 

a constan t 
Impo ing 
given by 

The function 0(0) in equatio n (76) must give 
value for w(1) ) z~ o so th at oWz~~/orJ will vanish . 
this condi tion it can be shown that a olu tion is 
the relation 

(7 7) 

and, after substitut ion in equation (76), 

( 00 .~dO 
- Jo (02_1) 2) .,j002-02 

roo do f" d1) 1 
Jo , /002 -02 - 11)1 , 11 -1)1 2 (02 -1)12

) 

(7 ) 

The integration of equation (78 ) is to be performed under 
the a sumption that - 00< 1) < 0 so that the region of 
in tegration in the 1) 1,0 plane for t he double integral is a 
shown in figure 14. R eversing the ord er of in tegrat ion in 
Lhe double integral, equation (78) may be written in the 
form 

Evaluation of integrals of the form 

is accompli hed by mean of the sub titution 

o 
X=-

00 

After substitution, the integral becomes 

and, by stru,ightfol'ward integration, 

o 
1= 

for 1)2 < 1 
00

2 

(79) 
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Thi r suIt show that the econd double integral of equation 
(79) vani hes (since 00

2
> 7] [2) as docs al 0 the single integral 

in the eq uation. For the remaining double integral, however , 
80

2< 7][ 2 and 

etting 
1 

Z=- 7], 

equation (71) t ransforms to 

( 0) 

Introducing the modulus k = Oo and making the substi tu tion 

z=sn(u, lc) =snu 

one gets the expre ion 

where the prime again refers to the complementary modulus 
k' = .,,11 -0 of the complete ellip t ic integral. Since k = 00 

where le' = "/ 1- 00
2 

- _ (30, E' 
wz=o- ')TT 0 2 

~ V 0 0 

For the loading in q uestion 

Pl-pu /:::, P 20, 
1 = q = V2 0 2 02 _ pV 2 . 0 , 0-

2 00 

( 1) 

so that, eliminat ing C, bet\\'een thi equaLion and eq uation 
(81), 

/:::,p 4a80
2 

q = (3 , /00
2 02 E' 

(82) 

. , f (3 /:::,p . 1 (3 [ I F igure 17 hows the vanatlOn 0 - Wit 1 Lan 0 . 01' va ues .. a q 

of (3 tan 00 equal to 0.3, 0.6, and 0.9. 
From equations ( 2 ) and (49) it i po ible to fllld the 

exp ressIOn [or lif t coeffi cie nt of a triangular or delta wing. 
Thus: 

O 
_ 2 7rOoa 

L - (3E' 

ince aspect ratio of th e wing i 

A=400 

(3 
lift co fficient becomes 

( 3) 

( 4 ) 
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1-'1( : L' t< E 17 . I .on<i d iSI dlll l ! ion 0\'(' 1' triRIl ~11l a r plan fOl'll lH (J f i :'>' 11(' 2. 

I F(32 
wh ere Lhe modulus of H' is le' = -y 1- ./16 ' Th i ' result 

agrees with th at ohtain ed in another mann er by . tewal'L 
dOL 

(reference ) . In figure 1 a plot is given of (3 da as a 

function of (3A. 
Triangular plan form , type 3.- Figure 12 (c) show tbe 

plan fo rm now to be con idel'eci. R elative Lo th e x axis 0 1' 

free-stream direction the side of the t riangle form th angles 
00 and 0, so that the total ve rtex angle is 00 + 0, = 2 /:::, . The 
variables 00 and 0, a rc also introduced sat isfying th e relations 
00 = (3 tan 00, 0, = (3 tan 0,. The same loading element that 
\\"as used for type 1 and type 2 tr iangles may be u cd and 
equations (6 ] ) and (62) apply. It will then be neces ary to 
determi ne the dist ri bution of load so that the induced vertical 
velocity onr the plan form i a constant . . ince this induced 
velocity must be the same on both sides of the 0= 0 axis. 
two equations 1'e ult: 

For - 1< 7] < 0 

w ( \ = (3 f OO [ ,'1 - 7]2 + f~' __ cl7] , = ] O(O)dO 
1) z=o 27rVo -0, 7] (7] + 0) - "7], 2(7], + 0) \ 1-7],2 

( 5) 
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and for 0< 1) < 1 

W(1/) 0=1 f OO [ 1_ 1)2 + r ~ d'Y/I ] G(fJ)dfJ 
Z= 27rVo -0, 'Y/ (1/ + fJ) Jl 'Y/\ 2(1/I + fJ)·v'l- 'Y/ 12 

(86) 

From the solutions to the problem of type 1 and type 2 it i 
pos ible to construct a olution of the more general problem 
by expressing the loading function in the form 

(87) 

where.fl and B are constants that can be determined in terms 
of Wz=O from equations (85) and (86). Equation (87), in 
conjunction with equation (5) and (86), yields the expres­
SIOn s 

(3 
w z=0= 2Vo [AHI (fJO, fJI)+BH2 (fJO, fJ I ) ] 

WZ=0=2~ [-AHI (fJI, fJo) + BH2 (fJ\, fJo) J (8 ) 

where 

(89) 

(90) 

The evaluation of H I(fJ l , fJo) and H 2(fJ l , fJo) is accomplished 
in the ame manner as has been used previously: first, a 
reduction of the quartic under the radical to canonical form 
and second, transformation by means of Jacobian ellip tic 
functions Jollowed by direct in tegration. Since the cacu­
lation for both equations are quite imilar, only in the case 
of HI (fJ l , fJo) will th e details be men tioned. 

. a+ bs a 
By meall sof Lh e Lransfonna t lons'Y/l = 1+s aml s=t' where 

1- fJofJ\- .J (1- fJo2) (l - fJ\ 2) 
a = -----"---'--------'-;fJc'-o +-;--:;fJ:-\ "--'--'-------'--'-

b = 1- fJofJ l + , I (1-fJ02
) (l-fJI2) 

fJo+ fJ\ 

The in trodu ction of the symbols Rand k defined as 

b- a 
R = , / (l-a2) (fJo-a) (fJ I + a) 

k = 1- fJob 
fJo- b 

equation ( 9) reduces to 

(9 1) 

(92) 

(93) 

(94) 

(95) 

The in tegrand divicl es naturally in Lo two parts, one con taining 
even power and one containing odd powers of t in the nu­
m erator. The laLterpar t in tegrates into clemcntaryfunctions 
after substituting t= u 2 and equation (95) thereby becomes 

etting 

and substi tu ting 

x=sn(u, k ) =snu 

one gets 

'JH+iJ(' [ 2 sn2u ] 12=~ 1 + (a -1) 1 2 2 du 
f( -a 8n u 

If 8n -y= ~, 12 now may be written a 

I - -K'-i dn-y ( K+tK' P 8n-ycn-ydn-ysn2u du 
2- Psn-ycn-y JJ( I-Psn2-ysn2u 

or 

1 - K' . / b
2
- 1 [fI ( ) ]K +iK' 

2- - -~ -V P-a2 u , -y K (97) 

where II (u, -Y ) 
third kind. 

the fundamental ellip tic integral of the 
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The evalua tion of II (u, Ie) is bes t achlencl by mean 'of~ !it 
expre ion in term of theia functions and zeta func t ions . 
Thus 

and the bracketed term in equation ( 8) is 

The theta functions arc qua i-periodic, that is, they sfitis fy 
the relations 

8 (u + 2K)= 8 (u ) 

8 (u + 2i K' ) = _eR(I<'-i,,) 8 (u ) 

From this property, together with the fac t that 8(1t) IS a ll 

eyen function, it follow that 

110l·eover, since 

there re ul ts 

8 (K +iI·C ~-y) 8 (K+ -y) _ i;; 
8 (K --y)8(K+iK' + -y)-e 

E 
Z (-y)=E (-y)- -y K 

IT (K +iK',-y)-IT (K ,-y) =iICE(-y) -i-y I~E + i ;;{ 

and 

The expre sion for eq uation (96) can now be written 

(9 ) 

HI=a2Rk~/~:-~2 {;[g-1J+K[ E (-y)- -y ~J }-a2RkK 

(99) 

where the moduli arc Ie for the nonpl'imecl fun ct ions ancl 
k'= ,'l-e for the primed function. By definit ion, -y = arc 

·n ~=F (~, k) wb ere F is Lhe incomplete ellip t ic integral of 

the first kind with argument ~and modulus le. ,e 
In the sa me noLation, Lb e equa t ion for H 2 is as follow 

Formulas (99) ano (100) Cllll now be combined with equa­
tion (79) to give 

(101 ) 

and 

9 

8 

7 

e 

5 

I 

3 

o 

\\·her e 

I I I I m·t' 
"" ' 6, -00- "" 

fJ tan 0 0 = .9 - , 
, 
, , , , 
; , 

, , 
, 

; , 
; , , 

: , , 
, 

; , , 

/ .6 , 

; , 

I 
.3 : 

: I / , 
II , 

V 
0 ~ f....-.-P 
\~ V 

\ 
(a ) '\ 

-.8 -. 4 o .f .8 
fJ tan 0 

Load d i,trihul ion over triangular p lan form s of type 3. (a) fJ tan .,=0.3. 

a 1+ 8081 - , '(1-802)( 1-812) 
80 + 81 

(102) 

(103) 

and E' is the co mpl ete elli ptic integral of the econd k ind 
with modulus ·{i-Ot. 

From equation ( 7), (101 ), and (102) 

It shoulcl be remarked that the slope of the loading curve 
is zero at 8= O. Figures 19 (a), ] 9 (1)), and 19 (c) h ow the 

variation of f!.. !:::,.p with [3 tan /) for valu e of [3 tan 01 equal to 
ex q 

0.3, 0.6, and 0,9, l"cspecLively, and f l' (3 Lan 00 equal to 0, 
0.3 , 0.6, and 0.9. 
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, 
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\ 

1\ 
(b) \ o 

.8 -. 8 o -.4 .4 
fJ f on 6 

F IGURE 19.-Contin ued . (b) f3 tan 0,=0.5. 

F rom equ ations (49) and (104) the lif t coeffi cient for a 
type 3 plan form is ob tainable. Two case will be developed 
h er e: first, when th e tr ailing edge of the wing is perpendicular 
to th e stream dir ection ; second, when th e trailing edge of 
th e wing i perpendicular to the line of symmetry . The 
first configuration may b e r efen ed Lo as a skewed win g whil e 
the second co:n£iguration may be referred to as a ymmeLrical 
del ta wing at an angle of side lip . Thus for a skewed 'wing 

(J 05) 

where 0 is given by equation (103) an d E' ha the modulus 
1- 0 2• This result agrees with tha t given by R. C. 

R ober ts in an abstract in reference 13. 

For the mor e practical ca e of the delLa wing at an angle 
of sideslip , figure ] 2 (c), the lifL cocffi cien L can b e cxp]'c cd as 

G _ 2enr A / 0 tan 6. 
L - E' cos -V {J (106) 

I 

9 +Mo 

, ZG . . , . . . . 
, ., .. ". .... . ...... 

... ' 6, - -Do' " . 

8 

: 
, 

7 

: , , , 
: , , 

6 
, , 

, , , , 

, , : , , : 
: , .9; .6 , 
, : 

~\ 
: I : 

\~ , I / 
-4 

\'\\ .3 , 

/ J 
II 

l\ 
, 

\ I~ l'-.... ----I V 
3 

I \ ~ f"-.... ~ 

\ ...... 
r---V 

f3 t on 6 0 £ 0 -~ / 

l\ 
(e ) \ o 

o .4 .8 -.8 -.4 
/3 ton 0 

F'GUJ< E 19.-Concluded . (e) f3 tan 0,=0.9. 

where A i the angle of sideslip and 2il the angle between the 
leading edge , and a is expressed in terms of 00 an d 01 which 
are, in turn , expressed in terms of A and Ll by th e following 
equations 

00= {J tan (Ll + A) ( 

01= (3 tan (Ll - A) S (107) 

-- in ce Lhe pressure d i tribu tion ha been compu ted on ly for 
IVlng wi th leading edges beh lnd the .:'Ilach cone springing 
from the apex and with a trailing edge ahead of th e Mach 
cones from the wmg Lips, formula (106) is valid only for 
cases wh('J'e 

(l08) 

T hese restl'ic(,ions are practically alway met, however, for 
angle of sideslip likely to be encolUltered in fligh t. 

_J 
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I 
-- -- ---- -- - f3 1= / , J-1. = 45

1
, 

I /1 ~. 5 ,1 f-L = 63.5' 
4 

1 
Ll JA 

I' 
- --- - -- - - ---- -- - -- - --- - --- - -- -- -_. 30· 

2t 

3 

I 
- -- -- - - 20' f-- /. 46-

I 
30' 1.15 

----- -- - - - ---- - -- -- - - -- 20' .173 
10· f-- . 71 -

I 
10' - 'r-

o 4 B 12 18 20 
A, degrees 

FI(;t:HE 20.-Yarialion of reduced li ft -curn slope (3 diGL wilh angle of sideslip A fo r ''''' I(' 
(0< 

plan (orlils 1)( type:L 

{3 
dOL 

Equ t ion (l OG) IS ploLtecl in fig ul'c 20 \\'h c l'c da l ' 

sllo\\' n as a fllllC'l ioll of s id es lip alld ~ . Thc fig ure shows 

tha L up to 15° of id csli p {3 dd~L remains pradically COil LanL. 
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z 
Positive directions of axes and angles (forces and moments) are shown by arrows 

Axis Moment about axis Angle Velocities 

Sym-Designation bol 

LongitudinaL _______ X 
LateraL ___ __ __________ Y 
N ormaL _____________ Z 

Absolute coefficients of moment 
L lv.! 

0,= qbS 0 111 = qcS 
(rolling) (pitching) 

Force 
(parallel 
to axis) 
symbol Designation 

X Rolling _______ 
Y Pitching _____ 
Z yawing _______ 

N 
On=qbS 
(yawing) 

Sym-
bol 

L 
M 
N 

Linear 
Positive Designa- Sym- (compo-
direction tion bol nent along Angular 

axis) 

Y----+Z RoIL _______ 
<I> u p 

Z----+X Pitch. ______ 9 v q 
X--+Y Yaw __ ______ if! w r 

Angle of set of control surface (relative to neutrol 
position), 5. (Indicate surface by proper subscript.) 

4. PROPELLER SYMBOLS 

D 
P 
plD 
V' 
Vs 

T 

Q 

Diameter 
Geometric pitch 
Pitch ratio 
Inflow velocity 
Slipstream velocity 

Thrust, absolute coefficient OT= ;D4 
pn 

Torque, absolute coefficient OQ= ~DS 
pn 

p 

G. 

'T'J 

n 

Power, absolute coefficient Op= ~D5 
pn 

s / T1s 
Speed-power coefficient = " ~n2 
Efficiency 
Revolutions per second, rps 

Effective helix angle=tan-1(2.!:.n) 

5. NUMERICAL RELATIONS 

1 hp=76.04 kg-m/s=550 ft-Ib/sec 
1 metric horsepower=0.9863 hp 
1 mph=0.4470 mps 
1 mps=2.2369 mph 

1 Ib=0.4536 kg 
1 kg=2.2046 lb 
1 mi= 1,609.35 m=5,280 ft 
1 m=3.2808 ft 


